

# **Expectation Maximization**

Spring 2021



COS 484/584

(some slides adapted from Regina Barzilay and Michael Collins)



- Logistics announced on Canvas
  - March 10, 12pm ET March 11, 12pm ET
- Please fill out the survey on your preferred time for taking the exam so we can better plan email support
- Midterm review: COS 484 precept this week (March 5)
  - TAs have posted a survey on Canvas please fill it out if you'd like them to review specific topics

## Midterm

## **Expectation Maximization**

If we have partially obser
 then

 $L(\theta) =$ 

• The EM (Expectation Maxi for finding  $\theta_{MLE} = \arg \max_{\theta} L(\theta) = \arg_{\theta}$ 

• If we have **partially observable data**, *x<sub>i</sub>* examples only,

$$\sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

• The EM (Expectation Maximization) algorithm is a method

$$g\max_{\theta} \sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

## The three coins example

• In the three coins example,  $\mathcal{Y} = \{H, T\}$  (possible outcomes of coin 0)  $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$  $\theta = \{\lambda, p_1, p_2\}$ 

## The three coins example

• In the three coins example,  $\mathcal{Y} = \{H, T\}$  (possible outcomes of coin 0)  $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$  $\theta = \{\lambda, p_1, p_2\}$ 

### The three coins example

(all possible observations of length 3)

- In the three coins example,  $\mathcal{Y} = \{H, T\}$  (possible outcomes of coin 0)  $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$  $\theta = \{\lambda, p_1, p_2\}$
- and  $P(x, y | \theta) = P(y | \theta) P(x | y, \theta)$ where

and

$$P(x | y, \theta) = \begin{cases} p_1^h \\ p_2^h \end{cases}$$

### The three coins example

(all possible observations of length 3)

 $P(y | \theta) = \begin{cases} \lambda \text{ if } y = H \\ 1 - \lambda \text{ if } y = T \end{cases}$ 

 $(1 - p_1)^t$  if y = H $(1 - p_2)^t$  if y = T

## The three coins example

- Calculating various probabilities:  $P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$ 
  - $P(x = THT, y = T | \theta) = (1 \lambda)p_2(1 p_2)^2$

### The three coins example

• Calculating various probabilities:  $P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$  $P(x = THT, y = T | \theta) = (1 - \lambda)p_2(1 - p_2)^2$ 

$$P(x = THT | \theta) = P(x = THT, y = \lambda p_1 (1 - p_1)^2 + \lambda p_1 (1 - p$$

$$P(y = H | x = THT, \theta) = \frac{P(x = T)}{P(x)}$$

### The three coins example

 $= H | \theta) + P(x = THT, y = T | \theta)$  $(1 - \lambda)p_2(1 - p_2)^2$ 

 $THT, y = H[\theta]$  $= THT | \theta$ )  $\lambda p_1 (1 - p_1)^2$  $\lambda p_1 (1-p_1)^2 + (1-\lambda) p_2 (1-p_2)^2$ 

- $(\langle HHH \rangle, H)$
- P(y = H | HHH) = 0.0508 $((\text{HHH}), T) \qquad P(y = T | \text{HHH}) = 0.9492$  $((TTT), H) \quad P(y = H | TTT) = 0.6967$ ((TTT), T) = P(y = T | TTT) = 0.3033 $((\text{HHH}), H) \quad P(y = H | \text{HHH}) = 0.0508$  $((\text{HHH}), T) \quad P(y = T | \text{HHH}) = 0.9492$ ((TTT), H) = P(y = H | TTT) = 0.6967((TTT), T) = P(y = T | TTT) = 0.3033 $((\text{HHH}), H) \quad P(y = H | HHH) = 0.0508$  $((\text{HHH}), T) \qquad P(y = T | \text{HHH}) = 0.9492$

### The three coins example

• New estimates:

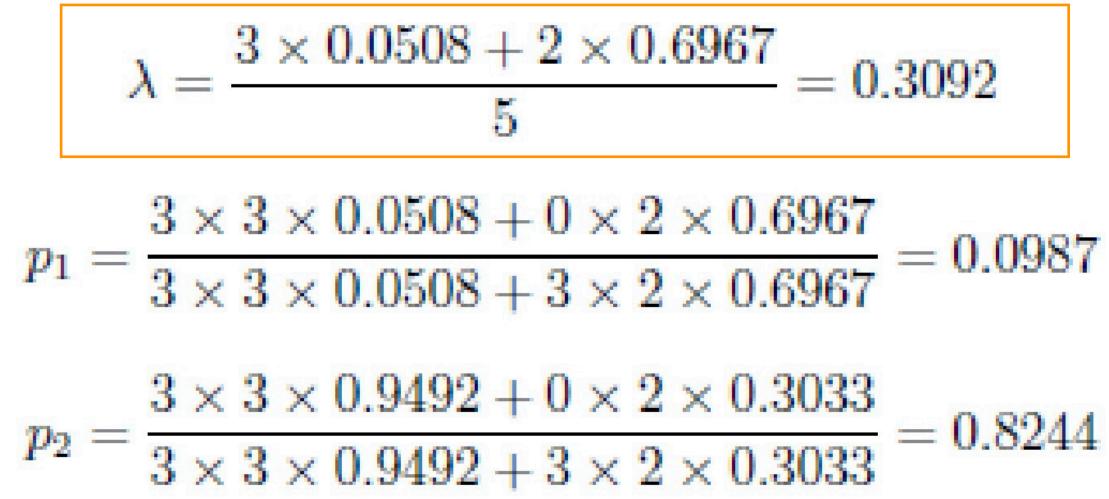
$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$
$$p_1 = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$$
$$p_2 = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$$



| $(\langle \text{HHH} \rangle, H)$ | P(y = H   HHH) = 0.0508      |
|-----------------------------------|------------------------------|
| $(\langle \text{HHH} \rangle, T)$ | $P(y = T \mid HHH) = 0.9492$ |
| $(\langle TTT \rangle, H)$        | $P(y = H \mid TTT) = 0.6967$ |
| $(\langle TTT \rangle, T)$        | P(y = T   TTT) = 0.3033      |
| $(\langle \text{HHH} \rangle, H)$ | P(y = H   HHH) = 0.0508      |
| $(\langle \text{HHH} \rangle, T)$ | $P(y = T \mid HHH) = 0.9492$ |
| $(\langle TTT \rangle, H)$        | P(y = H   TTT) = 0.6967      |
| $(\langle TTT \rangle, T)$        | P(y = T   TTT) = 0.3033      |
| $(\langle \text{HHH} \rangle, H)$ | P(y = H   HHH) = 0.0508      |
| $(\langle HHH \rangle, T)$        | $P(y = T \mid HHH) = 0.9492$ |

## The three coins example

• New estimates:



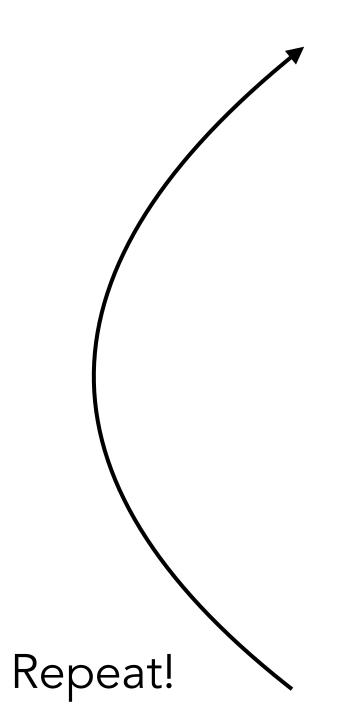


• Begin with parameters:  $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$ 

- Begin with parameters:  $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using  $P(y = H | x = \langle HHH \rangle) = 0.0508$  $P(y = H | x = \langle TTT \rangle) = 0.6967$

- Begin with parameters:  $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using  $P(y = H | x = \langle HHH \rangle) = 0.0508$  $P(y = H | x = \langle TTT \rangle) = 0.6967$
- This gives us a pseudo-annotated dataset with **fractional** counts

- Begin with parameters:  $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using  $P(y = H | x = \langle HHH \rangle) = 0.0508$  $P(y = H | x = \langle TTT \rangle) = 0.6967$
- This gives us a pseudo-annotated dataset with **fractional** counts
- Re-estimate parameters to be  $\lambda = 0.3092, p_1 = 0.0987, p_2 = 0.8244$



- Begin with parameters:  $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using  $P(y = H | x = \langle HHH \rangle) = 0.0508$  $P(y = H | x = \langle TTT \rangle) = 0.6967$
- This gives us a pseudo-annotated dataset with **fractional** counts
- Re-estimate parameters to be  $\lambda = 0.3092, p_1 = 0.0987, p_2 = 0.8244$

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $	ilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|--------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967       |
| 1         | 0.3738 | 0.0680 | 0.7578 | 0.0004        | 0.9714        | 0.0004        | 0.9714       |
| 2         | 0.4859 | 0.0004 | 0.9722 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |
| 3         | 0.5000 | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |

probability ( $\lambda = 0.5$ ) using coin 0.

#### $P(y = H | x_1)$

The coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$ . The solution that EM reaches is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $	ilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|--------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967       |
| 1         | 0.3738 | 0.0680 | 0.7578 | 0.0004        | 0.9714        | 0.0004        | 0.9714       |
| 2         | 0.4859 | 0.0004 | 0.9722 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |
| 3         | 0.5000 | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |

probability ( $\lambda = 0.5$ ) using coin 0.

#### $P(y = H | x_1)$

The coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$ . The solution that EM reaches is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $	ilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|--------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967       |
| 1         | 0.3738 | 0.0680 | 0.7578 | 0.0004        | 0.9714        | 0.0004        | 0.9714       |
| 2         | 0.4859 | 0.0004 | 0.9722 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |
| 3         | 0.5000 | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000       |

probability ( $\lambda = 0.5$ ) using coin 0.

