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Midterm

• Logistics announced on Canvas 

• March 10, 12pm ET - March 11, 12pm ET 

• Please fill out the survey on your preferred time for taking the exam 

so we can better plan email support 

• Midterm review: COS 484 precept this week (March 5) 

• TAs have posted a survey on Canvas - please fill it out if you’d like 

them to review specific topics



Expectation Maximization

• If we have partially observable data,  examples only, 

then 

                              

• The EM (Expectation Maximization) algorithm is a method 

for finding 

xi

L(θ) = ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

θMLE = arg max
θ

L(θ) = arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)
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• In the three coins example,  

   (possible outcomes of coin 0) 
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θ = {λ, p1, p2}
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The three coins example

• In the three coins example,  

   (possible outcomes of coin 0) 

 

𝒴 = {H, T}
𝒳 = {HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
θ = {λ, p1, p2}

• and  

where  

                              

and 

                    

P(x, y |θ) = P(y |θ) P(x |y, θ)

P(y |θ) = { λ if y = H
1 − λ if y = T

P(x |y, θ) = {
ph

1 (1 − p1)t if y = H

ph
2 (1 − p2)t if y = T

(all possible 
observations of length 3)



The three coins example



• Calculating various probabilities: 

 P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2
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• Calculating various probabilities: 

 P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2

 

 

 

P(x = THT |θ) = P(x = THT, y = H |θ) + P(x = THT, y = T |θ)
= λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

P(y = H |x = THT, θ) =
P(x = THT, y = H |θ)

P(x = THT |θ)

=
λp1(1 − p1)2

λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

The three coins example
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The three coins example

• New estimates:
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Summary

• Begin with parameters: λ = 0.3, p1 = 0.3, p2 = 0.6

• Fill in hidden variables, using 

 P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

• This gives us a pseudo-annotated dataset with fractional counts

• Re-estimate parameters to be 

λ = 0.3092, p1 = 0.0987, p2 = 0.8244

Repeat!
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The coin example for . The solution that EM 
reaches is intuitively correct: the coin tosser has two coins, one which always shows 
heads, and another which always shows tails, and is picking between them with equal 
probability  using coin 0. 
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(λ = 0.5)

P(y = H |x1)
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EM iterations (example 1)

The coin example for . The solution that EM 
reaches is intuitively correct: the coin tosser has two coins, one which always shows 
heads, and another which always shows tails, and is picking between them with equal 
probability  using coin 0. 

x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

(λ = 0.5)

Posterior probabilities  show that we are certain that coin 1 (tail-biased) generated 
, whereas coin 2 generated 

p̄i
x2 and x4 x1 and x3

P(y = H |x1)
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Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

 is now 0.4, indicating that coin 0 
has a probability 0.4 of selecting the 
tail-biased coin 1

λ

EM iterations (example 2)
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to converge to? 
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C) 
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λ = 0.5, p1 = 1, p2 = 0
λ = 0.4, p1 = 0, p2 = 1

P(y = H |x1)
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Coin example for . x = {⟨HHT⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

• EM selects a tails-only coin ( ), and a coin which is heavily heads-biased 
.  

• It is certain that  and  were generated by coin 2 since they contain heads.  
•  and  could have been generated by either coin but coin 1 (tail-biased) is far 

more likely.

p1 = 0
(p2 = 0.8284)

x1 x3
x2 x4

EM iterations (example 3)



EM iterations (example 4)

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}



EM iterations (example 4)

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

Which of these would you expect EM to converge to? 
A)  
B)  
C) 

λ = 0.3, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0, p2 = 1



EM iterations (example 4)

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

Which of these would you expect EM to converge to? 
A)  
B)  
C) 

λ = 0.3, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0, p2 = 1



EM iterations (example 4)

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

Which of these would you expect EM to converge to? 
A)  
B)  
C) 

λ = 0.3, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0.5, p2 = 0.5
λ = 0.5, p1 = 0, p2 = 1



Initialization matters

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

In this case, EM is stuck at a saddle point.



If we initialize  and  even a small amount away from the 
saddle point , EM diverges and eventually reaches the 

global maximum

p1 p2
p1 = p2

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}
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The EM algorithm

•  is the parameter vector at the  iterationθt tth

• Choose  at random (or using smart heuristics)θ0

• Iterative procedure defined as: 

                       

where 

θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)

Superscript for iteration #

How did we get  from  ?   =>  Jensen’s inequality  

(advanced; see optional reading from Andrew Ng)

arg max
θ

Q arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)



•  is the parameter vector at the  iteration 

• Choose  at random (or using smart heuristics) 

• (E step): Compute expected counts for every parameter  : 

                  

• (M step): Re-estimate parameters using expected counts to maximize likelihood (MLE 
estimate) 

                 e.g.  

