

COS 584

Advanced Natural Language Processing

P10: Transformers

Spring 2021

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

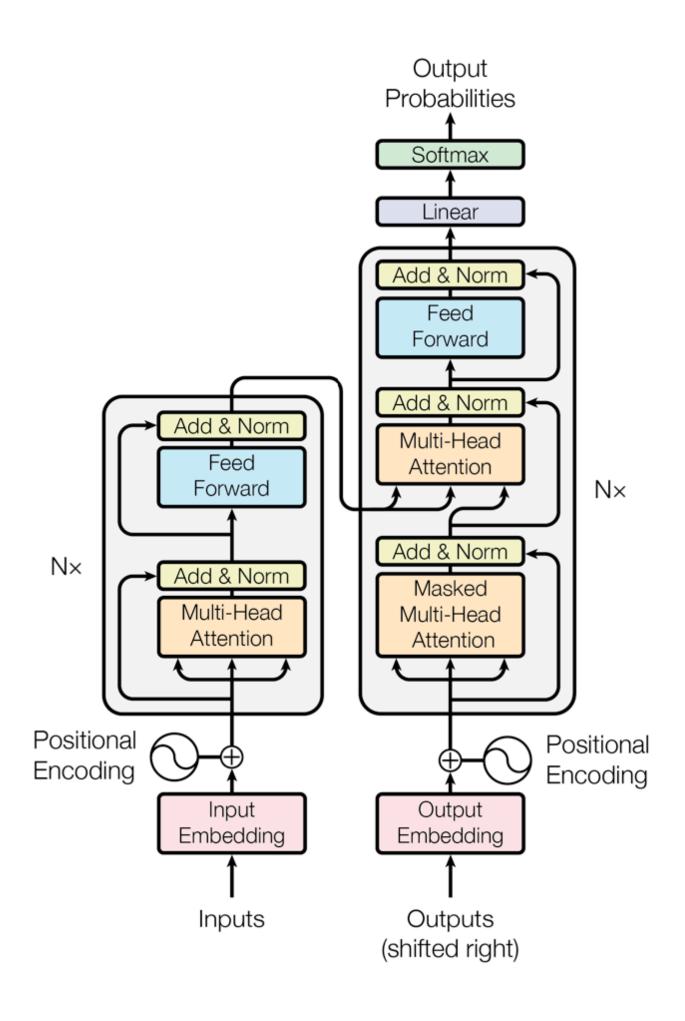
Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

The Annotated Transformer

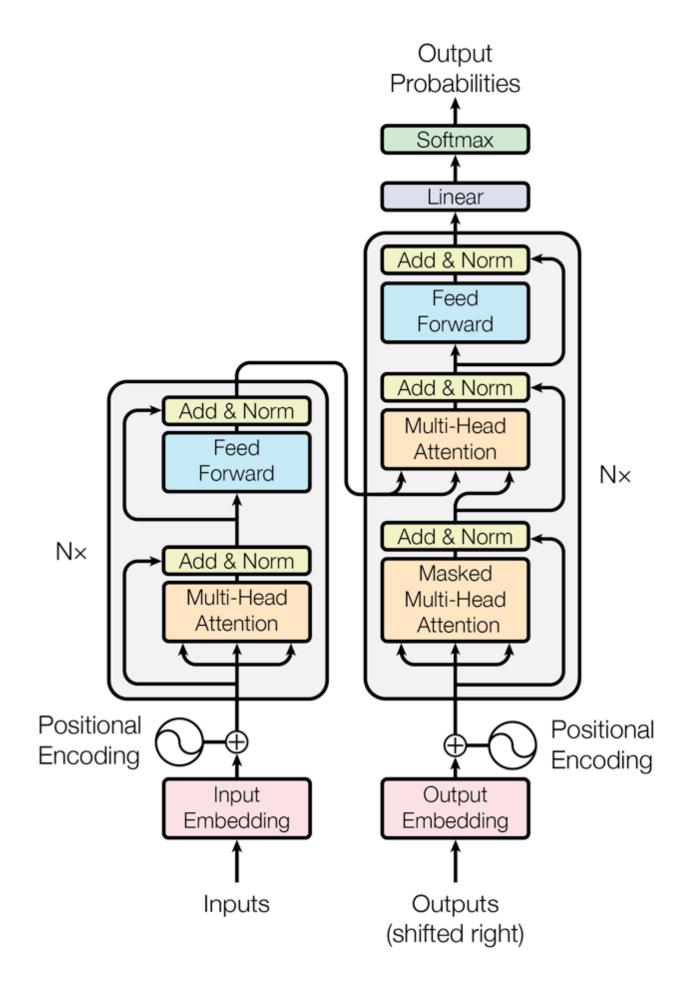
Alexander M. Rush srush@seas.harvard.edu Harvard University