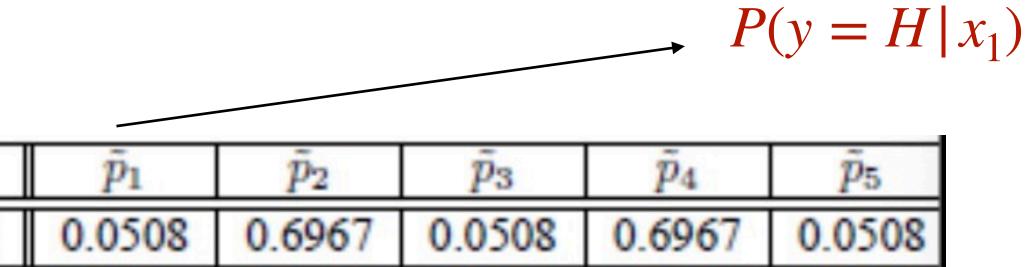
 $x_2$  and  $x_4$ , whereas coin 2 generated  $x_1$  and  $x_3$ 

#### $P(y = H | x_1)$

The coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$ . The solution that EM reaches is intuitively correct: the coin tosser has two coins, one which always shows heads, and another which always shows tails, and is picking between them with equal

Posterior probabilities  $\bar{p}_i$  show that we are certain that coin 1 (tail-biased) generated

| Iteration | $\lambda$ | $p_1$  | $p_2$  |
|-----------|-----------|--------|--------|
| 0         | 0.3000    | 0.3000 | 0.6000 |

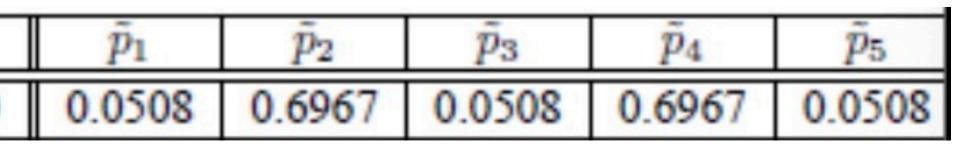


| Iteration | $\lambda$ | $p_1$  | $p_2$  |
|-----------|-----------|--------|--------|
| 0         | 0.3000    | 0.3000 | 0.6000 |

#### Coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$



 $P(y = H | x_1)$ 





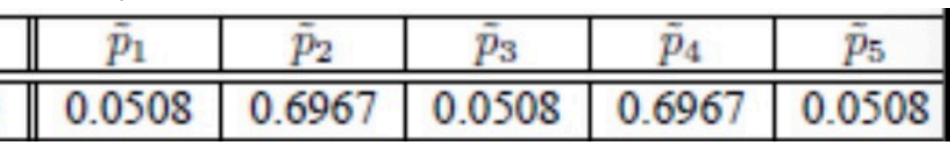
| Iteration | $\lambda$ | $p_1$  | $p_2$  |
|-----------|-----------|--------|--------|
| 0         | 0.3000    | 0.3000 | 0.6000 |

Which of these would you expect EM to converge to?

A)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 1, p_2 = 0$ C)  $\lambda = 0.4, p_1 = 0, p_2 = 1$ 



 $P(y = H | x_1)$ 





| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ | $\tilde{p}_5$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967        | 0.0508        |
| 1         | 0.3092    | 0.0987 | 0.8244 | 0.0008        | 0.9837        | 0.0008        | 0.9837        | 0.0008        |
| 2         | 0.3940    | 0.0012 | 0.9893 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |
| 3         | 0.4000    | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |

Which of these would you expect EM to converge to?

A)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 1, p_2 = 0$ C)  $\lambda = 0.4, p_1 = 0, p_2 = 1$ 



 $P(y = H | x_1)$ 



| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ | $\tilde{p}_5$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967        | 0.0508        |
| 1         | 0.3092    | 0.0987 | 0.8244 | 0.0008        | 0.9837        | 0.0008        | 0.9837        | 0.0008        |
| 2         | 0.3940    | 0.0012 | 0.9893 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |
| 3         | 0.4000    | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |

Which of these would you expect EM to converge to?

A)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 1, p_2 = 0$ C)  $\lambda = 0.4, p_1 = 0, p_2 = 1$ 



 $P(y = H | x_1)$ 



| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ | $\tilde{p}_5$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.0508        | 0.6967        | 0.0508        | 0.6967        | 0.0508        |
| 1         | 0.3092 | 0.0987 | 0.8244 | 0.0008        | 0.9837        | 0.0008        | 0.9837        | 0.0008        |
| 2         | 0.3940 | 0.0012 | 0.9893 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |
| 3         | 0.4000 | 0.0000 | 1.0000 | 0.0000        | 1.0000        | 0.0000        | 1.0000        | 0.0000        |

Which of these would you expect EM to converge to?

A)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 1, p_2 = 0$ C)  $\lambda = 0.4, p_1 = 0, p_2 = 1$ 



 $P(y = H | x_1)$ 

Coin example for  $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$ 

 $\lambda$  is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-biased coin 1



| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |

| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |





| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.49, p_1 = 0.12, p_2 = 0$ B)  $\lambda = 0.49, p_1 = 0, p_2 = 0.82$ C)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ 





| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |
| 1         | 0.4005 | 0.0974 | 0.6300 | 0.0375        | 0.9065        | 0.0025        | 0.9065        |
| 2         | 0.4632 | 0.0148 | 0.7635 | 0.0014        | 0.9842        | 0.0000        | 0.9842        |
| 3         | 0.4924 | 0.0005 | 0.8205 | 0.0000        | 0.9941        | 0.0000        | 0.9941        |
| 4         | 0.4970 | 0.0000 | 0.8284 | 0.0000        | 0.9949        | 0.0000        | 0.9949        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.49, p_1 = 0.12, p_2 = 0$ B)  $\lambda = 0.49, p_1 = 0, p_2 = 0.82$ C)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ 



| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |
| 1         | 0.4005 | 0.0974 | 0.6300 | 0.0375        | 0.9065        | 0.0025        | 0.9065        |
| 2         | 0.4632 | 0.0148 | 0.7635 | 0.0014        | 0.9842        | 0.0000        | 0.9842        |
| 3         | 0.4924 | 0.0005 | 0.8205 | 0.0000        | 0.9941        | 0.0000        | 0.9941        |
| 4         | 0.4970 | 0.0000 | 0.8284 | 0.0000        | 0.9949        | 0.0000        | 0.9949        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.49, p_1 = 0.12, p_2 = 0$ B)  $\lambda = 0.49, p_1 = 0, p_2 = 0.82$ C)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ 



| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.3000 | 0.6000 | 0.1579        | 0.6967        | 0.0508        | 0.6967        |
| 1         | 0.4005 | 0.0974 | 0.6300 | 0.0375        | 0.9065        | 0.0025        | 0.9065        |
| 2         | 0.4632 | 0.0148 | 0.7635 | 0.0014        | 0.9842        | 0.0000        | 0.9842        |
| 3         | 0.4924 | 0.0005 | 0.8205 | 0.0000        | 0.9941        | 0.0000        | 0.9941        |
| 4         | 0.4970 | 0.0000 | 0.8284 | 0.0000        | 0.9949        | 0.0000        | 0.9949        |

- $(p_2 = 0.8284).$
- more likely.



Coin example for  $x = \{\langle HHT \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .

• EM selects a tails-only coin ( $p_1 = 0$ ), and a coin which is heavily heads-biased

• It is certain that  $x_1$  and  $x_3$  were generated by coin 2 since they contain heads. •  $x_2$  and  $x_4$  could have been generated by either coin but coin 1 (tail-biased) is far

| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |





| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.3, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ C)  $\lambda = 0.5, p_1 = 0, p_2 = 1$ 



| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.3, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ C)  $\lambda = 0.5, p_1 = 0, p_2 = 1$ 



# EM iterations (example 4)

| Iteration | $\lambda$ | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 1         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 2         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 3         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 4         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 5         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 6         | 0.3000    | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |

Which of these would you expect EM to converge to? A)  $\lambda = 0.3, p_1 = 0.5, p_2 = 0.5$ B)  $\lambda = 0.5, p_1 = 0.5, p_2 = 0.5$ C)  $\lambda = 0.5, p_1 = 0, p_2 = 1$ 

### Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .



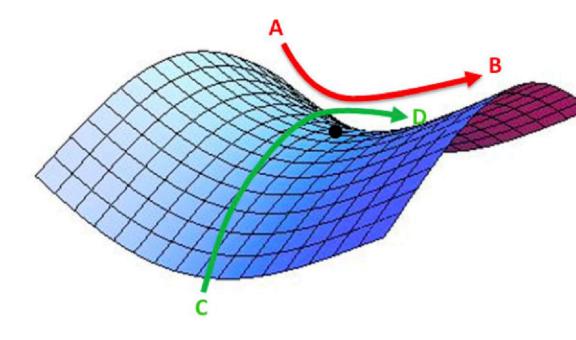
### Initialization matters

| Iteration | λ      | $p_1$  | $p_2$  | $\tilde{p}_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|--------|--------|--------|---------------|---------------|---------------|---------------|
| 0         | 0.3000 | 0.7000 | 0.7000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 1         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 2         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 3         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 4         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 5         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |
| 6         | 0.3000 | 0.5000 | 0.5000 | 0.3000        | 0.3000        | 0.3000        | 0.3000        |

In this case, EM is stuck at a **saddle point**.



Coin example for  $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .



| Iteration | $\lambda$ | $p_1$  | $p_2$  | $	ilde p_1$ | $\tilde{p}_2$ | $\tilde{p}_3$ | $\tilde{p}_4$ |
|-----------|-----------|--------|--------|-------------|---------------|---------------|---------------|
| 0         | 0.3000    | 0.7001 | 0.7000 | 0.3001      | 0.2998        | 0.3001        | 0.2998        |
| 1         | 0.2999    | 0.5003 | 0.4999 | 0.3004      | 0.2995        | 0.3004        | 0.2995        |
| 2         | 0.2999    | 0.5008 | 0.4997 | 0.3013      | 0.2986        | 0.3013        | 0.2986        |
| 3         | 0.2999    | 0.5023 | 0.4990 | 0.3040      | 0.2959        | 0.3040        | 0.2959        |
| 4         | 0.3000    | 0.5068 | 0.4971 | 0.3122      | 0.2879        | 0.3122        | 0.2879        |
| 5         | 0.3000    | 0.5202 | 0.4913 | 0.3373      | 0.2645        | 0.3373        | 0.2645        |
| 6         | 0.3009    | 0.5605 | 0.4740 | 0.4157      | 0.2007        | 0.4157        | 0.2007        |
| 7         | 0.3082    | 0.6744 | 0.4223 | 0.6447      | 0.0739        | 0.6447        | 0.0739        |
| 8         | 0.3593    | 0.8972 | 0.2773 | 0.9500      | 0.0016        | 0.9500        | 0.0016        |
| 9         | 0.4758    | 0.9983 | 0.0477 | 0.99999     | 0.0000        | 0.9999        | 0.0000        |
| 10        | 0.4999    | 1.0000 | 0.0001 | 1.0000      | 0.0000        | 1.0000        | 0.0000        |
| 11        | 0.5000    | 1.0000 | 0.0000 | 1.0000      | 0.0000        | 1.0000        | 0.0000        |

### Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$ .

