

COS 584

Advanced Natural Language Processing

P3: Word Embeddings

Spring 2021

Improving Distributional Similarity with Lessons Learned from Word Embeddings

Omer Levy Yoav Goldberg Ido Dagan

Computer Science Department Bar-Ilan University

Ramat-Gan, Israel

{omerlevy, yogo, dagan}@cs.biu.ac.il

Key takeaways

Count-based approaches

- Used since the 90s
- Sparse word-context PPMI matrix
- Decomposed with SVD

Prediction-based approaches (word embeddings)

- Formulated as a machine learning problem
- Word2vec (Mikolov et al., 2013)
- GloVe (Pennington et al., 2014)

Underlying theory: The Distributional Hypothesis (Firth, '57) "Similar words occur in similar contexts"

- Count-based and prediction-based approaches perform comparably, if you tune the **hyper-parameters** extensively...
- The hyper-parameters used in word2vec/GloVe can be transferable to count-based approaches!
- **Hyper-parameters** have stronger effects than algorithms and *more data*.

Historical context:)

(Mikolov et al., NIPS'2013)

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.
Mountain View
mikolov@google.com

Ilya Sutskever
Google Inc.
Mountain View
ilyasu@google.com

Kai Chen
Google Inc.
Mountain View
kai@google.com

Greg Corrado
Google Inc.
Mountain View
gcorrado@google.com

Jeffrey Dean
Google Inc.
Mountain View
jeff@google.com

(Baroni et al., ACL'2014)

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski
Center for Mind/Brain Sciences (University of Trento, Italy)
(marco.baroni|georgiana.dinu|german.kruszewski)@unitn.it

(Pennington et al., EMNLP'2014)

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Historical context:)

(Levy and Goldberg, NIPS'2014)

Neural Word Embedding as Implicit Matrix Factorization

Omer Levy

Department of Computer Science Bar-Ilan University

omerlevy@gmail.com

Yoav Goldberg

Department of Computer Science Bar-Ilan University

yoav.goldberg@gmail.com

SGNS (= skip-gram with negative-sampling)'s corpus-level achieves its optimal value when:

$$\vec{w} \cdot \vec{c} = \text{PMI}(w, c) - \log k$$

Four types of word representations

- PPMI
- PPMI + SVD
- SGNS
- GloVe

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

$$PPMI(word_1, word_2) = \max \left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0 \right)$$

$$\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} W \\ W \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 & \dots & 0 \\ 0 & 0 & \sigma_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \sigma_k \end{bmatrix} \begin{bmatrix} C \\ k \times |V| \end{bmatrix}$$

$$|V| \times |V| \qquad |V| \times k \qquad k \times k$$

$$y = -\log \left(\sigma(\mathbf{u}_x \cdot \mathbf{v}_c)\right) - \sum_{i=1}^K \mathbb{E}_{j \sim P(w)} \log \left(\sigma(-\mathbf{u}_x \cdot \mathbf{v}_j)\right)$$

GloVe: Global Vectors

• Key idea: let's approximate $\mathbf{u}_i \cdot \mathbf{v}_j$ using their co-occurrence counts $X_{i,j}$ directly.

$$J(\theta) = \sum_{i,j \in V} f(X_{i,j}) \left(\mathbf{u}_i \cdot \mathbf{v}_j + b_i + \tilde{b}_j - \log X_{i,j} \right)^2$$

If we take $b_i = \log(X_i)$, $\tilde{b}_j = \log(X_j)$, GloVe is also similar to factorizing the PMI matrix!

$$PMI(word_1, word_2) = \log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
w+c	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

win = window size (# words to the left/right)

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
w+c	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

Dyn = dynamic context window (different weighting for different positions of context words)

1/5 2/5 3/5 4/5 5/5 vs.

1/5 1/5 1/5 1/5 1/5

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
M+C	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

sub = sub-sampling (removing very frequent words, e.g., a, the)

Each word w_i in the training set is discarded with probability:

$$P(w_i) = 1 - \sqrt{\frac{t}{f(w_i)}}$$

$$t = 10^{\{-5\}}$$
, $f = unigram prob.$

dirty/clean: remove frequent words before and after collecting (word, context) pairs - perform similarly

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
w+c	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

neg = K in negative sampling

$$y = -\log \left(\sigma(\mathbf{u}_x \cdot \mathbf{v}_c)\right) - \sum_{i=1}^K \mathbb{E}_{j \sim P(w)} \log \left(\sigma(-\mathbf{u}_x \cdot \mathbf{v}_j)\right)$$

$$SPPMI(w, c) = \max (PMI(w, c) - \log k, 0)$$

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
w+c	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