Transformer encoder-decoder



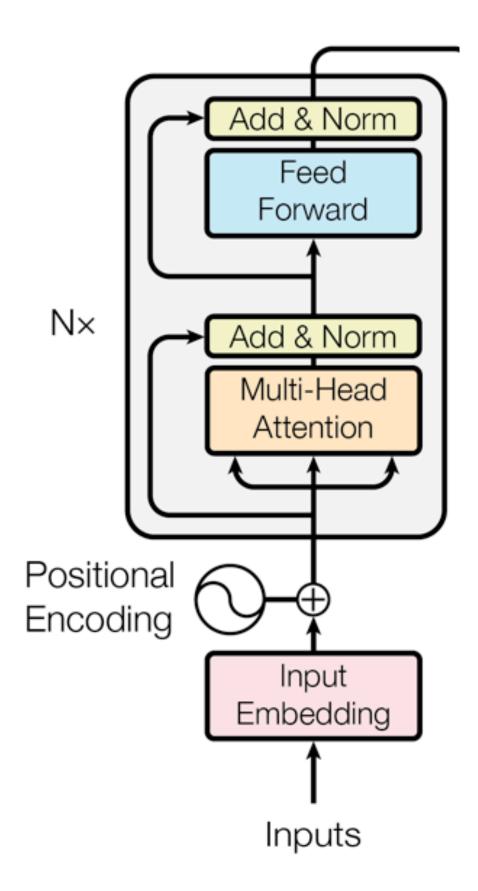
- Both encoder and decoder consist of *N* layers
- Each encoder layer has two sub-layers
 - Multi-head self-attention
 - FeedForward
- Each decoder layer has three sub-layers
 - Masked multi-head self-attention
 - Multi-head cross-attention
 - FeedForward
 - Decoder: generate output probabilities for predicting next word

Transformer encoder-decoder



```
class EncoderDecoder(nn.Module):
   A standard Encoder-Decoder architecture.
   Base for this and many other models.
   def __init__(self, encoder, decoder, src_embed,
                tgt_embed, generator):
       super(EncoderDecoder, self).__init__()
       self.encoder = encoder
       self.decoder = decoder
       self.src_embed = src_embed
       self.tgt_embed = tgt_embed
       self.generator = generator
   def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
       return self.decode(self.encode(src, src_mask),
                           src_mask,
                           tgt, tgt_mask)
   def encode(self, src, src_mask):
       return self.encoder(self.src_embed(src), src_mask)
   def decode(self, memory, src_mask, tgt, tgt_mask):
       return self.decoder(self.tgt_embed(tgt), memory,
                            src_mask, tgt_mask)
```

Transformer encoder



Layer Normalization (Ba et al., 2016)