If we initialize  $p_1$  and  $p_2$  even a small amount away from the saddle point  $p_1 = p_2$ , EM diverges and eventually reaches the global maximum

•  $\theta^t$  is the parameter vector at the  $t^{th}$  iteration



Superscript for iteration #

# The EM algorithm

•  $\theta^t$  is the parameter vector at the  $t^{th}$  iteration

- Choose  $\theta^0$  at random (or using smart heuristics)

Superscript for iteration #

# The EM algorithm

•  $\theta^t$  is the parameter vector at the  $t^{th}$  iteration

- Choose  $\theta^0$  at random (or using smart heuristics)
- Iterative procedure defined as:  $\theta^{t} = \arg \max_{\theta} Q(\theta, \theta^{t-1})$

where  

$$Q(\theta, \theta^{t-1}) = \sum_{i} \sum_{y \in \mathscr{Y}} P(y \mid x)$$

 $x_i, \theta^{t-1}$ ) log  $P(x_i, y \mid \theta)$ 

Superscript for iteration # •  $\theta^t$  is the parameter vector at the  $t^{th}$  iteration • Choose  $\theta^0$  at random (or using smart heuristics) • Iterative procedure defined as:  $\theta^{t} = \arg \max_{\theta} Q(\theta, \theta^{t-1})$ where  $Q(\theta, \theta^{t-1}) = \sum \sum P(y | x_i, \theta^{t-1}) \log P(x_i, y | \theta)$  $i \quad y \in \mathcal{Y}$ 

# The EM algorithm

How did we get  $\arg \max_{A} Q$  from  $\arg \max_{\theta} \sum_{i} \log \sum_{i} P(x_i, y | \theta)$ ? => Jensen's inequality  $y \in \mathcal{Y}$ (advanced; see optional reading from Andrew Ng)



- $\theta^t$  is the parameter vector at the  $t^{th}$  iteration
- Choose  $\theta^0$  at random (or using smart heuristics)
- (E step): Compute expected counts for every parameter  $\theta_r$ :  $\overline{Count}(r) = \sum_{i=1}^{n} \sum_{y} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$

- $\theta^t$  is the parameter vector at the  $t^{th}$  iteration
- Choose  $\theta^0$  at random (or using smart heuristics)
- (E step): Compute expected counts for every parameter  $\theta_r$ :  $\overline{Count}(r) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(y | x_i, \theta^{t-1}) Count(x_i, y, r)$ i=1 v
- (M step): Re-estimate parameters using expected counts to maximize likelihood (MLE estimate)

e.g. 
$$\theta_{DT \to NN} = \frac{Count(DT \to NN)}{\sum_{\beta} \overline{Count}(DT \to \beta)}$$

- $\rightarrow NN$

• Iterative procedure defined as  $\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})$  where  $Q(\theta, \theta^{t-1}) = \sum \sum P(y | x_i, \theta^{t-1}) \log P(x_i, y | \theta)$  $i \quad y \in \mathcal{Y}$ 

- Iterative procedure defined as  $\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})$  where  $Q(\theta, \theta^{t-1}) = \sum \sum P(y | x_i, \theta^{t-1}) \log P(x_i, y | \theta)$  $i \quad y \in \mathcal{Y}$
- Key points:
  - Intuition: Fill in hidden variables y according to  $P(y | x_i, \theta)$
  - Create a "pseudo-dataset" with fractional counts

  - In general, if  $\arg \max_{\theta} \sum_{i} \log P(x_i, y_i | \theta)$  has a simple analytic solution, then  $\arg \max_{\theta} \sum_{i} \sum_{y} P(y | x_i, \theta) \log P(x_i, y | \theta) \text{ also has a simple solution.}$

EM is guaranteed to converge to a **local** maximum, or saddle-point, of the likelihood function

• We observe only word sequences  $X_1, X_2, \ldots, X_n$  (no tags Y)



• We observe only word sequences  $X_1, X_2, \ldots, X_n$  (no tags Y)

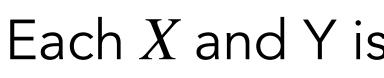
- We observe only word sequences  $X_1, X_2, \ldots, X_n$  (no tags Y)
- Let  $\theta$  be the vector of all transition parameters (include initial state distribution as a special case,  $\emptyset \rightarrow s$ )



- We observe only word sequences  $X_1, X_2, \ldots, X_n$  (no tags Y)
- Let  $\theta$  be the vector of all transition parameters (include initial state distribution as a special case,  $\emptyset \rightarrow s$ )
- Let  $\phi$  be the vector of all emission parameters



- We observe only word sequences  $X_1, X_2, \ldots, X_n$  (no tags Y)
- Let  $\theta$  be the vector of all transition parameters (include initial state distribution as a special case,  $\emptyset \rightarrow s$ )
- Let  $\phi$  be the vector of all emission parameters
- Initialize parameters to some values  $heta^0$  and  $\phi^0$







 $\theta_{a \rightarrow b}$  of an HMM (where a, b, b' are states)?

A) 
$$\theta_{a \to b} = \frac{Count(a \to b)}{\sum_{a'} Count(a' \to b)}$$

B) 
$$\theta_{a \to b} = \frac{Count(a \to b)}{\sum_{b'} Count(a \to b')}$$

 $Count(a \rightarrow b)$ C)  $\theta_{a \to b} = \frac{1}{\sum_{a'} \sum_{b'} Count(a' \to b')}$ 



Which of these is the correct MLE estimate for the transition parameter



 $\theta_{a \rightarrow b}$  of an HMM (where a, b, b' are states)?

A) 
$$\theta_{a \to b} = \frac{Count(a \to b)}{\sum_{a'} Count(a' \to b)}$$

B) 
$$\theta_{a \to b} = \frac{Count(a \to b)}{\sum_{b'} Count(a \to b')}$$

 $Count(a \rightarrow b)$ C)  $\theta_{a \to b} = \frac{1}{\sum_{a'} \sum_{b'} Count(a' \to b')}$ 



Which of these is the correct MLE estimate for the transition parameter





• Maximum likelihood estimates:

$$\begin{split} \theta_{a \to b} &= \frac{Count(a \to b)}{\sum_{b'} Count(a \to b')} \qquad \text{(wh} \\ \phi_{a \to A} &= \frac{Count(a \to A)}{\sum_{A'} Count(a \to A')} \qquad \text{(wh} \end{split}$$

here a, b are states)

nere A is an observation)

• Maximum likelihood estimates:

$$\begin{split} \theta_{a \rightarrow b} &= \frac{Count(a \rightarrow b)}{\sum_{b'}Count(a \rightarrow b')} \qquad \text{(wh} \\ \phi_{a \rightarrow A} &= \frac{Count(a \rightarrow A)}{\sum_{A'}Count(a \rightarrow A')} \qquad \text{(wh} \end{split}$$

 Here, counts are estimated by simply checking for occurrence of the transition/emission in every data sequence e.g.  $Count(a \rightarrow b) = \sum_{i=1}^{n} Count(X_i, Y_i, a \rightarrow b)$ i=1

(number of times the transition occurs in each data point)

- nere a, b are states)
- nere A is an observation)

• Initialize parameters  $heta^0$  and  $\phi^0$ 

- Initialize parameters  $heta^0$  and  $\phi^0$
- (E-Step) Compute expected counts  $\overline{Count}(a \to b) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_{i}, \theta^{t-1})$ i=1 Y  $= \sum P(Y|X_i, \theta^{t-1})$ i=1 Y  $\overline{Count}(a \to A) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_{i}, \theta^{t-1})$

$$^{-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow b)$ 

$$^{-1}, \phi^{t-1})$$
 Count $(Y, a \rightarrow b)$ 

$$^{-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow A)$ 

- Initialize parameters  $heta^0$  and  $\phi^0$
- (E-Step) Compute expected count  $\overline{Count}(a \to b) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_{i}, \theta^{t-1})$ i=1 Y  $= \sum P(Y|X_i, \theta^{t-1})$ i=1 Y  $\overline{Count}(a \to A) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_{i}, \theta^{t-1})$

$$(-1, \phi^{t-1})$$
 Count $(X_i, Y, a \to b)$ 

$$^{-1}, \phi^{t-1})$$
 Count $(Y, a \rightarrow b)$ 

$$^{-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow A)$ 

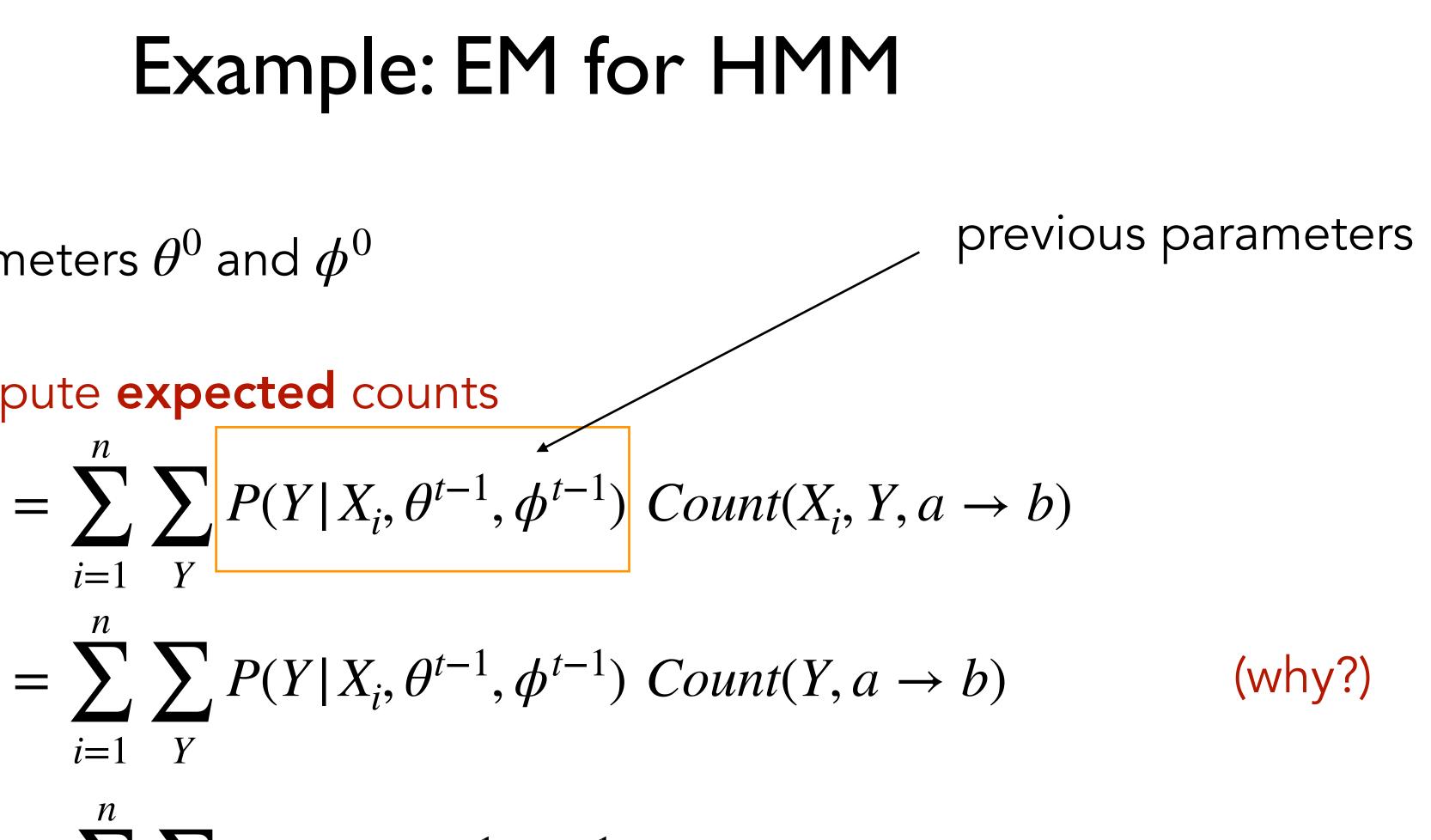
- Initialize parameters  $heta^0$  and  $\phi^0$
- (E-Step) Compute expected counts  $\overline{Count}(a \to b) = \sum_{i=1}^{n} \sum_{j=1}^{n} P(Y|X_{i}, \theta^{t-1}, \phi^{t-1}) Count(X_{i}, Y, a \to b)$ i=1 Y  $= \sum \sum P(Y|X_i, \theta^{t-1})$ i=1 Y  $\overline{Count}(a \to A) = \sum P(Y|X_i, \theta^{t-1})$



