
P8: Dependency Parsing

Spring 2021

COS 584

Advanced Natural Language Processing

TACL 2016

Main take-aways:
• Use bidirectional LSTMs to “build” features for dependency parsing
• It is applied to both transition-based dependency parsing and graph-based dependency
parsing

• End-to-end training of a structured prediction model with neural feature extractors

Dependency parsing

Dependency parsing is the task of recognizing a sentence and assigning a dependency structure to it.

Input Output

I prefer the morning flight through Denver

Two families of algorithms

Transition-based dependency parsing

• Also called “shift-reduce parsing”

Graph-based dependency parsing

Transition-based Dependency Parsing

• A configuration consists of a stack , a buffer and a
set of dependency arcs :

s b
A c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• A configuration is terminal if and s = [ROOT] b = ∅

• Three types of transitions:

LEFT-ARC (r), RIGHT-ARC (r), SHIFT

• Inference: let the classifier predict the next transition repeatedly until we reach a terminal configuration

Greedy transition-based dependency parsing

Graph-based Dependency Parsing

•Basic idea: let’s predict the dependency tree directly

Y* = argmaxY∈Φ(X) score(X, Y)
X: sentence, Y: any possible dependency tree

• Factorization:
score(X, Y) = ∑

e∈Y

score(e) = ∑
e∈Y

w⊺f(e)

e: , first-orderh → m

<latexit sha1_base64="Adk5wp2gctnjndY7Ubqm49VWTG4=">AAACL3icbZBNSwMxEIazflu/qh69BIvYYi27IupRFMRjBWuFbinZdKrBbHZNZqXL0n/kxb/iRUQRr/4L04+DWl8IPLwzw2TeIJbCoOu+OhOTU9Mzs3PzuYXFpeWV/OralYkSzaHGIxnp64AZkEJBDQVKuI41sDCQUA/uTvv1+gNoIyJ1iWkMzZDdKNERnKG1WvkzP2TdolumHt2hfW5l6Tb1FdzTtEd9hC5mhkcaesVumabbJbo77pZKrXzBrbgD0XHwRlAgI1Vb+We/HfEkBIVcMmManhtjM2MaBZfQy/mJgZjxO3YDDYuKhWCa2eDeHt2yTpt2Im2fQjpwf05kLDQmDQPbGTK8NX9rffO/WiPBzlEzEypOEBQfLuokkmJE++HRttDAUaYWGNfC/pXyW6YZRxtxzobg/T15HK72Kt5Bxb3YLxyfjOKYIxtkkxSJRw7JMTknVVIjnDySZ/JG3p0n58X5cD6HrRPOaGad/JLz9Q36Naaj</latexit>

max(0, 1 + max
y0 6=y

score(x, y0)� score(x, y))

Graph-based Dependency Parsing
• Inference: finding maximum spanning tree (MST) for weighted, directed graph

The Chu-Liu Edmonds algorithm O(n3)

Feature Functions

• Transition-based dependency parsing

• Extract features from the configuration c = (s, b, A)

LEFT-ARC(r)

RIGHT-ARC(r)

SHIFT

classifier
ROOT has good control .

He

stack buffer

• Graph-based dependency parsing

• Extract features for each edge (h, m)

Example: The word and POS of the head and modifier items, as well as POS tags of the
items around the head and modifier, POS tags of items between the head and modifier, and
the distance and direction between the head and modifier.

A History of Dependency Parsing

• Transition-based dependency parsing started from ~2004

• Graph-based dependency parsing started from ~2005

All these methods are based on millions of
sparse indicator features

A History of Dependency Parsing

• 2004-2013: a lot of improvements focus on

• Constructing better features for both families of algorithms

• Solutions to handle non-projective parse trees

• Transition-based:

• Arc-standard, Arc-eager, Arc-hybrid, Easy-first, …

• Better search strategies: beam search, dynamic oracle

• Graph-based:

• From first-order to second-order/third-order

• Better inference algorithms

• (Chen and Manning, 2014) introduced neural networks in dependency parsing

• The features are built based on word/part-of-speech tag/label embeddings of
18 different elements and let FFNNs learn the composition of these elements

This paper: BiLSTM vectors as minimal features

word embedding POS embedding

• Transition-based DP

This paper: BiLSTM vectors as minimal features

word embedding POS embedding

• Graph-based DP
<latexit sha1_base64="i/ZGHoWWZ9PdXTUc1vLuBj5XGCw=">AAACF3icbVDLSgNBEJz1GeMr6tHLYBASkLArol4E0YsHhQgmBpKwzE46yeDM7jLTGwxL/sKLv+LFgyJe9ebfOHkc1FjQUFR1090VxFIYdN0vZ2Z2bn5hMbOUXV5ZXVvPbWxWTZRoDhUeyUjXAmZAihAqKFBCLdbAVCDhNrg7H/q3PdBGROEN9mNoKtYJRVtwhlbyc6UGwj2mhkcaBoXuHlVFekLH4tVleVDo+V3a4EJz2vNV0c/l3ZI7Ap0m3oTkyQRlP/fZaEU8URAil8yYuufG2EyZRsElDLKNxEDM+B3rQN3SkCkwzXT014DuWqVF25G2FSIdqT8nUqaM6avAdiqGXfPXG4r/efUE28fNVIRxghDy8aJ2IilGdBgSbQkNHGXfEsa1sLdS3mWacbRRZm0I3t+Xp0l1v+Qdltzrg/zp2SSODNkmO6RAPHJETskFKZMK4eSBPJEX8uo8Os/Om/M+bp1xJjNb5Becj284Rp6v</latexit>

score(h,m) = MLP(vh � vm)

Experimental results

Breakout discussion

• Group 1 (Danqi)

• How can we further improve the models presented in this paper?

• Group 2 (Zexuan)

• Compare the pros and cons of transition-based and graph-based dependency parsing

• Group 3 (Shunyu)

• Why do you think bidirectional LSTMs build good features for dependency parsing?
What features are important for making parsing decisions?

• Group 4 (Kaiyu)

• Is there anything else interesting in this paper (that we haven’t covered yet)?

Use the remaining time for free-form discussion!!!