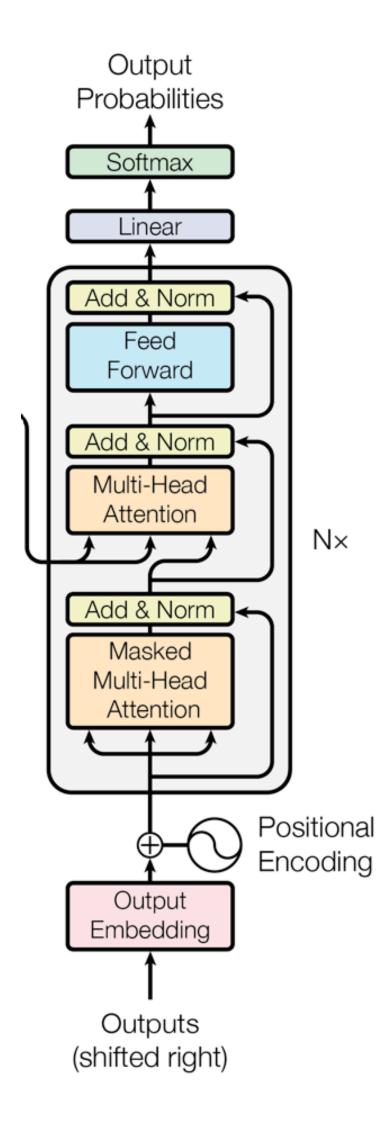
In the paper:

LayerNorm(x + Sublayer(x))

```
def forward(self, x, sublayer):
    "Apply residual connection to sublayer fn."
    return x + self.dropout(sublayer(self.norm(x)))
```

We will come back to this!

Transformer decoder



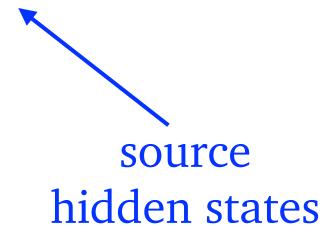
```
class DecoderLayer(nn.Module):
    "Decoder calls self-attn, src-attn, and feed forward."
   def __init__(self, size, self_attn,
                src_attn, feed_forward, dropout):
        super(DecoderLayer, self).__init__()
        self.self_attn = self_attn
        self.src_attn = src_attn
        self.feed_forward = feed_forward
        sublayer = SublayerConnection(size, dropout)
        self.sublayer = clones(sublayer, 3)
        self.size = size
   def forward(self, x, memory, s_mask, t_mask):
        "Follow Figure 1 (right) for connections."
       m = memory
       x = self.sublayer[0](x, lambda x:
                             self.self_attn(x, x, x, t_mask))
       x = self.sublayer[1](x, lambda x:
                             self.src_attn(x, m, m, s_mask))
        return self.sublayer[2](x, self.feed_forward)
                     self-attention
                                           cross-attention
```

Attention

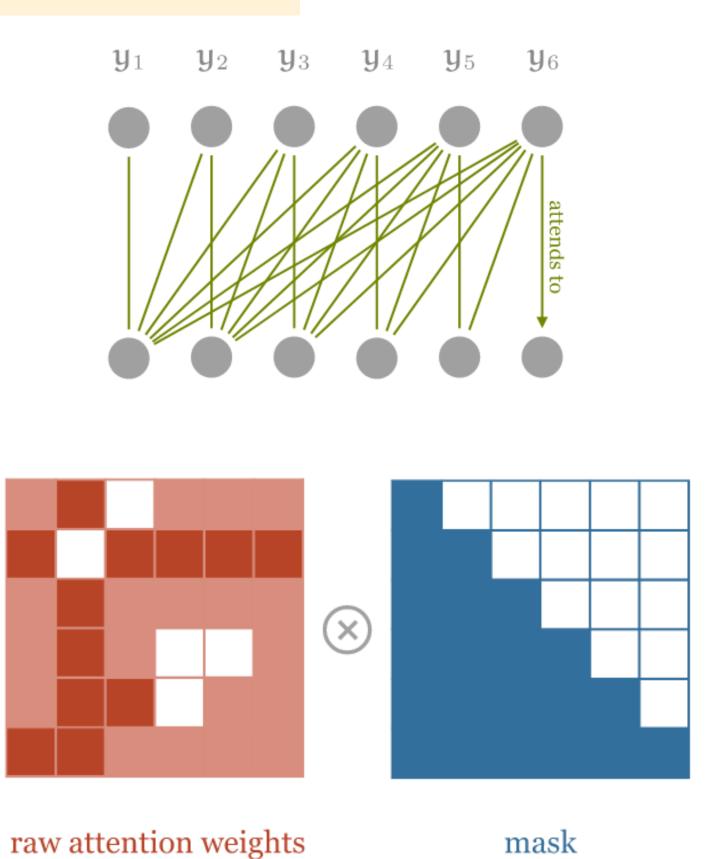
Attention(query, key, value, mask)