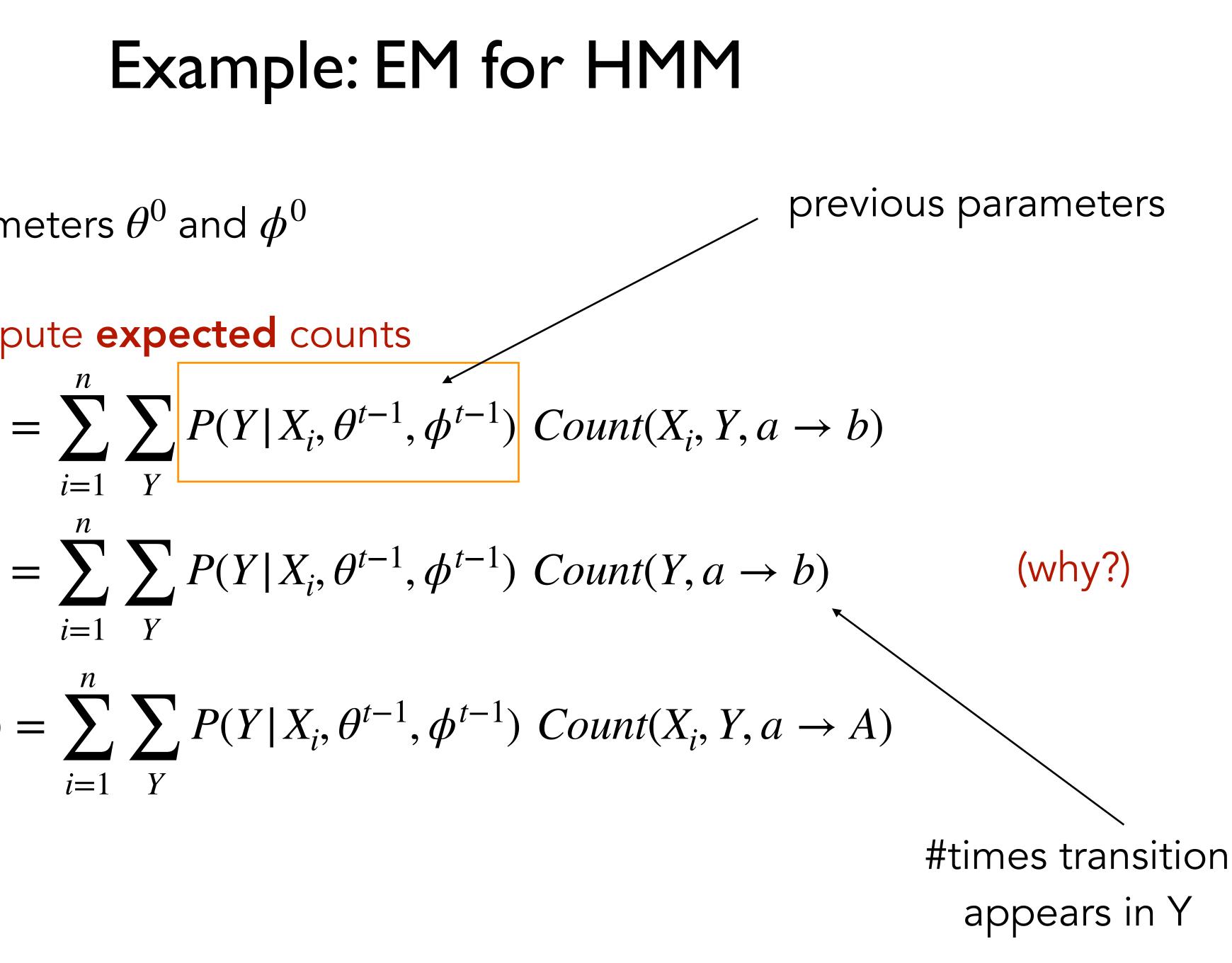
$$^{-1}, \phi^{t-1})$$
 Count(Y,  $a \rightarrow b$ )

$$^{-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow A)$ 

- Initialize parameters  $heta^0$  and  $\phi^0$
- (E-Step) Compute expected counts  $\overline{Count}(a \to b) = \sum_{i=1}^{n} \sum_{j=1}^{n} P(Y|X_{i}, \theta^{t-1}, \phi^{t-1}) Count(X_{i}, Y, a \to b)$ i=1 Y i=1 Y  $\overline{Count}(a \to A) = \sum \sum P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, a \to A)$ i=1



- Initialize parameters  $heta^0$  and  $\phi^0$
- (E-Step) Compute expected counts  $\overline{Count}(a \to b) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, a \to b)$ i=1 Y i=1 Y  $\overline{Count}(a \to A) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, a \to A)$ i=1



• (M-Step)  $\theta_{a \to b}^{t} = \frac{\overline{Count}(a \to b)}{\sum_{a \to b'} \overline{Count}(a \to b')}$ 

 $\phi_{a \to A}^{t} = \frac{\overline{Count}(a \to A)}{\sum_{a \to A'} \overline{Count}(a \to A')}$ 

• (M-Step)  $\theta_{a \to b}^{t} = \frac{\overline{Count}(a \to b)}{\sum_{a \to b'} \overline{Count}(a \to b')}$ 

 $\phi_{a \to A}^{t} = \frac{Count(a \to A)}{\sum_{a \to A'} \overline{Count}(a \to A')}$ 

### Very similar to the MLE update we saw for HMMs



### • (E-Step) Compute expected counts $\overline{Count}(a \to b) = \sum_{n=1}^{n} \sum_{i=1}^{n} P(Y|X)$ '<u>1</u>, *t*\_1 i=1 Y $= \sum P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(Y, a \to b)$ i=1 Y $\overline{Count}(a \to A) = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, a \to A)$ i=1 Y

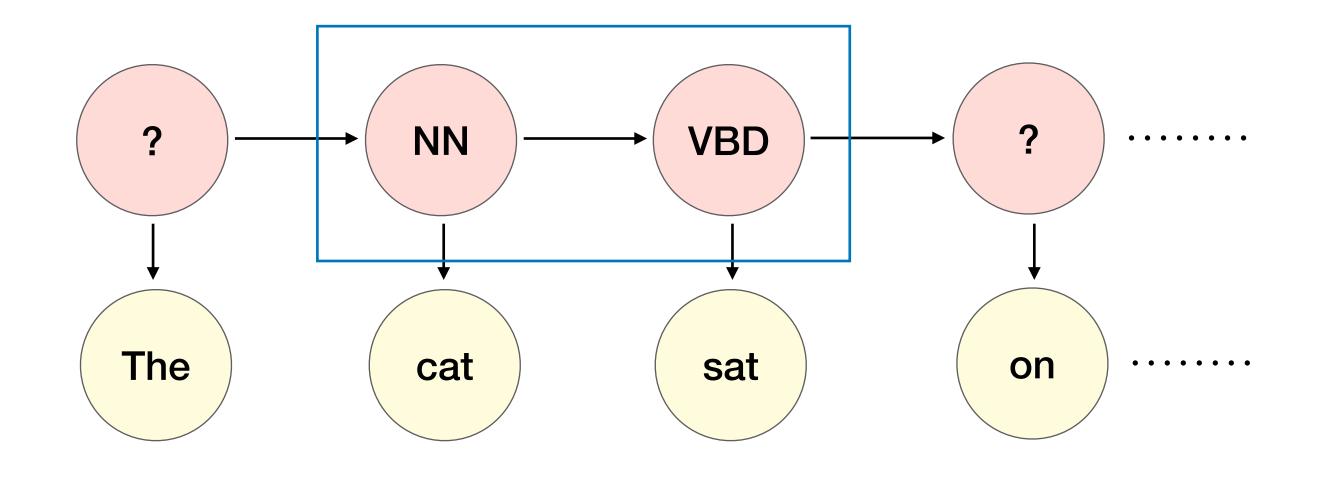
$$(X_i, \theta^{t-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow b)$ 

## • (E-Step) Compute expected counts $\overline{Count}(a \to b) = \sum_{n=1}^{n} \sum_{i=1}^{n} P(Y|X)$ i=1 Y $= \sum_{n=1}^{n} \sum_{i=1}^{n} P(Y|X)$ i=1 Y $\overline{Count}(a \to A) = \sum_{i=1}^{n} \sum_{i=1}^{n} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(X_i, Y, a \to A)$ i=1 Y

Cannot enumerate all possible Y!

$$(X_i, \theta^{t-1}, \phi^{t-1})$$
 Count $(X_i, Y, a \rightarrow b)$ 

$$X_i, \theta^{t-1}, \phi^{t-1})$$
 Count $(Y, a \to b)$ 

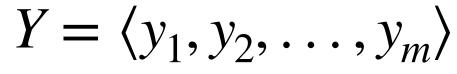


• (E-Step)  

$$\overline{Count}(NN \to VBD) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, M-1) = \sum_{i=1}^{m-1} \sum_{Y} P(Y|X_i, M-1) = \sum_{i=1}^{m-1} P(Y_i) = M$$

where m is the length of the sequence  $X_i$ 

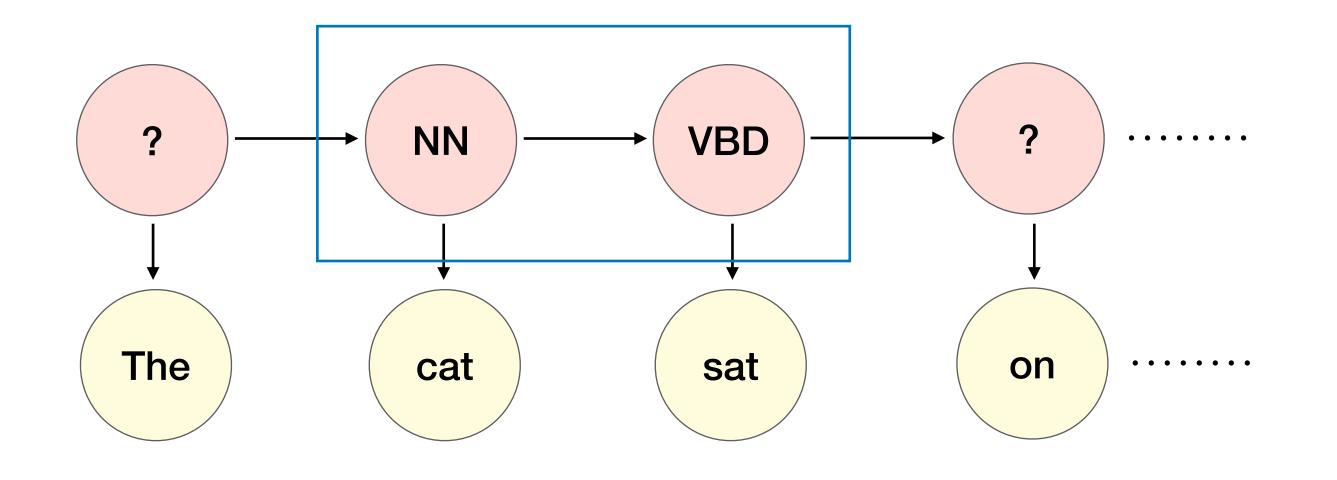
# Efficient EM



### $, \theta^{t-1}, \phi^{t-1}) Count(Y, NN \rightarrow VBD)$

 $NN, y_{j+1} = VBD | X_i, \theta^{t-1}, \phi^{t-1} \rangle$ 





• (E-Step)  