In word2vec, they sample negative words according to the frequency:

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$$

$$PMI_{\alpha}(w,c) = \log \frac{\hat{P}(w,c)}{\hat{P}(w)\hat{P}_{\alpha}(c)}$$

$$\hat{P}_{\alpha}(c) = \frac{\#(c)^{\alpha}}{\sum_{c} \#(c)^{\alpha}}$$

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
M+C	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

w+c: adding context vectors

$$sim(x,y) = \frac{sim_2(x,y) + sim_1(x,y)}{\sqrt{sim_1(x,x) + 1}\sqrt{sim_1(y,y) + 1}}$$

"They appear in similar contexts" +
"they appear in context of each other"

What are these hyperparameters?

Hyper-	Explored	Applicable
parameter	Values	Methods
win	2, 5, 10	All
dyn	none, with	All
sub	none, dirty, clean [†]	All
del	none, with [†]	All
neg	1, 5, 15	PPMI, SVD, SGNS
cds	1, 0.75	PPMI, SVD, SGNS
w+c	only $w, w+c$	SVD, SGNS, GloVe
eig	0, 0.5, 1	SVD
nrm	none [†] , row, col [†] , both [†]	All

$$W^{\text{SVD}} = U_d \cdot \Sigma_d \qquad C^{\text{SVD}} = V_d$$

$$W = U_d \cdot \sqrt{\Sigma_d} \qquad C = V_d \cdot \sqrt{\Sigma_d}$$

$$W = U_d$$
 $C = V_d$

Main results

Main results

	Mathad	WordSim	WordSim	Bruni et al.	Radinsky et al.	Luong et al.	Hill et al.	Google	MSR
win	Method	Similarity	Relatedness	MEN	M. Turk	Rare Words	SimLex	Add / Mul	Add / Mul
	PPMI	.732	.699	.744	.654	.457	.382	.552 / .677	.306 / .535
2	SVD	.772	.671	.777	.647	.508	.425	.554 / .591	.408 / .468
2	SGNS	.789	.675	.773	.661	.449	.433	.676 / .689	.617 / .644
	GloVe	.720	.605	.728	.606	.389	.388	.649 / .666	.540 / .591
	PPMI	.732	.706	.738	.668	.442	.360	.518 / .649	.277 / .467
_	SVD	.764	.679	.776	.639	.499	.416	.532 / .569	.369 / .424
3	SGNS	.772	.690	.772	.663	.454	.403	.692 / .714	.605 / .645
	GloVe	.745	.617	.746	.631	.416	.389	.700 / .712	.541 / .599
	PPMI	.735	.701	.741	.663	.235	.336	.532 / .605	.249 / .353
10	SVD	.766	.681	.770	.628	.312	.419	.526 / .562	.356 / .406
10	SGNS	.794	.700	.775	.678	.281	.422	.694 / .710	.520 / .557
	GloVe	.746	.643	.754	.616	.266	.375	.702 / .712	.463 / .519
10	SGNS-LS	.766	.681	.781	.689	.451	.414	.739 / .758	.690 / .729
10	GloVe-LS	.678	.624	.752	.639	.361	.371	.732 / .750	.628 / .685

3COSADD vs 3COSMUL

a is to
$$a^*$$
 as b is to?
$$\arg \max_{b^*} (\cos(b^*, b - a + a^*))$$
$$\arg \max_{b^*} \left(\frac{\cos(b^*, b) \cos(b^*, a^*)}{\cos(b^*, a)} \right)$$

queen ∩ king	queen ∩ woman		
uncrowned	Elizabeth		
majesty	Katherine		
second	impregnate		
•••	•••		

Main results

• (Baroni et al, 2014): "word2vec is better than count-based methods"

• (Pennington et al, 2014): "GloVe is better than word2vec"

- Two things that made their SVD results much better than previously reported:
 - Use context distribution smoothing
 - Don't use default SVD (eig = 1)
- Use many negative examples for SGNS but shifted PPMI doesn't help.

eig	Average Performance
0	.612
0.5	.611
1	.551
0	.616
0.5	.612
1	.534
0	.584
0.5	.567
1	.484
	$ \begin{array}{c} 0 \\ 0.5 \\ 1 \\ 0.5 \\ 1 \\ 0 \end{array} $

Discussion

• Q2: Which claims in Levy et al., 2015 are most interesting or surprising to you? If you are going to construct a set of word embeddings on a new domain of text, what will be your choices (models and hyper-parameters)?

Conclusions: Methodology

Look for hyperparameters

Adapt hyperparameters across different algorithms

• For good results: tune hyperparameters

For good science: tune baselines' hyperparameters

Thank you :)