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Conditional Random Fields

* Generative models (HMMs) great for modeling and predicting entire sequences
e But require lots of (strong) assumptions

e Discriminative models (MEMMSs):
 Great for adding arbitrary features (both local and global)

e Cannot trade off decisions at different positions

CRFs provide a middle ground - combine the best of generative and discriminative



History of CRFs
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e |afferty, McCallum, Pereria (2001):
introduced CRFs for sequence modeling

* Mitigates the label bias problem (in
HMMs/MEMMs)

* Better empirical performance comparea
to HMMs/MEMMs

e Parameter estimation not straightforward



History of CRFs

e Very popular in the 2000s

e \Wide variety of applications:
* Information extraction
 Summarization

* |mage labeling/segmentation

Information extraction from research papers
using conditional random fields %
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History of CRFs

Software |edit]

® Ve ry popu ‘ar in the ZOOOS This is a partial list of software that implement generic CRF tools.
e RNNSharpg’ CRFs based on recurrent neural networks (C#, .NET)

. . . . e CRF-ADF# Linear-chain CRFs with fast online ADF training (C#, .NET)
° Wlde Varlety Of app‘ iIcations: e CRFSharp Linear-chain CRFs (C#, .NET)
e GCOR’' CRFs with submodular energy functions (C++, Matlab)
e DGME’ General CRFs (C++)
e GRMMZe’ General CRFs (Java)
o factorie&’ General CRFs (Scala)

e Summarization e CRFall& General CRFs (Matlab)
e Sarawagi's CRFg' Linear-chain CRFs (Java)
e HCREF libraryZ Hidden-state CRFs (C++, Matlab)
° |m age labelin g/seg mentation o Accord.NET & Linear-chain CRF, HCRF and HMMs (C#, .NET)
e Wapiti& Fast linear-chain CRFs (C)!1°]
e CRFSuiter’ Fast restricted linear-chain CRFs (C)
e CRF++& Linear-chain CRFs (C++)
e FlexCRFsEg’ First-order and second-order Markov CRFs (C++)
e crf-chain1 &’ First-order, linear-chain CRFs (Haskell)

e |nformation extraction

e imageCRF& CRF for segmenting images and image volumes (C++)
e MALLET®’ Linear-chain for sequence tagging (Java)



CRFs for shallow parsing (Sha and Pereira)

Rockwell International Corp. "s Tulsaunit| said |[it| signed ‘a tentative agreement | extending

its contract withIBoeing Co. |to provide | structural parts |for | Boeing "s 747 jetliners |

Figure 1: NP chunks

Predict non-recursive noun phrases
Framed as a tagging task in BIO format

Local features defined on X (word sequence) and Y (tag sequence)

Maximize log likelihooa: Lo S log pa(yr| k)

D i A F(yy, xr) — log Zx (k)|



CRFs for shallow parsing (Sha and Pereira)

Rockwell International Corp. "s Tulsaunit| said |[it| signed ‘a tentative agreement | extending

its contract withIBoeing Co. |to provide | structural parts |for | Boeing "s 747 jetliners |

Figure 1: NP chunks

* Maximize log likelihood: / S log pa(yi| k)

Zk A - F(yy, Tr) — log Zx (k)

e Use forward-backward to compute this efficiently!



Training and features

Rockwell International Corp. "s Tulsaunit| said |[it| signed ‘a tentative agreement | extending

its contract withIBoeing Co. |to provide | structural parts |for | Boeing "s 747 jetliners |

Figure 1: NP chunks

e Various optimization techniques: conjugate GD, quasi-newton, voted perceptron
* Nowadays - can use SGD with backpropagation

* Second-order markov assumption

e Constraints on certain feature bigrams (e.g. Ol) by setting their weights to — oo



Results

Model F score
SVM combination 94.39% null hypothesis p-value
(Kudo and Matsumoto, 2001) CRF vs. SVM 0.469
CRF 94.38% CRF vs. MEMM 0.00109
Generalized winnow 93.89% CRF vs. voted perceptron 0.116
(Zhang et al., 2002) MEMM vs. voted perceptron | 0.0734
Voted perceptron 94.09%
MEMM 93.70% Table 4: McNemar’s tests on labeling disagreements

Table 2: NP chunking F scores



CRFs in deep learning era
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Use CRFs on top of neural
representations (instead of features

and weights)

Joint sequence prediction without
the need for defining features!

Recent architectures such as seg2seq
w/ attention or Transtormer may

implicitly do the job



Discussion

e Q1: Sha and Pereira (2003) use a BIO labeling scheme where B indicates start of a

chun
chun

be some advantages and disadvantages of doing so?

<, | indicates continuation of the chunk and O indicates a word is outside any

<. Could we add one more tag E for indicating the end of a chunk? What would

e Q2: The authors make use of words and POS tags to create features for shallow

pars

ing with CRFs. Can you thin

and

nelp do this task better? Thi
fundamentally entai

< of other inputs that might result in better features

nk especially about what a noun p

s (and doesn't) and what information might he

Nrase

o identity one.

e Can you think of any applications related to your research/area of study where you

can use CRFs?