Encoder

Decoder



Masked self-attention



```
def subsequent_mask(size):
    "Mask out subsequent positions."
    attn_shape = (1, size, size)
    subsequent_mask = np.triu(np.ones(attn_shape), k=1)
    return torch.from_numpy(
        subsequent_mask.astype('uint8')) == 0
```

Attention

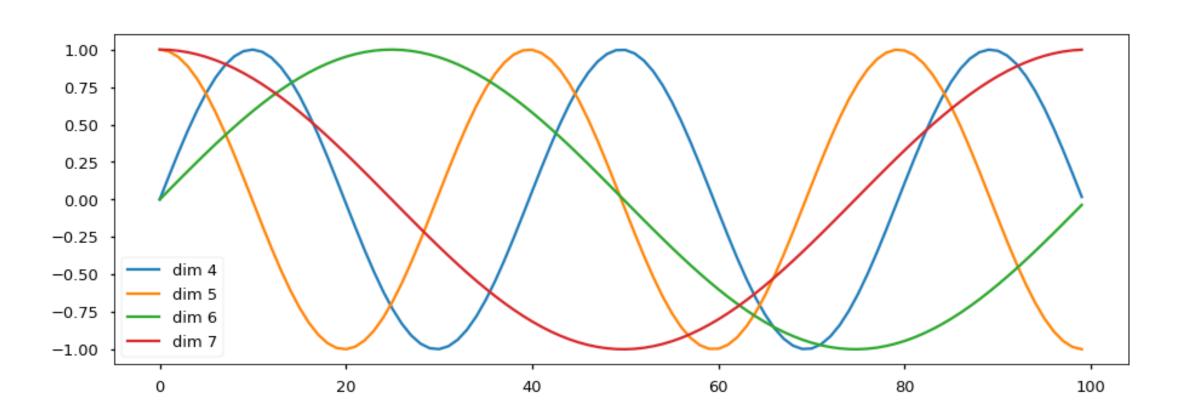
```
Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V
```

Linear projection for all the heads, split them into different slices later

```
class MultiHeadedAttention(nn.Module):
    def __init___(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init___()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)
    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nb = query.size(0)
        # 1) Do all the linear projections in batch from d_model
        query, key, value = [
            l(x).view(nb, -1, self.h, self.d_k).transpose(1, 2)
           for 1, x in zip(self.linears, (query, key, value))]
         2) Apply attention on all the projected vectors in bat
        x, self.attn = attention(query, key, value, mask=mask,
                                 dropout=self.dropout)
        # 3) "Concat" using a view and apply a final linear.
        x = x.transpose(1, 2).contiguous().view(
            nb, -1, self.h * self.d_k)
        return self.linears[-1](x)
```

Other interesting things

- Decoder: Input and output embeddings are tied
- Positional encodings



A dedicated optimizer

$$lrate = d_{\text{model}}^{-0.5} \cdot \min(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5})$$

Label smoothing

$$p'(y|x_i) = (1-arepsilon)p(y|x_i) + arepsilon u(y|x_i) \ = egin{cases} 1-arepsilon + arepsilon u(y|x_i) & ext{if } y=y_i \ arepsilon u(y|x_i) & ext{otherwise} \end{cases}$$

Breakout discussion

- Group 1 (Danqi)
 - Which parts of Transformer implementation (design, optimization, regularization) that you find interesting, surprising or counter-intuitive?
- Group 2 (Kaiyu)
 - Which parts of Transformer implementation (design, optimization, regularization) that you find interesting, surprising or counter-intuitive?
- Group 3 (Mingzhe)
 - How to improve Transformers?
- Group 4 (Zexuan)
 - How to improve Transformers?

