P9: Machine Translation

COS 584

Spring 2021

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch School of Informatics, University of Edinburgh {rico.sennrich,a.birch}@ed.ac.uk,bhaddow@inf.ed.ac.uk

ACL 2016

Rare word problem

- Translation is an open-vocabulary task
 - Named entities, numbers, etc.
- Cannot have a fixed pre-defined vocabulary
 - Most MT methods that do so suffer from two issues
 - Out of vocabulary words
 - Rare words

DETECT LANGUAGE	HINDI ENGLISH	YORUBA	\sim	
COVID-19 va widely.	ccines are nov	/ being ad	dminister	ed ×
U			52 / 5000	•
.→ RUSSIAN HIND	I ENGLISH	~		
Вакцины про применяютс	отив COVID-19 я.	сейчас ц	иироко	
Vaktsiny protiv COVID	0-19 seychas shiroko pr	menyayutsya.		
				<

Prior approaches

- Treat all rare words as UNK tokens
 - Doesn't work well for named entities
- Back-off dictionary
 - Replace rare words with UNK during training
 - simply copy)
- Use subword units

If system produces UNK, align UNK to a source word and translate (e.g.

Subword units

- Many different ways of construction subword units
 - Character n-grams
 - Morphological segmentation
 - Phoneme or syllable-based segmentation
- Linguistically motivated, but not optimized for task

Cha	aracte	er N-0	Gram	S					
• Bi	grams f Lightw	or this s eight N	session' I <mark>LP for</mark> :	s title Social I	Media /	Applica	tions		
li	we tn or ia di pl								
ig	ei	nl	rs	al	ia	li	io		
gh	ig	lp	so	Im	aa	ic	on		
ht	gh	pf	ос	me	ар	са	ns		
tw	ht	fo	ci	ed	рр	at			
Lithiu	Lithium @btsmith								

THRUSH	[]	TrVS
THRUSHES	[]	TrVS@z
THRUSHES(2)	[]	TrVSiz
THRUST	[]	TrVst
THRUSTER	[]	TrVst3:r
THRUSTERS	[]	TrVst3:rz
THRUSTING	[]	TrVstiN
THRUSTS	[]	TrVsts
THRUSTS(2)	[]	TrVss
THRUSTS(3)	[]	TrVs
THRUWAY	[]	TruweI
THS	[]	Ts
THUD	[]	ТVd
THUG	[]	туд
THUGGERY	[]	T V g 3:r i:

- Compression scheme proposed by Gage (1994)
- Start: represent each word as a sequence of characters
- Iteratively merge the most frequent pair of characters into a single symbol
- Provides a balance between vocabulary size and word fragmentation

This paper: use Byte Pair Encodings

u-n-<u>r-e</u>-l-a-t-e-d u-n re-l-<u>a-t</u>-e-d u-n re-l-at-<u>e-d</u> <u>u-n</u> re-l-at-ed un re-l-<u>at-ed</u> un <u>re-l</u>-ated un <u>rel-ated</u> <u>un-related</u> unrelated

segmentation	# tokens	# types	# UNK
none	100 m	1 750 000	1079
characters	550 m	3000	0
character bigrams	306 m	20 000	34
character trigrams	214 m	120 000	59
compound splitting $^{\triangle}$	102 m	1 100 000	643
morfessor*	109 m	544 000	237
hyphenation ^{\$}	186 m	404 000	230
BPE	112 m	63 000	0
BPE (joint)	111 m	82 000	32
character bigrams (shortlist: 50 000)	129 m	69 000	34

Table 1: Corpus statistics for German training corpus with different word segmentation techniques. #UNK: number of unknown tokens in newstest2013. \triangle : (Koehn and Knight, 2003); *: (Creutz and Lagus, 2002); \diamond : (Liang, 1983).