$$\overline{Count}(NN \to VBD) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, M-1) = \sum_{i=1}^{m-1} \sum_{Y} P(Y_i|X_i, M-1) = \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} P(y_j = N)$$

where m is the length of the sequence  $X_i$ 

# Efficient EM

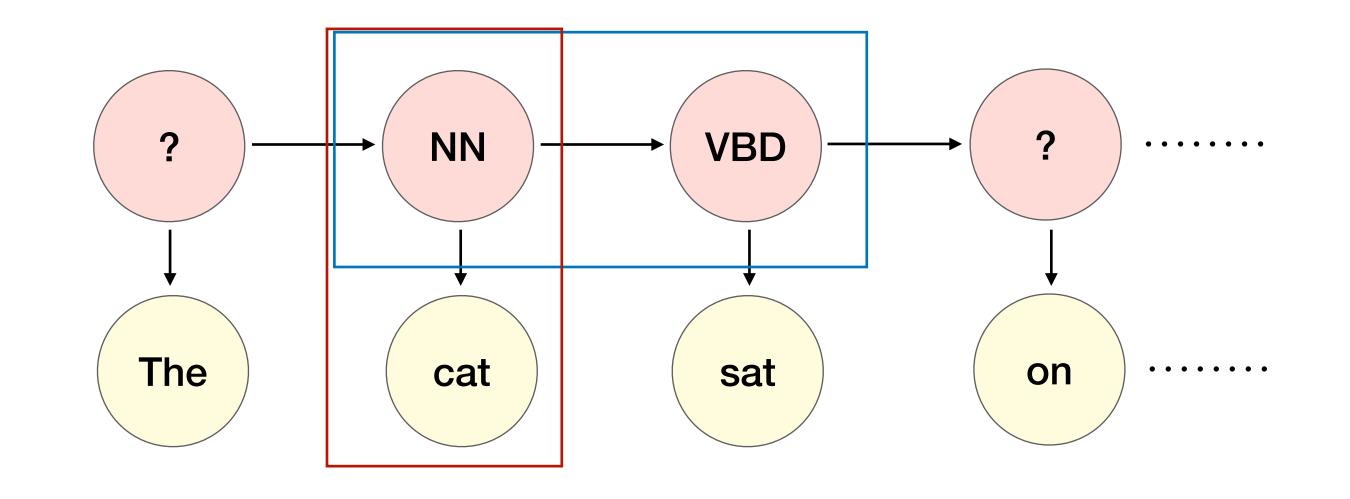
 $Y = \langle y_1, y_2, \dots, y_m \rangle$ 

### $(\theta^{t-1}, \phi^{t-1}) Count(Y, NN \rightarrow VBD)$

 $NN, y_{j+1} = VBD | X_i, \theta^{t-1}, \phi^{t-1} \rangle$ 

All other *y* variables marginalized out





• (E-Step)

$$\overline{Count}(NN \to VBD) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^{t-1}, \phi^{t-1}) Count(Y, \theta_k)$$
$$= \sum_{i} \sum_{j=1}^{m} P(y_j = NN, y_{j+1} = VBD | X_i, \theta^{t-1}, \phi^{t-1})$$

where m is the length of the sequence XSimilarly,  $\overline{Count}(NN \rightarrow cat) = \sum$  $i \quad j:X_{ij} = cat$ 

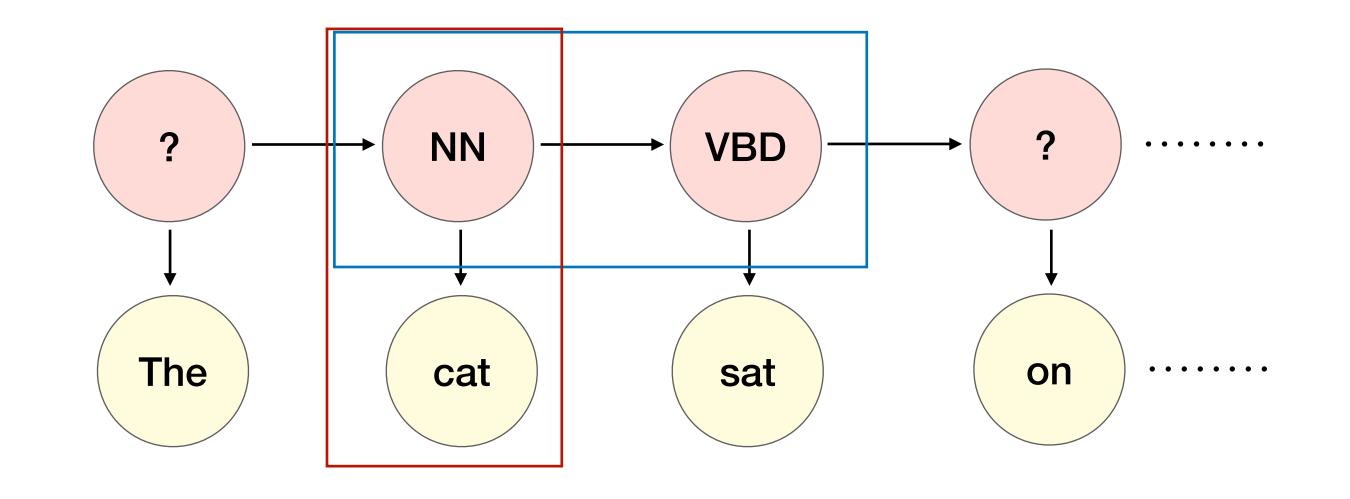
# Efficient EM

$$Y = \langle y_1, y_2, \dots, y_n \rangle$$

$$X_i$$

$$P(y_j = NN | X_i, \theta^{t-1}, \phi^{t-1})$$





• (E-Step)

$$\overline{Count}(NN \to VBD) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^t)$$
$$= \sum_{i} \sum_{j=1}^{m} P(y_j = NN)$$

where *m* is the length of the sequence  $X_i$ Similarly,  $\overline{Count}(NN \to cat) = \sum \sum P(y_j = NN | X_i, \theta^{t-1}, \phi^{t-1})$  $i \quad j:X_{ij} = cat$ 

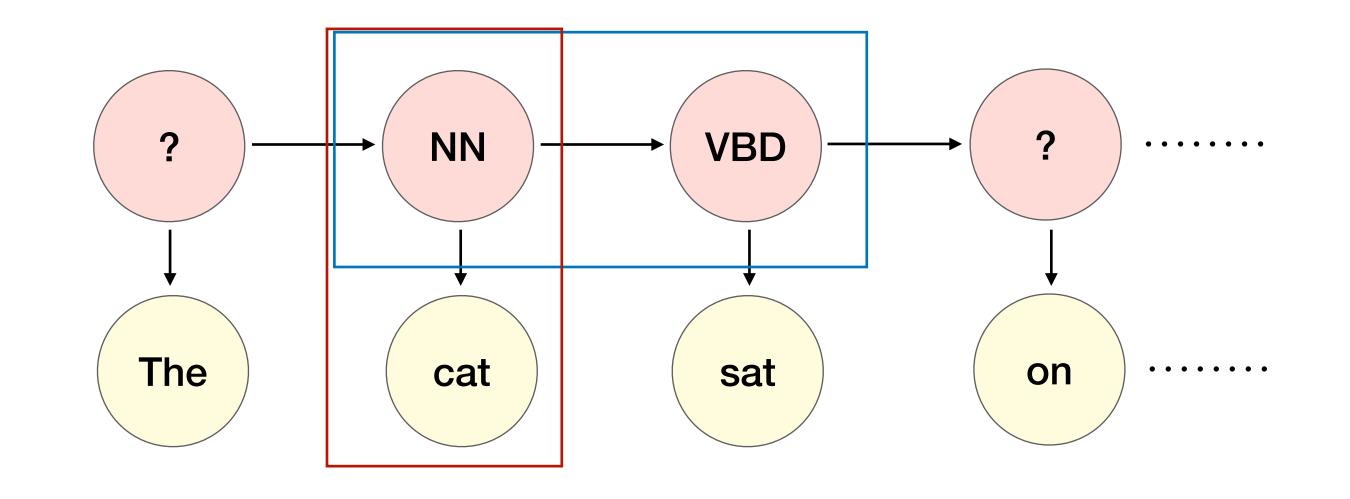
# Efficient EM

 $Y = \langle y_1, y_2, \dots, y_m \rangle$ 

 $^{t-1}, \phi^{t-1})$  Count $(Y, \theta_k)$ 

 $V, y_{i+1} = VBD | X_i, \theta^{t-1}, \phi^{t-1})$  All other y variables marginalized out





• (E-Step)

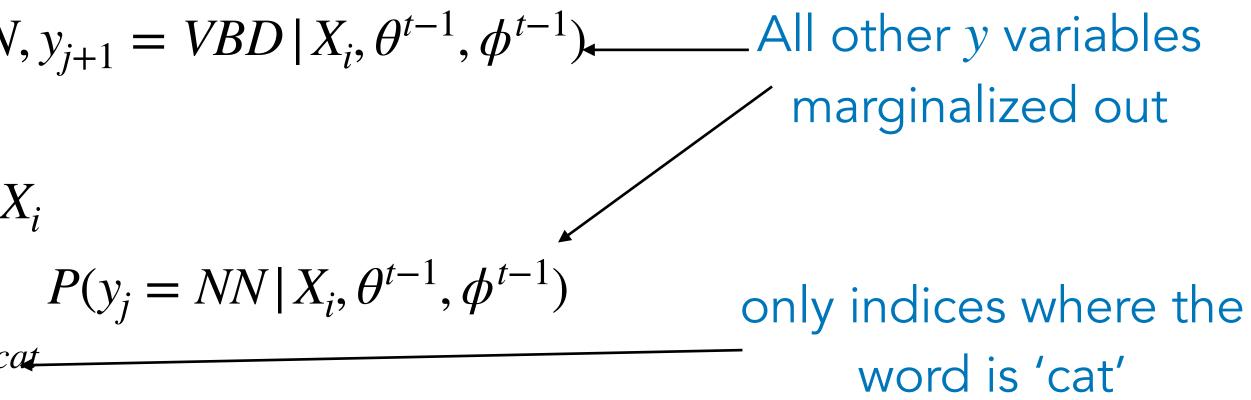
$$\overline{Count}(NN \to VBD) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^t)$$
$$= \sum_{i} \sum_{j=1}^{m} P(y_j = NN)$$

where *m* is the length of the sequence  $X_i$ Similarly,  $\overline{Count}(NN \to cat) = \sum \sum P(y_j = NN | X_i, \theta^{t-1}, \phi^{t-1})$  $i \quad j:X_{ij} = cat$ 

# Efficient EM

 $Y = \langle y_1, y_2, \dots, y_m \rangle$ 

 $^{t-1}, \phi^{t-1})$  Count $(Y, \theta_k)$ 







• Define:  $\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s \mid \theta, \phi)$ 

particular state s in the  $j^{th}$  position.

