Sdr

PI: Language Models

COS 584

Spring 2021

Logistics

- Short lecture: ~20-25 min
- Breakout rooms (random): ~15-20 min
- Gather back and discuss main points: ~10 min
 - thoughts

• Each breakout room will designate a person who can relay the group's

Smoothing

- Handle sparsity by making sure all probabilities are non-zero in our model
 - Additive: Add a small amount to all probabilities
 - Discounting: Redistribute probability mass from observed n-grams to unobserved ones
 - Back-off: Use lower order n-grams if higher ones are too sparse
 - Interpolation: Use a combination of different granularities of n-grams

Discounting

Bigram count in training	Bigram count in heldout set			
0	.0000270			
1	0.448			
2	1.25			р
3	2.24			
4	3.23			• R
5	4.21			• •
6	5.23			
7	6.21			• Ju
8	7.21			(L
9	8.26			-

 $P_{\text{abs_discount}}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) - c}{c(w_{i-1})}$ $\frac{c(w_{i-1})}{\lambda(w_{i-1})} \frac{P(w_i)}{\sum_{w'} P(w_i)}$

- Determine some "mass" to remove from probability estimates
- Redistribute mass among unseen n-grams
- ust choose an absolute value to discount usually <1)

$$\frac{d}{P(w')} \text{ for all } w' \text{ s.t. } c(w_{i-1}, w') = 0 \text{ if } c(w_{i-1}, w_i) = 0$$

Interpolated Discounting

Bigram count in training	Bigram count in heldout set		
0	.0000270		• D
1	0.448		pr
2	1.25		
3	2.24		• Re
4	3.23		
5	4.21		
6	5.23		• Ju
7	6.21		(u
8	7.21		
9	8.26		

$$P_{\text{abs_discount}}(w_i | w_{i-1}) = \frac{\max(0, c(w_{i-1}, w_i) - d)}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$
Unigram probabil

- Determine some "mass" to remove from probability estimates
- edistribute mass among unseen n-grams
- ust choose an absolute value to discount usually <1)

ities

Issues with Discounting

- $P_{abs_discount}(w_i | w_{i-1}) = \frac{max(l)}{max(l)}$
 - I can't read without my reading ______
 - "glasses" more likely filler than "Kong"....
 - ... but P(Kong) > P(glasses)!(maybe since Hong Kong appears a lot in the text)
 - Simple unigram probability may not suffice!

$$\frac{(0, c(w_{i-1}, w_i) - d)}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$

A possible solution

 Instead of unigram probability, let us weight words by how many unique bigrams they complete

• i.e.
$$P_{\text{cont}}(w_i) \propto |\{v : C(v_i)\}| \leq C(v_i)$$

•
$$\Rightarrow P_{\text{cont}}(w_i) = \frac{|\{v \\ \sum_{w} |\{v\}\}|}{|v|}$$

(e.g. Kong) get downweighted

- $\{vw_i\} > 0\}$
- $v: C(vw_i) > 0\}$ | $\{v: C(vw) > 0\}$ |

• With this, words appearing in only a few possible contexts

Kneser-Ney smoothing (interpolated)

•
$$P_{\mathsf{KN}}(w_i | w_{i-1}) = \frac{\max(0, c(w_{i-1}, w_i) - d)}{c(w_{i-1})} + \lambda(w_{i-1})P_{\mathsf{cont}}(w_i)$$

- where $\lambda(w_{i-1}) = \frac{1}{\sum_{v} C(w_{i-1})}$
- also to seen n-grams

$$\frac{d}{C(w_{i-1}v)} |\{w: C(w_{i-1}w) > 0\}|$$

• $\lambda(w_{i-1})$ is the mass obtained by discounting, $P_{cont}(w_i)$ is the relative weight/share of each word within that λ

• Why interpolated? Because we add back part of the mass

Kneser-Ney smoothing (interpolated)

• i.e.
$$P_{\mathrm{KN}}(w_i|w_{i-n+1:i-1}) = \frac{\max(c_{\mathrm{KN}}(w_{i-n+1:i}) - d, 0)}{\sum_v c_{\mathrm{KN}}(w_{i-n+1:i-1} v)} + \lambda(w_{i-n+1:i-1})P_{\mathrm{KN}}(w_i|w_{i-n+2:i-1})$$

- and the final term $P_{KN}(w) = \frac{\max(c_{KN}(w) d, 0)}{\sum_{v \in KN}(w')} + \lambda(\epsilon) \frac{1}{V}$
- Here ϵ is empty string since there is no context for unigram
- Final term helps handle unseen unigrams (or words)

• In general, one can perform this discounting recursively for higher-order n-grams

• where $c_{KN}(\cdot) = \begin{cases} \operatorname{count}(\cdot) & \text{for the highest order} \\ \operatorname{continuation count}(\cdot) & \text{for lower orders} & \longrightarrow Why? \end{cases}$

Stupid backoff

$$S(w_i|w_{i-k+1}^{i-1}) = \begin{cases} \frac{\operatorname{count}(w_{i-k+1}^i)}{\operatorname{count}(w_{i-k+1}^{i-1})} & \text{if } \operatorname{count}(w_{i-k+1}^i) > 0\\ \lambda S(w_i|w_{i-k+2}^{i-1}) & \text{otherwise} \end{cases}$$

- Back-off from higher to lower order ngrams without any discounting
- Not a valid probability distribution...
- ... but works well in practice!

0.44 +0.51BP/x2 +0.15BP/x2 0.42 +0.39BP/x2 +0.56BP/x2 Test data BLEU 0.4 _+0.70BP/x2 0.38 +0.62**B**P/x2 target KN —— +Idcnews KN ----*---+webnews KN 0.36 target SB +0.66BP/x2 +Idcnews SB ----+webnews SB -----0.34 +web SB 100 1000 10 10000 100000 1e+06 LM training data size in million tokens

Figure 5: BLEU scores for varying amounts of data using Kneser-Ney (KN) and Stupid Backoff (SB).

(Brants et al., 2007)

