

COS 584

Advanced Natural Language Processing

PII: Pre-training

Spring 2021

NeurIPS 2019

XLNet: Generalized Autoregressive Pretraining for Language Understanding

Zhilin Yang^{*1}, Zihang Dai^{*12}, Yiming Yang¹, Jaime Carbonell¹, Ruslan Salakhutdinov¹, Quoc V. Le² ¹Carnegie Mellon University, ²Google AI Brain Team {zhiliny,dzihang,yiming,jgc,rsalakhu}@cs.cmu.edu, qvl@google.com

From BERT to XLNet

• Masked Language modeling (MLM): mask mask out 15% of the input words, and then predict the masked wordsout 15% of the input words, and then predict the masked words

gallon \uparrow \uparrow

store the man went to the [MASK] to buy a [MASK] of milk

• Next sentence prediction (NSP): predict whether a sentence is followed after the next sentence

Label = IsNext

```
Input = [CLS] the man went to [MASK] store [SEP]
```

he bought a gallon [MASK] milk [SEP]

Limitations of BERT

Auto-regressive Language Modeling

Next-token prediction •

- The predictions are independent
- The [MASK] tokens add artificial noise you never see them at testing time!

Reconstruct masked tokens ٠

XLNet

- XLNet = an autoregressive model that captures bidirectional contexts
- Key idea: **permutation language modeling** sample a factorization order from all possible permutations and predict words by the factorization order one by one

Change the Factorization order to: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

$$P(\mathbf{x}) = P(x_4)P(x_1 \mid \mathbf{x}_4)P(x_3 \mid \mathbf{x}_{1,4})$$

 $P(x_2 \mid \mathbf{x}_{1,2,4}) \cdots$

A Technical Challenge

Conditioned on x_1, x_4 , we want to predict x_3 , how we can we know that we would want to predict the 3rd word even?

A Technical Challenge

Should not encode x_1

Should encode x_1

Solution: Two-stream Attention

Encoding. Predicting x_2 and x_3 (others).

 h_1 encodes x_1

 $g_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), \quad (\text{query stream: use } z_t \text{ but cannot see } x_{z_t})$ $h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{\le t}}^{(m-1)}; \theta), \quad (\text{content stream: use both } z_t \text{ and } x_{z_t}).$

 g_1 does not encode x_1

Solution: Two-stream Attention

Summary of XLNet

Challenges

Independence assumption and distribution discrepancy in BERT

Standard parameterization is reduced to bag-of-words

Contradiction for predicting both self and others

Solutions

Other important details

- Partial predictions
 - It is very difficult to make predictions when seeing too little context
 - Solution: they only predict the last 1/K words (K = 6 or 7, similar to the 15%) in BERT!!!)
- Re-use ideas from Transformer-XL (Dai et al., 2019):
 - Segment recurrence
 - Relative positional encodings
- Span-based prediction

(Dai et al., 2019) Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

XLNet: Experiments

Model	MNLI	QNLI	QQP	RTE	SST-2	2 M	RPC	CoLA	STS-B	WNLI
Single-task single models on dev										
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	8	8.0	60.6	90.0	-
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	9	0.9	68.0	92.4	-
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	9	0.8	69.0	92.5	-
Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)										
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	9	2.7	68.4	91.1	89.0
RoBERTa [*] [21]	90.8/90.2	98.9	90.2	88.2	96.7	9	2.3	67.8	92.2	89.0
XLNet*	90.9/90.9 †	99.0 †	90.4 [†]	88.5	97.1	t 9	2.9	70.2	93.0	92.5
SQuAD2.0	EM	F1 S	SQuAD1	.1	EM	F1				
Dev set results (single model)										
BERT [10]	78.98 8	31.77 E	3ERT† [1	0]	84.1	90.9				
RoBERTa [21]	86.5	89.4 F	RoBERTa	[21]	88.9	94.6				
XLNet	87.9	90.6 2	KLNet		89.7	95.1				
Test set results on leaderboard (single model, as of Dec 14, 2019)										
BERT* [10]	80.005 8	3.061								
RoBERTa [21]	86.820 8	9.795								
XLNet	87.926 9	0.689								

They trained on 10x data and longer...

XLNet: Experiments

A fair comparison to BERT: still consistent gains but not impressive as before

Model	SQuAD1.1	SQuAD2.0	RACE	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B
BERT-Large (Best of 3)	86.7/92.8	82.8/85.5	75.1	87.3	93.0	91.4	74.0	94.0	88.7	63.7	90.2
XLNet-Large- wikibooks	88.2/94.0	85.1/87.8	77.4	88.4	93.9	91.8	81.2	94.4	90.0	65.2	91.1

XLNet vs RoBERTa

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2	
RoBERTa							
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3	
+ additional data (§3.2	2) 160GB	8K	100K	94.0/87.7	89.3	95.6	
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1	
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4	
BERTLARGE							
with BOOKS + WIKI	13GB	256	1 M	90.9/81.8	86.6	93.7	
XLNet _{LARGE}							
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4	
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6	
SQuAD2.0	EM	F1		SQuAD1.1	E	M F1	
Dev set results (sir	ıgle mode	l)					
BERT [10]	78.98	81.7	7]	BERT† [10	84	.1 90.9	
RoBERTa [21]	86.5		1]	RoBERTa	[21] 88	.9 94.6	
XLNet	87.9	90.6	5 2	XLNet	89	9.7 95.1	
Test set results on	leaderbod	ard (si	ingle i	model, as o	of Dec 14,	2019)	
BERT* [10]	80.005	83.06	51				
RoBERTa [21]	86.820	89.79	95				
XLNet	87.926	90.68	39				

XLNet: ablation studies

#	Model	RACE	SQu	AD2.0	MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

Breakout discussion

- Group 1 (Danqi)
- Group 2 (Chris)
- Group 3 (Kaiyu)
- Group 4 (Shunyu)
 - Q1: What are the limitations of BERT that XLNet attempts to solve?
 - Q2: How does XLNet address them?
 - superior performance of XLNet?
 - Q4: What are the limitations of XLNet?
 - Q5: Anything else you find interesting?

• Q3: What do you think are the key factors that are mostly contributing to the

ELECTRA

(Clark et al., 2020): ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA is a much more efficient training method, it predicts 100% of tokens (instead of 15%) every time