### (forward probability)

i.e. the marginal probability of seeing observations  $x_1, \ldots, x_{j-1}$  and the

- Define:  $\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s \mid \theta, \phi)$ 
  - particular state s in the  $j^{th}$  position.
- $\beta_s(j) = P(x_j, \dots, x_m | y_j = s, \theta, \phi)$

### (forward probability)

i.e. the marginal probability of seeing observations  $x_1, \ldots, x_{j-1}$  and the

(backward probability)

i.e. the marginal probability of seeing observations  $x_i, \ldots, x_m$  given  $y_i = s_i$ 

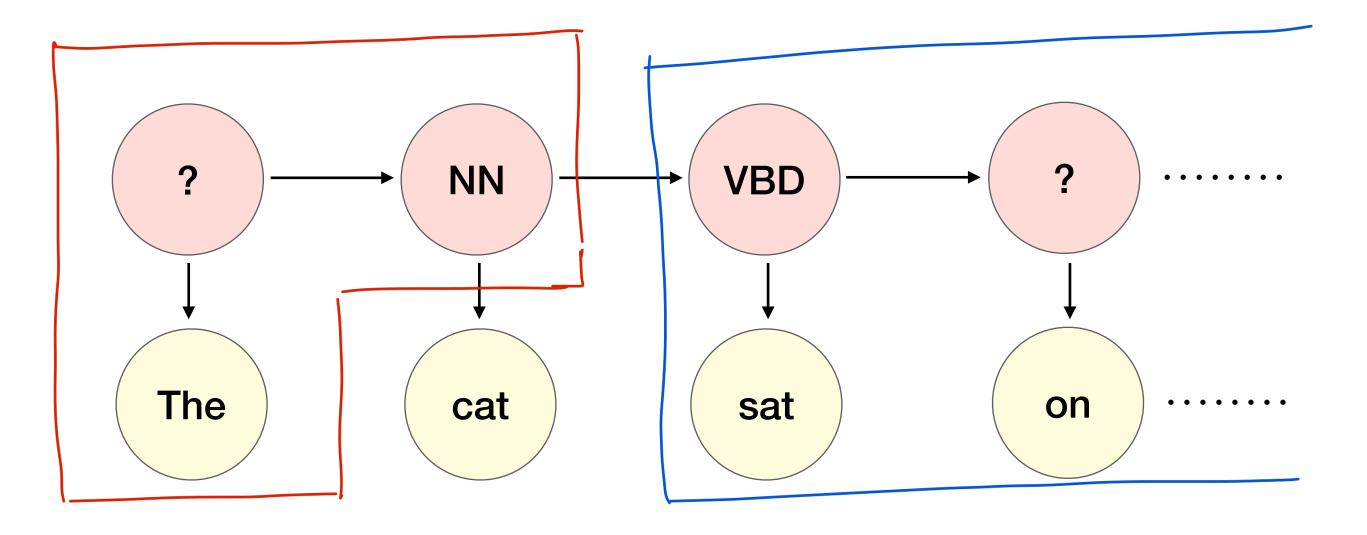
- Define:  $\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s \mid \theta, \phi)$ 
  - particular state s in the  $j^{th}$  position.
- $\beta_s(j) = P(x_i, \dots, x_m | y_i = s, \theta, \phi)$
- Let us now try to express expected counts in terms of  $\alpha, \beta$

### (forward probability)

i.e. the marginal probability of seeing observations  $x_1, \ldots, x_{j-1}$  and the

### (backward probability)

i.e. the marginal probability of seeing observations  $x_i, \ldots, x_m$  given  $y_i = s$ 



 $\alpha_{NN}(2)$ 

 $\alpha_s(j) = P(x_1, \dots, x_{j-1}, y_j = s \mid \theta, \phi)$ 

 $\beta_{VBD}(3)$ 

### $\beta_s(j) = P(x_j, \ldots, x_m | y_j = s, \theta, \phi)$

### Observation likelihood, $Z = P(x_1, x_2, ..., x_m | \theta, \phi) = \sum P(x_1, x_1)$ S $=\sum P(x_1, x_2)$ S $= \sum \alpha_s(j)\beta_s(j)$ S

for any  $j \in 1, ..., m$ 

$$x_2,\ldots,x_{j-1},y_j=s,x_j,\ldots x_m \mid \theta,\phi$$

$$x_2, \ldots, x_{j-1}, y_j = s | \theta, \phi) P(x_j, \ldots, x_m | y_j = s, \theta, \phi)$$

 Observation likelihood,  $Z = P(x_1, x_2, \dots, x_m | \theta, \phi) = \sum \alpha_s(j) \beta_s(j) \text{ for any } j \in 1, \dots, m$ S

- Observation likelihood,  $Z = P(x_1, x_2, \dots, x_m | \theta, \phi) = \sum_{s} \alpha_s(j) \beta_s(q_s)$
- Now, we can compute the following in  $P(y_j = s | X, \theta, \phi) = \frac{P(X, y_j = s | \theta, \phi)}{P(X | \theta, \phi)} = \frac{P(x_1, \theta, \phi)}{P(X | \theta, \phi)}$

(j) for any 
$$j \in 1, ..., m$$

h terms of 
$$\alpha, \beta$$
:  
 $\dots, x_{j-1}, y_j = s \mid \theta, \phi) P(x_j, \dots, x_m \mid y_j = s, \theta, \phi)$   
 $Z$ 

$$= \frac{\alpha_s(j)\beta}{Z}$$



- Observation likelihood,  $Z = P(x_1, x_2, \dots, x_m | \theta, \phi) = \sum_s \alpha_s(j) \beta_s(q)$
- Now, we can compute the following in  $P(y_j = s | X, \theta, \phi) = \frac{P(X, y_j = s | \theta, \phi)}{P(X | \theta, \phi)} = \frac{P(x_1, \theta, \phi)}{P(X | \theta, \phi)}$
- and  $P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j)}{----}$

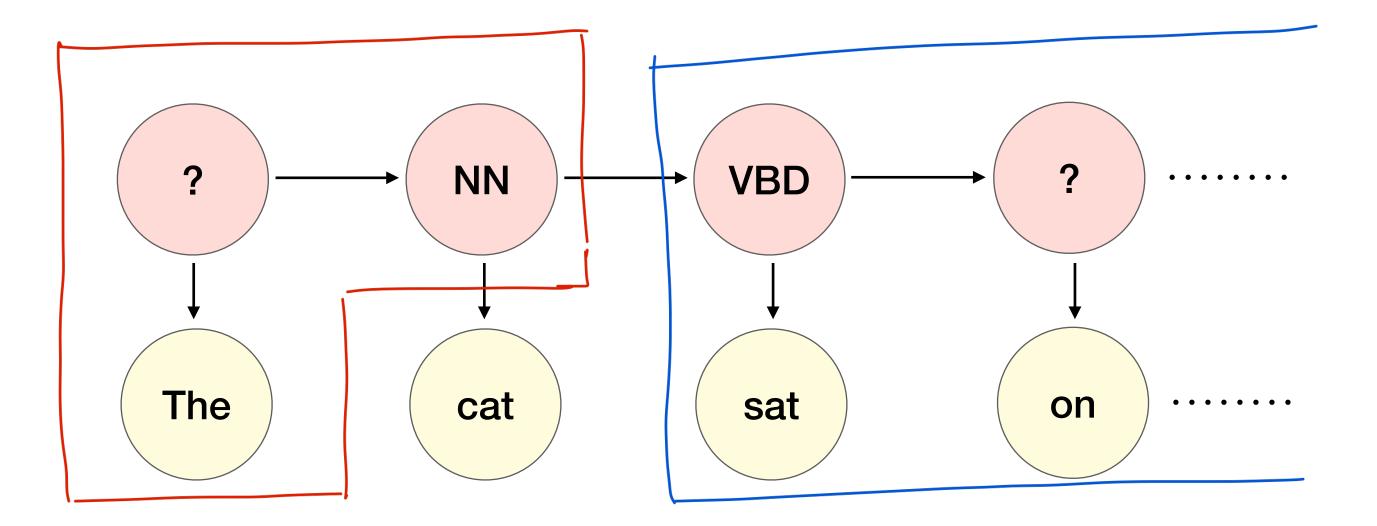
(j) for any 
$$j \in 1, ..., m$$

$$\frac{1}{Z} \text{ terms of } \alpha, \beta :$$

$$\frac{\dots, x_{j-1}, y_j = s \mid \theta, \phi) P(x_j, \dots, x_m \mid y_j = s, \theta, \phi)}{Z} = \frac{\alpha_s(j)\beta_j}{Z}$$

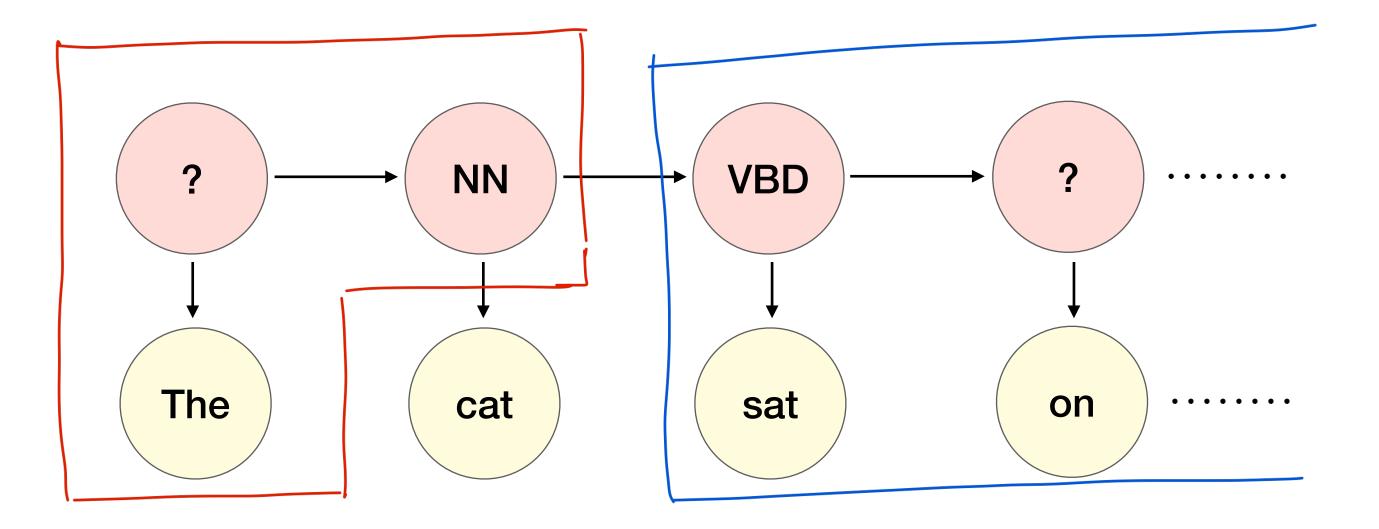
$$\frac{\theta_{s \to s'} \phi_{s \to x_j} \beta_{s'} (j+1)}{Z}$$