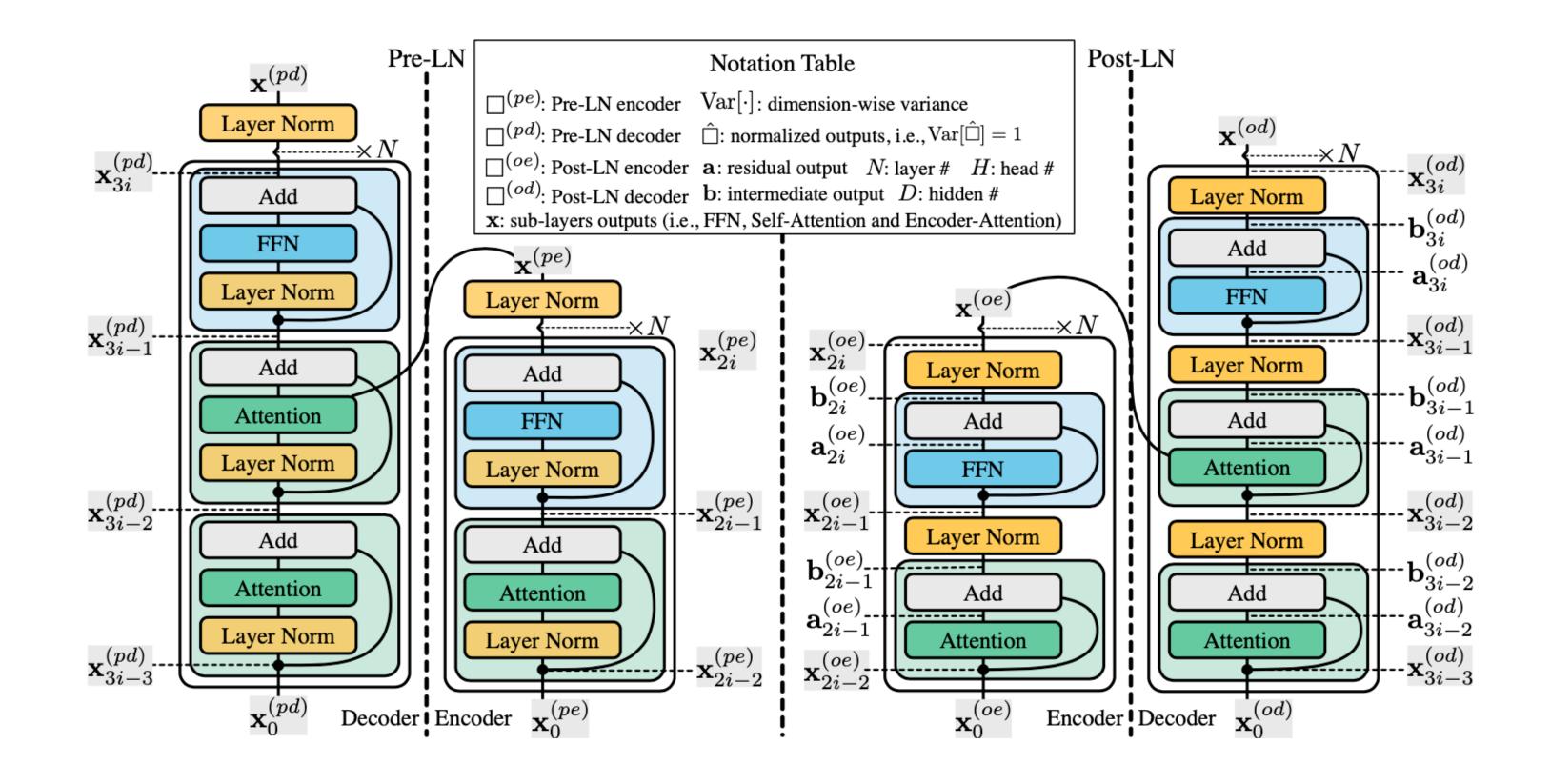
• Re-order the sub-layers...

