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Main take-aways:
* Use bidirectional LSTMs to “build” features for dependency parsing

It is applied to both transition-based dependency parsing and graph-based dependency
parsing

* End-to-end training of a structured prediction model with neural feature extractors



Dependency parsing

Dependency parsing is the task of recognizing a sentence and assigning a dependency structure to it.
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Two families of algorithms
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Transition-based Dependency Parsing

e A configuration consists of a stack s, a buffer  and a
set of dependency arcs A: c=(s,b,A)

e Initially, s = [ROOT], b = [w,w,, ..., w ], A =

nsubj
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Derivation coao— C1.a1— C2,02 — 3,03 — C4,04

® A configuration is terminal if s = [ROOT] and b = &

¢ Inference: let the classifier predict the next transition repeatedly until we reach a terminal configuration
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Greedy transition-based dependency parsing



Graph-based Dependency Parsing

® Basic idea: let’s predict the dependency tree directly

max(0, 1 + max score(x,y’) — score(x,y))
X: sentence, Y: any possible dependency tree Y'Y

Y* = argmaxycgx, score(X, Y)

e Factorization:
score(X,Y) = Z score(e) = Z wlf(e)
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Graph-based Dependency Parsing

¢ Inference: finding maximum spanning tree (MST) for weighted, directed graph

\

The Chu-Liu Edmonds algorithm O(n3)

Spanning tree with maximal score



Feature Functions

® Transition-based dependency parsing

e Extract features from the configuration ¢ = (s, b, A)
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® Graph-based dependency parsing

e Extract features for each edge (s, m)

Example: The word and POS of the head and modifier items, as well as POS tags of the
items around the head and modifier, POS tags of items between the head and modifier, and
the distance and direction between the head and modifier.



A History of Dependency Parsing

® Transition-based dependency parsing started from ~2004
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® Graph-based dependency parsing started from ~2005
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A History of Dependency Parsing

® 2004-2013: a lot of improvements focus on
e Constructing better features for both families of algorithms
e Solutions to handle non-projective parse trees
® Transition-based:
e Arc-standard, Arc-eager, Arc-hybrid, Easy-first, ...
® Better search strategies: beam search, dynamic oracle
® Graph-based:
® From first-order to second-order/third-order

® Better inference algorithms

® (Chen and Manning, 2014) introduced neural networks in dependency parsing

® The features are built based on word/part-of-speech tag/label embeddings of
18 different elements and let FFNNs learn the composition of these elements



This paper: BiLSTM vectors as minimal features

T; = e(w;) o e(p;)

word embedding POS embedding

® Transition-based DP
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This paper: BiLSTM vectors as minimal features

T; = e(w;) o e(p;)
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word embedding POS embedding

® Graph-based DP

score(h, m) = MLP (v, o vy,)

v; = BILSTM(Z 1.y, 7)
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Experimental results

System Method Representation Emb | PTB-YM PTB-SD CTB
UAS UAS LAS | UAS LAS
This work graph, 1st order 2 BiILSTM vectors - — 93.1 91.0 | 86.6 835.1
This work transition (greedy, dyn-oracle) 4 BiILSTM vectors — — 93.1 91.0 | 86.2 &5.0
This work transition (greedy, dyn-oracle) 11 BiLSTM vectors = = 93.2 91.2 | 86.5 &4.9
ZhangNivrell transition (beam) large feature set (sparse) — 92.9 — — 86.0 84.4
Martins13 (TurboParser) graph, 3rd order+ large feature set (sparse) — 92.8 93.1 — = -
Peil5 graph, 2nd order large feature set (dense) — 93.0 — — — —
Dyerl5 transition (greedy) Stack-LSTM + composition | - — 924 90.0 | 85.7 &4.1
Ballesteros16 transition (greedy, dyn-oracle) | Stack-LSTM + composition | - — 927 90.6 | 86.1 84.5
This work graph, 1st order 2 BILSTM vectors YES - 93.0 909 | 86.5 84.9
This work transition (greedy, dyn-oracle) 4 BiILSTM vectors YES — 936 915 | 874 859
This work transition (greedy, dyn-oracle) 11 BiLSTM vectors YES - 939 919 | 87.6 86.1
Weiss15 transition (greedy) large feature set (dense) YES - 932 91.2 - —
Weiss15 transition (beam) large feature set (dense) YES — 940 92.0 — —
Peil5 graph, 2nd order large feature set (dense) YES 93.3 - — — —
Dyer15 transition (greedy) Stack-LSTM + composition | YES = 93.1 909 | 87.1 85.5
Ballesteros16 transition (greedy, dyn-oracle) | Stack-LSTM + composition | YES — 936 914 | 87.6 86.2
LeZuidemal4 reranking /blend inside-outside recursive net | YES 93.1 93.8 O91.5 — —
Zhul5 reranking /blend recursive conv-net YES 93.8 - — 85.7 —



Breakout discussion

® Group 1 (Danqi)

® How can we further improve the models presented in this paper?
® Group 2 (Zexuan)

e Compare the pros and cons of transition-based and graph-based dependency parsing
® Group 3 (Shunyu)

e Why do you think bidirectional LSTMs build good features for dependency parsing?
What features are important for making parsing decisions?

® Group 4 (Kaiyu)

® [s there anything else interesting in this paper (that we haven’t covered yet)?

Use the remaining time for free-form discussion!!!




