

P8: Dependency Parsing

COS 584

Advanced Natural Language Processing

Spring 2021

TACL 2016

Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations

Eliyahu Kiperwasser

Computer Science Department Bar-Ilan University Ramat-Gan, Israel elikip@gmail.com

Main take-aways:

- Use bidirectional LSTMs to "build" features for dependency parsing
- parsing

Yoav Goldberg Computer Science Department Bar-Ilan University Ramat-Gan, Israel yoav.goldberg@gmail.com

• It is applied to both transition-based dependency parsing and graph-based dependency

• End-to-end training of a structured prediction model with neural feature extractors

Dependency parsing

Dependency parsing is the task of recognizing a sentence and assigning a **dependency** structure to it.

Input

I prefer the morning flight through Denver

Output

Two families of algorithms

Transition-based dependency parsing

• Also called "shift-reduce parsing"

Graph-based dependency parsing

Transition-based Dependency Parsing

- A configuration consists of a stack s, a buffer b and a set of dependency arcs A: c = (s, b, A)
- Initially, $s = [ROOT], b = [w_1, w_2, ..., w_n], A = \emptyset$
- Three types of transitions:

LEFT-ARC (r), RIGHT-ARC (r), SHIFT

- A configuration is terminal if s = [ROOT] and $b = \emptyset$

Derivation $c_{0,a_0} \rightarrow c_{1,a_1} \rightarrow c_{2,a_2} \rightarrow c_{3,a_3} \rightarrow c_{4,a_4}$

• **Inference**: let the classifier predict the next transition repeatedly until we reach a terminal configuration

Greedy transition-based dependency parsing

Graph-based Dependency Parsing

• **Basic idea**: let's predict the dependency tree directly X: sentence, Y: any possible dependency tree $Y^* = argmax_{Y \in \Phi(X)} \operatorname{score}(X, Y)$

• Factorization:

score(X, Y) =
$$\sum_{e \in Y}$$
 score(e) = $\sum_{e \in Y} w^{\mathsf{T}} f$
e: $h \to m$, first-

$$\max(0, 1 + \max_{y' \neq y} \operatorname{score}(x, y') - \operatorname{score}(x, y))$$

Graph-based Dependency Parsing

• Inference: finding maximum spanning tree (MST) for weighted, directed graph

The Chu-Liu Edmonds algorithm O(n³)

Spanning tree with maximal score

- Transition-based dependency parsing
 - Extract features from the configuration c = (s, b, A)

- Graph-based dependency parsing
 - Extract features for each edge (*h*, *m*)

Example: The word and POS of the head and modifier items, as well as POS tags of the items around the head and modifier, POS tags of items between the head and modifier, and the distance and direction between the head and modifier.

A History of Dependency Parsing

• Transition-based dependency parsing started from ~2004

Incrementality in Deterministic Dependency Parsing

Joakim Nivre School of Mathematics and Systems Engineering Växjö University SE-35195 Växjö Sweden joakim.nivre@msi.vxu.se

• Graph-based dependency parsing started from ~2005

Online Large-Margin Training of Dependency Parsers

Ryan McDonald Koby Crammer Fernando Pereira Department of Computer and Information Science University of Pennsylvania Philadelphia, PA {ryantm, crammer, pereira}@cis.upenn.edu

All these methods are based on millions of sparse indicator features

A History of Dependency Parsing

- 2004-2013: a lot of improvements focus on
 - Constructing better features for both families of algorithms
 - Solutions to handle non-projective parse trees
 - Transition-based:
 - Arc-standard, Arc-eager, Arc-hybrid, Easy-first, ...
 - Better search strategies: beam search, **dynamic oracle**
 - Graph-based:
 - From first-order to second-order/third-order
 - Better inference algorithms
- (Chen and Manning, 2014) introduced neural networks in dependency parsing
 - The features are built based on word/part-of-speech tag/label embeddings of 18 different elements and let FFNNs learn the composition of these elements

This paper: BiLSTM vectors as minimal features

• Transition-based DP

$$\phi(c) = v_{s_2} \circ v_{s_1} \circ v_{s_0} \circ v_{b_0}$$

This paper: BiLSTM vectors as minimal features

$$x_i = e(w_i) \circ e(p_i)$$
 $v_i = BILSTM$
word embedding POS embedding

 $\operatorname{score}(h,m) = \operatorname{MLP}(v_h \circ v_m)$

 $\mathbf{x}_{1:n}, i)$

Experimental results

This work This work tra	graph, 1st order ransition (greedy, dyn-oracle)	2 BiLSTM vectors 4 BiLSTM vectors	_	UAS	UAS	LAS	UAS	LAS
This work This work tra	graph, 1st order ransition (greedy, dyn-oracle)	2 BiLSTM vectors 4 BiLSTM vectors	_	_	02.1			
This work tra	ransition (greedy, dyn-oracle)	4 BiLSTM vectors			93.1	91.0	86.6	85.1
			-	-	93.1	91.0	86.2	85.0
This work tra	ransition (greedy, dyn-oracle)	11 BiLSTM vectors	-	-	93.2	91.2	86.5	84.9
ZhangNivre11	transition (beam)	large feature set (sparse)	_	92.9	_	-	86.0	84.4
Martins13 (TurboParser)	graph, 3rd order+	large feature set (sparse)	_	92.8	93.1	-	—	_
Pei15	graph, 2nd order	large feature set (dense)	_	93.0	_	-	—	_
Dyer15	transition (greedy)	Stack-LSTM + composition	_	-	92.4	90.0	85.7	84.1
Ballesteros16 tra	ransition (greedy, dyn-oracle)	Stack-LSTM + composition	-	_	92.7	90.6	86.1	84.5
This work	graph, 1st order	2 BiLSTM vectors	YES	_	93.0	90.9	86.5	84.9
This work tra	ransition (greedy, dyn-oracle)	4 BiLSTM vectors	YES	-	93.6	91.5	87.4	85.9
This work tra	ransition (greedy, dyn-oracle)	11 BiLSTM vectors	YES	_	93.9	91.9	87.6	86.1
Weiss15	transition (greedy)	large feature set (dense)	YES	_	93.2	91.2	_	_
Weiss15	transition (beam)	large feature set (dense)	YES	-	94.0	92.0	—	_
Pei15	graph, 2nd order	large feature set (dense)	YES	93.3	_	-	—	_
Dyer15	transition (greedy)	Stack-LSTM + composition	YES	-	93.1	90.9	87.1	85.5
Ballesteros16 tra	ransition (greedy, dyn-oracle)	Stack-LSTM + composition	YES	_	93.6	91.4	87.6	86.2
LeZuidema14	reranking /blend	inside-outside recursive net	YES	93.1	93.8	91.5	—	_
Zhu15	reranking /blend	recursive conv-net	YES	93.8	_	-	85.7	_

Breakout discussion

- Group 1 (Danqi)
 - How can we further improve the models presented in this paper?
- Group 2 (Zexuan)
- Group 3 (Shunyu)
 - What features are important for making parsing decisions?
- Group 4 (Kaiyu)
 - Is there anything else interesting in this paper (that we haven't covered yet)?

• Compare the pros and cons of transition-based and graph-based dependency parsing

• Why do you think bidirectional LSTMs build good features for dependency parsing?

Use the remaining time for free-form discussion!!!