 $\alpha_{NN}(2)$ 

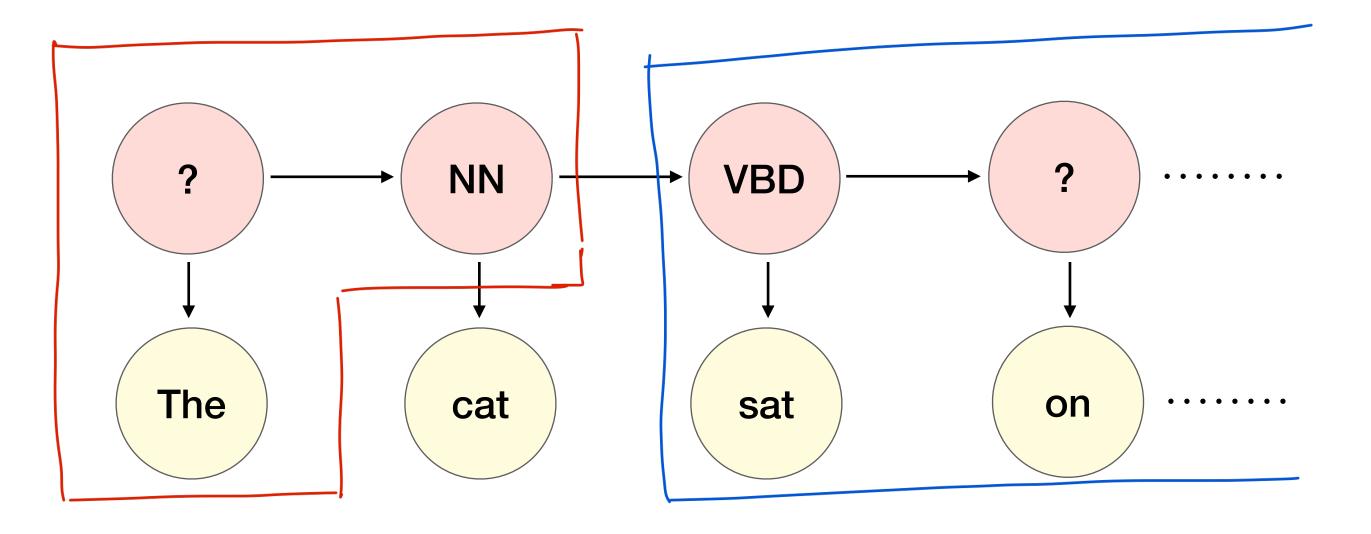
 $\beta_{VBD}(3)$ 



 $\alpha_{NN}(2)$ 

 $\beta_{VBD}(3)$ 

•  $P(y_j = NN, y_{j+1} = VBD | X, \theta, \phi) = \frac{\alpha_{NN}(2) \ \theta_{NN \to VBD} \ \phi_{NN \to cat} \ \beta_{VBD} \ (3)}{Z}$ 



 $\alpha_{NN}(2)$ 

• 
$$P(y_j = NN | X, \theta, \phi) = \frac{\alpha_{NN}}{2}$$

 $\beta_{VBD}(3)$ 

•  $P(y_j = NN, y_{j+1} = VBD | X, \theta, \phi) = \frac{\alpha_{NN}(2) \ \theta_{NN \to VBD} \ \phi_{NN \to cat} \ \beta_{VBD} \ (3)}{Z}$ 



Ζ

• 
$$P(y_j = s | X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z}$$

$$P(y_j = s, y_{j+1} = s' | X, \theta, \phi) = \frac{\alpha_s(j) \ \theta_{s \to s'} \ \phi_{s \to x_j} \ \beta_{s'} \ (j+1)}{Z}$$

• Given these, we can now estimate the expected c  

$$\overline{Count}(s \to s') = \sum_{i} \sum_{j=1}^{m} P(y_j = s, y_{j+1} = s' | X_i, \theta, \phi)$$

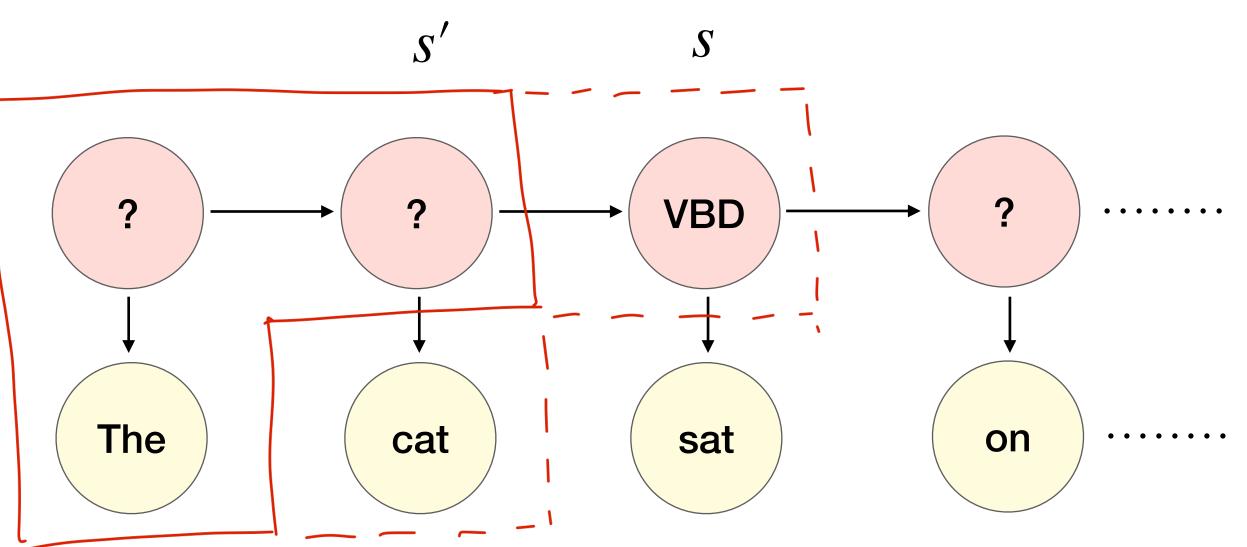
$$\overline{Count}(s \to o) = \sum_{i} \sum_{j:X_{ij} = o} P(y_j = s | X_i, \theta, \phi)$$

for all s, s', o

counts:

$$\alpha_{s}(j) = P(y_{j} = s, x_{1}, \dots, x_{j-1})$$
  
=  $\sum_{s'} P(y_{j-1} = s', x_{1}, \dots, x_{j-2})$   
=  $\sum_{s'} \alpha_{s'} (j-1) \phi_{s' \to x_{j-1}} \theta_{s' \to s}$ 

 $\alpha$  and  $\beta$  can be computed very efficiently!

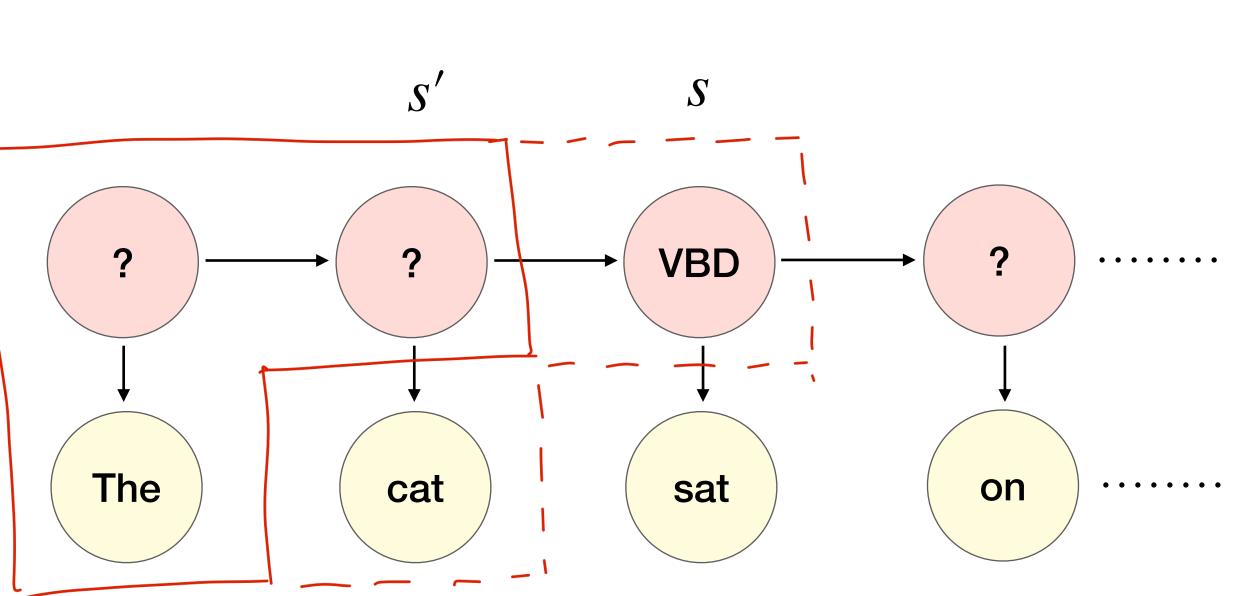


## Dynamic programming

### $(y_{j-2}) P(x_{j-1} | y_{j-1} = s') P(y_j = s | y_{j-1} = s')$

$$\alpha_{s}(j) = P(y_{j} = s, x_{1}, \dots, x_{j-1})$$
  
=  $\sum_{s'} P(y_{j-1} = s', x_{1}, \dots, x_{j-2})$   
=  $\sum_{s'} \alpha_{s'} (j-1) \phi_{s' \to x_{j-1}} \theta_{s' \to s}$ 

 $\alpha$  and  $\beta$  can be computed very efficiently!