(a) Interleaved Transformer

(b) Sandwich Transformer

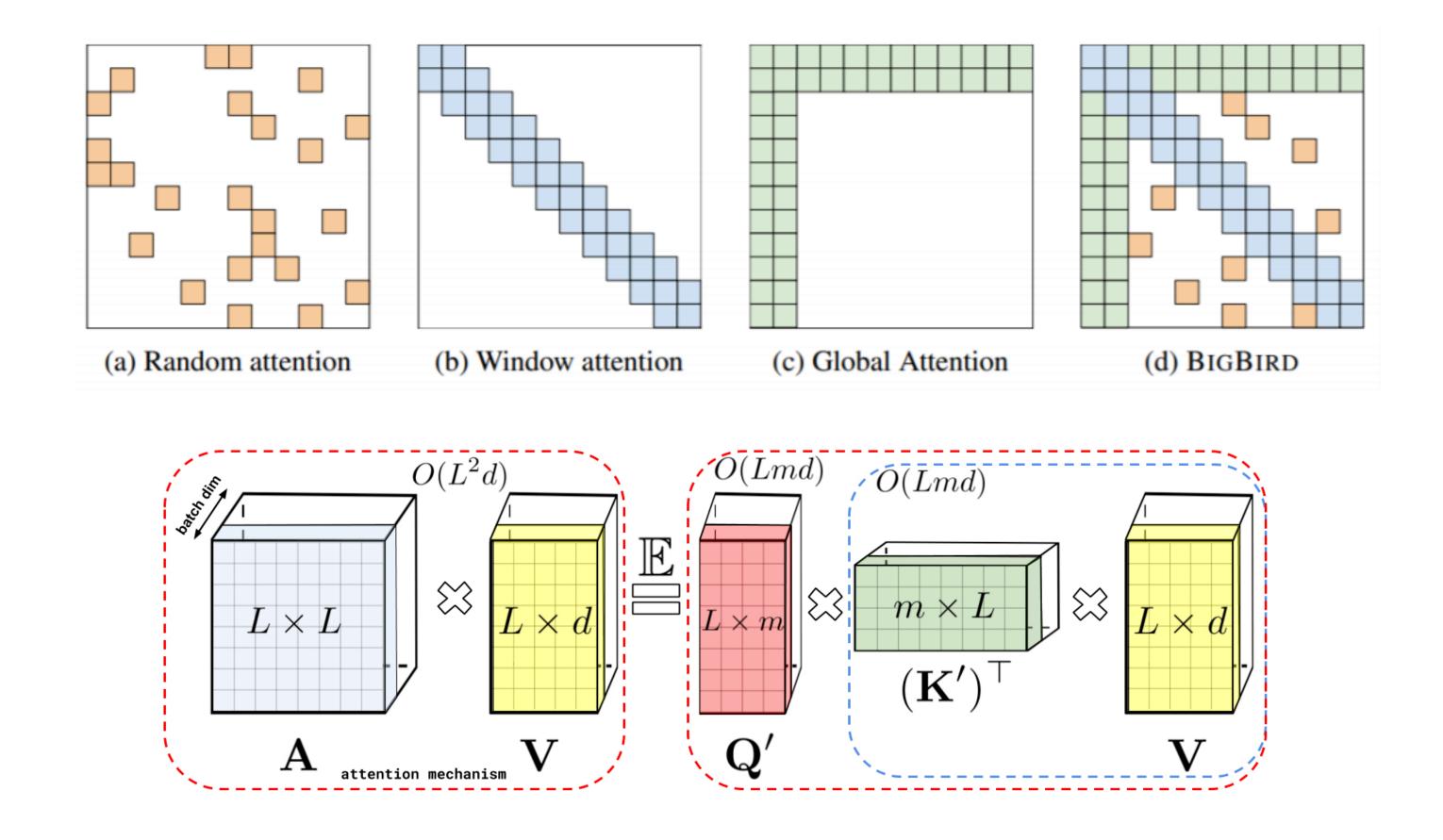
Model	PPL
fsfsffsfssssffsfssfsssffsffs	20.74
sfssffsfffssssfsfffsfsfssssf	20.64
fsffssffssssffsssssffsfsfffff	20.33
fsffffffsssfssffsfssffsssffsss	20.27
fssfffffsfsssfffssssfffss	19.98
sssfssffffssfsfssssffsfsffsf	19.92
fffsfsssfsffsffsffsssssffssffs	19.69
fffsffssffsssfsssfffffsfsssfs	19.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	19.13
fsffssfssfffsssffffsfssfs	19.08
sfsffssssffssfffsssffsssfsffsff	18.90
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.83
sssssssffsffsfsffffsffsfssffs	18.83
sffsfsfsssffssfssssssffffffs	18.77
sssfssffsfsfffssffsffsf	18.68
fffsssssfffsfssssffsfsfsfsffsff	18.64
sfffsssfssfsssssfssfffffsffsf	18.61
ssffssfssssffffffssffsssfsffssff	18.60
fsfsssssfsfsffffsffsffssffssss	18.55
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.54
sfsfsfsfsfsfsfsfsfsfsfsfsfsf	18.49
fsfsssssfsfffssfsfsfsfsffffss	18.38
sfssffsfsffsssssfffsssfffsf	18.28
sfsfsfsfsfsfsfsfsfsfsfsfsf	18.25
sfsfssfsssffsfsfsfffssffssf	18.19