Algorithm 1 Learn BPE operations

```
import re, collections
def get_stats(vocab):
  pairs = collections.defaultdict(int)
 for word, freq in vocab.items():
   symbols = word.split()
   for i in range(len(symbols)-1):
      pairs[symbols[i], symbols[i+1]] += freq
  return pairs
def merge_vocab(pair, v_in):
 v out = {}
 bigram = re.escape(' '.join(pair))
 p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
   w_out = p.sub(''.join(pair), word)
   v_out[w_out] = v_in[word]
  return v out
vocab = {'l o w </w>' : 5, 'l o w e r </w>' : 2,
         'newest </w>':6, 'widest </w>':3}
num merges = 10
for i in range(num merges):
 pairs = get_stats(vocab)
  best = max(pairs, key=pairs.get)
  vocab = merge_vocab(best, vocab)
  print(best)
```

BPE algorithm

MT results (En-De)

			vocabulary		BLEU		CHRF3		unigram F ₁ (%		1 (%)
name	segmentation	shortlist	source	target	single	ens-8	single	ens-8	all	rare	OOV
syntax-based (Sennrich and Haddow, 2015)			24.4	-	55.3	-	59.1	46.0	37.7		
WUnk	-	-	300 000	500 000	20.6	22.8	47.2	48.9	56.7	20.4	0.0
WDict	-	-	300 000	500 000	22.0	24.2	50.5	52.4	58.1	36.8	36.8
C2-50k	char-bigram	50 000	60 000	60 000	22.8	25.3	51.9	53.5	58.4	40.5	30.9
BPE-60k	BPE	-	60 000	60 000	21.5	24.5	52.0	53.9	58.4	40.9	29.3
BPE-J90k	BPE (joint)	-	90 000	90 000	22.8	24.7	51.7	54.1	58.5	41.8	33.6

training set; n = 1168).

Table 2: English \rightarrow German translation performance (BLEU, CHRF3 and unigram F₁) on newstest2015. Ens-8: ensemble of 8 models. Best NMT system in bold. Unigram F_1 (with ensembles) is computed for all words (n = 44085), rare words (not among top 50 000 in training set; n = 2900), and OOVs (not in

MT results (En-Ru)

			vocabulary		BLEU		CHRF3		unig <mark>ram F1 (%)</mark>		
name	segmentation	shortlist	source	target	single	ens-8	single	ens-8	all	rare	OOV
phrase-based (Haddow et al., 2015)				24.3	-	53.8	-	56.0	31.3	16.5	
WUnk	-	-	300 000	500 000	18.8	22.4	46.5	49.9	54.2	25.2	0.0
WDict	-	-	300 000	500 000	19.1	22.8	47.5	51.0	54.8	26.5	6.6
C2-50k	char-bigram	50 000	60 000	60 000	20.9	24.1	49.0	51.6	55.2	27.8	17.4
BPE-60k	BPE	-	60 000	60 000	20.5	23.6	49.8	52.7	55.3	29.7	15.6
BPE-J90k	BPE (joint)	-	90 000	100 000	20.4	24.1	49.7	53.0	55.8	29.7	18.3

training set; n = 851).

Table 3: English \rightarrow Russian translation performance (BLEU, CHRF3 and unigram F₁) on newstest2015. Ens-8: ensemble of 8 models. Best NMT system in bold. Unigram F_1 (with ensembles) is computed for all words (n = 55654), rare words (not among top 50 000 in training set; n = 5442), and OOVs (not in

Figure 3: English \rightarrow Russian unigram F₁ on newstest2015 plotted by training set frequency rank for different NMT systems.

- BPE helps handle long tail
- Methods like WDict, WUnk fail due to issues like transliteration

Beyond MT

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones* Google Research llion@google.com Noam Shazeer*Niki Parmar*Google BrainGoogle Researchnoam@google.comnikip@google.com

Aidan N. Gomez^{* †} University of Toronto aidan@cs.toronto.edu r*Jakob Uszkoreit*rchGoogle Research.comusz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI alec@openai.com

Karthik Narasimhan OpenAI karthikn@openai.com

Tim SalimansIlyOpenAItim@openai.com

Ilya Sutskever OpenAI ilyasu@openai.com

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

- BPE has found use in other tasks too!
- Vaswani et al. (2017) used it with Transformers to fully leverage selfattention
- De-facto representation scheme for large pre-trained language models like GPT, BERT
 - Helps alleviate rare word problem

Discussion

- Q1: Based on your reading of the paper, what is the main reason Byte Pair Encoding (BPE) is so effective at handling the rare word problem in MT compared to alternatives like morphological segmentation?
- Q2: List one shortcoming of BPE according to you. How would you try to address/fix it?
- What are some other tasks (not necessarily within NLP) where ideas like subword encodings like BPE might be useful?
- Are there other encoding schemes that might work well for producing subwords?