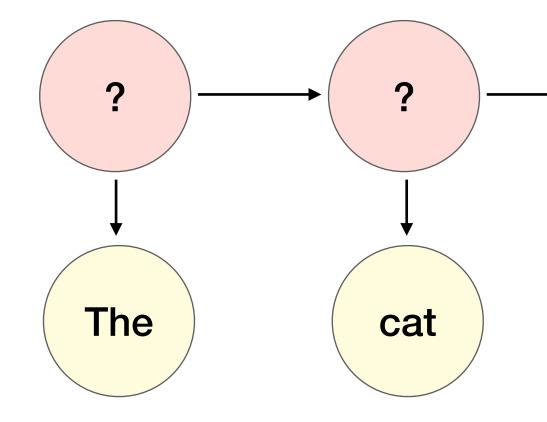
### Dynamic programming

### $(y_{j-2}) P(x_{j-1} | y_{j-1} = s') P(y_j = s | y_{j-1} = s')$

 $\alpha_{s}(1) = \theta_{\emptyset \to s}$ 

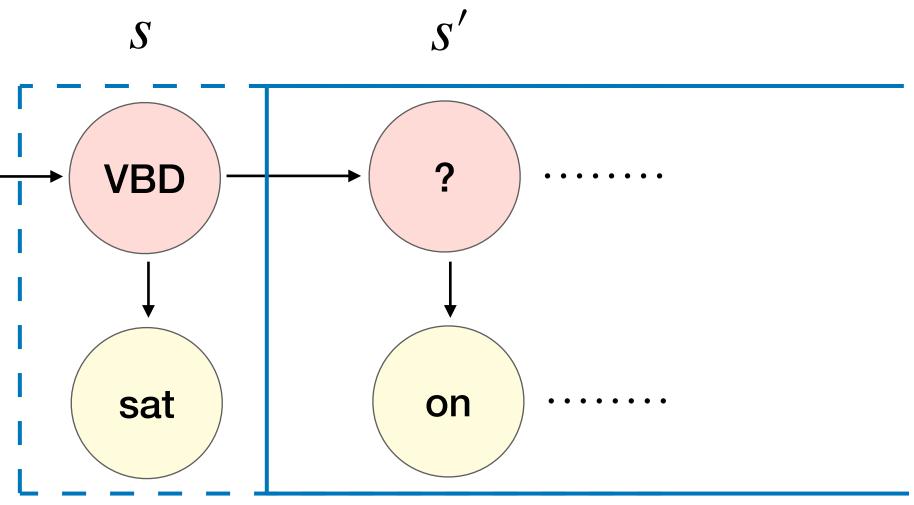
• Similarly,  $\beta_s(j) = P(x_j, \dots, x_m | y_j = s)$  $= \sum P(x_{j+1}, \dots, x_m | y_{j+1} = s') P(y_{j+1} = s')$  $= \phi_{s \to x_j} \sum_{s'} \beta_{s'} (j+1) \quad \theta_{s \to s'}$ 

 $\alpha$  and  $\beta$  can be computed very efficiently!



## Dynamic programming

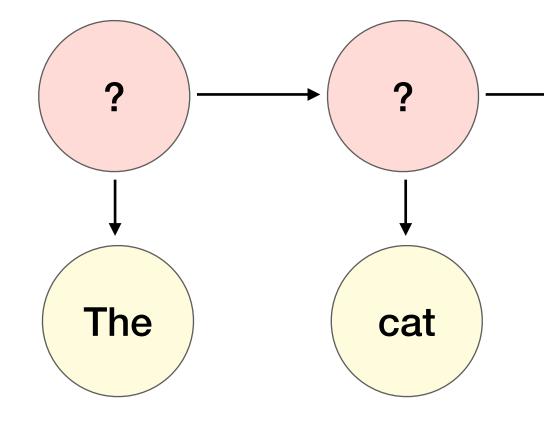
$$s' | y_j = s) P(x_j | y_j = s)$$





 Similarly,  $\beta_s(j) = P(x_j, \dots, x_m | y_j = s)$  $= \sum P(x_{j+1}, \dots, x_m | y_{j+1} = s') P(y_{j+1} = s$  $= \phi_{s \to x_j} \sum_{i} \beta_{s'} (j+1) \quad \theta_{s \to s'}$ 

 $\alpha$  and  $\beta$  can be computed very efficiently!

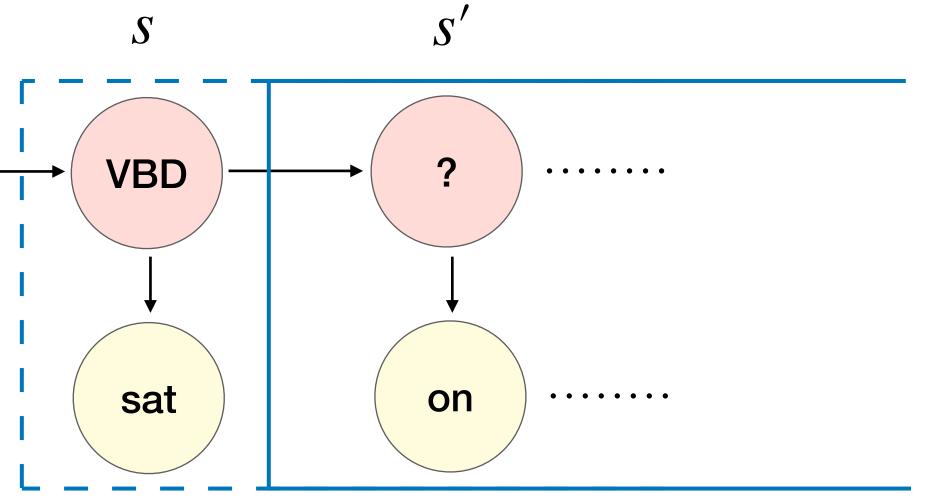


## Dynamic programming



$$s' | y_j = s) P(x_j | y_j = s)$$

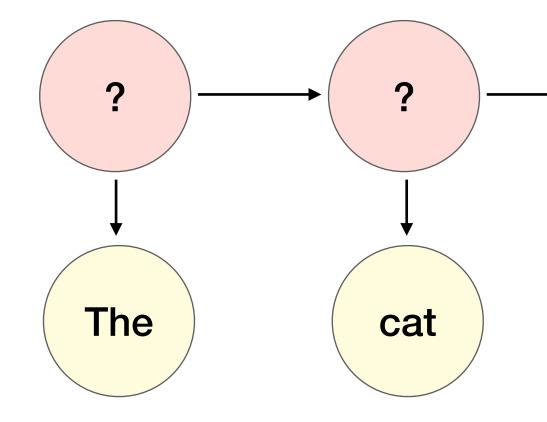
What is the base case? A)  $\beta_s(m) = \phi_{s \to x_m}$ B)  $\beta_{s}(m) = 1$ C)  $\beta_s(m) = \theta_{\emptyset \to s}$ 





 Similarly,  $\beta_s(j) = P(x_j, \dots, x_m | y_j = s)$  $= \sum P(x_{j+1}, \dots, x_m | y_{j+1} = s') P(y_{j+1} = s$  $= \phi_{s \to x_j} \sum_{i} \beta_{s'} (j+1) \quad \theta_{s \to s'}$ 

 $\alpha$  and  $\beta$  can be computed very efficiently!

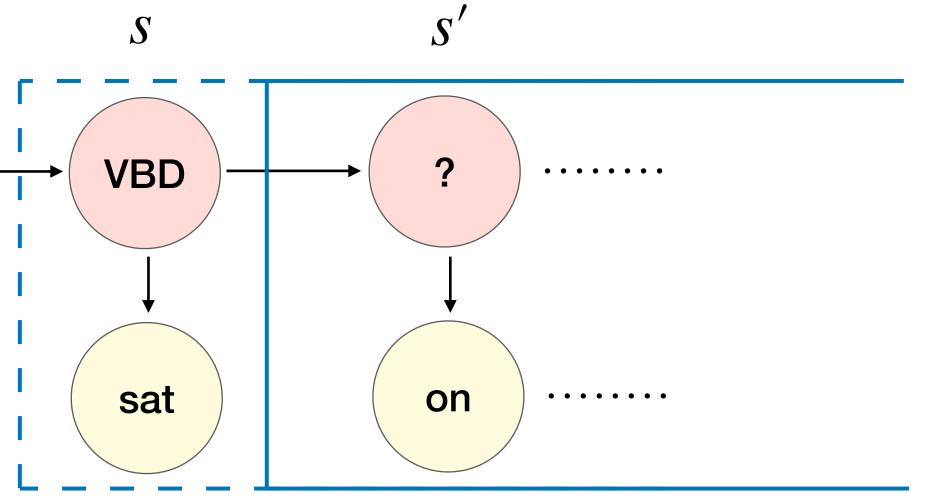


## Dynamic programming



$$s' | y_j = s) P(x_j | y_j = s)$$

What is the base case? A)  $\beta_s(m) = \phi_{s \to x_m}$ B)  $\beta_{s}(m) = 1$ C)  $\beta_s(m) = \theta_{\emptyset \to s}$ 



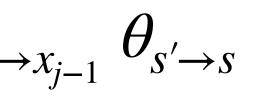


• 
$$\alpha_{s}(j) = \sum_{s'} \alpha_{s'} (j-1) \phi_{s' \rightarrow s'}$$

• 
$$\beta_s(j) = \phi_{s \to x_j} \sum_{s'} \beta_{s'} (j+1)$$

• Compute for all  $s \in S, j \in [1,m]$ 

# Dynamic programming



1)  $\theta_{s \to s'}$ 



• 
$$\alpha_{s}(j) = \sum_{s'} \alpha_{s'} (j-1) \phi_{s' \rightarrow s'}$$

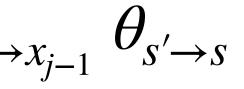
• 
$$\beta_s(j) = \phi_{s \to x_j} \sum_{s'} \beta_{s'} (j+1)$$

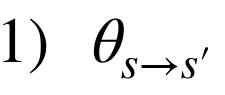
• Compute for all  $s \in S, j \in [1,m]$ 

What is the runtime of this dynamic programming algorithm? A)  $O(|S| \cdot m)$ B)  $O(|S| \cdot m^2)$ C)  $O(|S|^2 \cdot m)$ 

# Dynamic programming









• 
$$\alpha_{s}(j) = \sum_{s'} \alpha_{s'} (j-1) \phi_{s' \rightarrow s'}$$

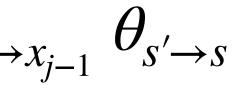
• 
$$\beta_s(j) = \phi_{s \to x_j} \sum_{s'} \beta_{s'} (j+1)$$

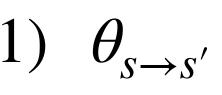
• Compute for all  $s \in S, j \in [1,m]$ 

What is the runtime of this dynamic programming algorithm? A)  $O(|S| \cdot m)$ B)  $O(|S| \cdot m^2)$ C)  $O(|S|^2 \cdot m)$ 

## Dynamic programming









# EM applications

- Any task with unobserved latent variables
- In NLP:
  - Sequence modeling
  - Syntactic parsing (inside-outside algorithm)
- Clustering (cluster IDs = hidden variables)
- Computer vision (segmentation, activity) recognition)
- Quantitative genetics, psychometrics, medical image reconstruction, structural engineering ...

Delay 100 90 80 70 60 50 Duration 40

Clustering

(By Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/ index.php?curid=20494862)

# EM applications

- Any task with unobserved latent variables
- In NLP:
  - Sequence modeling
  - Syntactic parsing (inside-outside algorithm)
- Clustering (cluster IDs = hidden variables)
- Computer vision (segmentation, activity) recognition)
- Quantitative genetics, psychometrics, medical image reconstruction, structural engineering ...

Delay 100 90 80 70 60 50 Duration 40

Clustering

(By Chire - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/ index.php?curid=20494862)