Pre-LN is more robust than post-LN



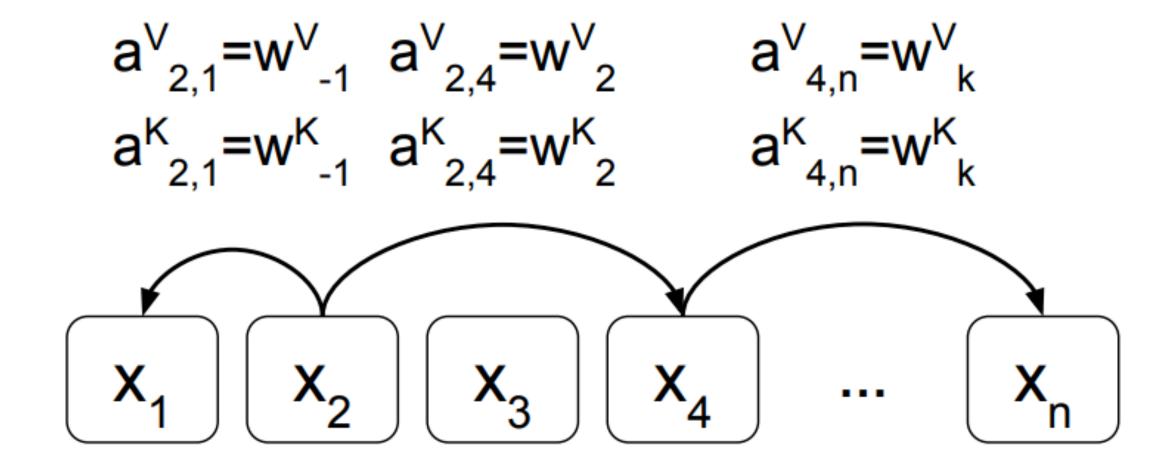
(Liu et al., 2020) Understanding the Difficulty of Training Transformers

• Scale up to long sequences (and avoid quadratic computation!)



(Zaheer et al., 2020) Big Bird: Transformers for Longer Sequences (Choromanski et al., 2020) Rethinking Attention with Performers

Relative positional representations



• Relative positional encoding + Segment recurrence