θt tth

θ0

θr

Count(r) =
n

∑
i=1

∑
y

P(y |xi, θt−1) Count(xi, y, r)

θDT→NN =
Count(DT → NN)
∑β Count(DT → β)

The EM algorithm
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The EM algorithm

• Iterative procedure defined as  where θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴
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The EM algorithm

• Iterative procedure defined as  where θt = arg max
θ

Q(θ, θt−1)

Q(θ, θt−1) = ∑
i

∑
y∈𝒴

P(y |xi, θt−1) log P(xi, y |θ)

• Key points: 

• Intuition: Fill in hidden variables  according to  

• Create a “pseudo-dataset” with fractional counts 

• EM is guaranteed to converge to a local maximum, or saddle-point, of the likelihood function 

• In general, if  has a simple analytic solution, then  

                      also has a simple solution.

y P(y |xi, θ)

arg max
θ ∑

i

log P(xi, yi |θ)

arg max
θ ∑

i
∑

y

P(y |xi, θ)log P(xi, y |θ)
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Example: EM for HMM

• We observe only word sequences  (no tags )X1, X2, . . . , Xn Y

• Let  be the vector of all transition parameters (include 

initial state distribution as a special case, )

θ
∅ → s

• Let  be the vector of all emission parametersϕ

• Initialize parameters to some values  and θ0 ϕ0

Each  and Y is a sequence on its ownX
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Which of these is the correct MLE estimate for the transition parameter 
  of an HMM (where  are states) ? 

A)  

B)  

C) 

θa→b a, b, b′ 

θa→b =
Count(a → b)

∑a′ 
Count(a′ → b)

θa→b =
Count(a → b)

∑b′ 
Count(a → b′ )

θa→b =
Count(a → b)

∑a′ 
∑b′ 

Count(a′ → b′ )
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Count(a → b′ )

a, b

ϕa→A =
Count(a → A)
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Recap: Estimating HMM parameters

• Maximum likelihood estimates: 

      (where  are states) 

     (where A is an observation)

θa→b =
Count(a → b)

∑b′ 
Count(a → b′ )

a, b

ϕa→A =
Count(a → A)

∑A′ 
Count(a → A′ )

• Here, counts are estimated by simply checking for occurrence of the 

transition/emission in every data sequence 

e.g.     

(number of times the transition occurs in each data point)

Count(a → b) =
n

∑
i=1

Count(Xi, Yi, a → b)
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Example: EM for HMM

• Initialize parameters  and θ0 ϕ0

• (E-Step) Compute expected counts  

 

Count(a → b) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → b)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, a → b)

Count(a → A) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → A)
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Example: EM for HMM

• Initialize parameters  and θ0 ϕ0

• (E-Step) Compute expected counts  

 

Count(a → b) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → b)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, a → b)

Count(a → A) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → A)

(why?)

#times transition 
appears in Y 

previous parameters



Example: EM for HMM

• (M-Step) 

         

 

         

θt
a→b =

Count(a → b)
∑a→b′ 

Count(a → b′ )

ϕt
a→A =

Count(a → A)
∑a→A′ 

Count(a → A′ )



Example: EM for HMM

• (M-Step) 

         

 

         

θt
a→b =

Count(a → b)
∑a→b′ 

Count(a → b′ )

ϕt
a→A =

Count(a → A)
∑a→A′ 

Count(a → A′ )

Very similar to the MLE update we saw for HMMs



• (E-Step) Compute expected counts  

 

Count(a → b) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → b)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, a → b)

Count(a → A) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → A)



• (E-Step) Compute expected counts  

 

Count(a → b) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → b)

=
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, a → b)

Count(a → A) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Xi, Y, a → A)

Cannot enumerate all possible Y!



Efficient EM

• (E-Step) 

 

where  is the length of the sequence 

Count(NN → VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, NN → VBD)

= ∑
i

m−1

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

? NN VBD ?

The cat sat on
Y = ⟨y1, y2, . . . , ym⟩



Efficient EM

• (E-Step) 

 

where  is the length of the sequence 

Count(NN → VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, NN → VBD)

= ∑
i

m−1

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

? NN VBD ?

The cat sat on

All other  variables 
marginalized out

y

Y = ⟨y1, y2, . . . , ym⟩



Efficient EM

• (E-Step) 

 

where  is the length of the sequence  

Similarly, 

Count(NN → VBD) =
n

∑
i=1

∑
Y

P(Y |Xi, θt−1, ϕt−1) Count(Y, θk)

= ∑
i

m

∑
j=1

P(yj = NN, yj+1 = VBD |Xi, θt−1, ϕt−1)

m Xi

Count(NN → cat) = ∑
i

∑
j:Xij = cat

P(yj = NN |Xi, θt−1, ϕt−1)

? NN VBD ?
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• Define: 

                    (forward probability) 

 

i.e. the marginal probability of seeing observations  and the 

particular state  in the  position.

αs( j) = P(x1, . . . , xj−1, yj = s |θ, ϕ)

x1, . . . , xj−1

s jth

•                 (backward probability) 

 

i.e. the marginal probability of seeing observations  given 

βs( j) = P(xj, . . . , xm |yj = s, θ, ϕ)

xj, . . . , xm yj = s

• Let us now try to express expected counts in terms of α, β
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•

 

• Given these, we can now estimate the expected counts:

 

for all 

P(yj = s |X, θ, ϕ) =
αs( j)βs( j)

Z

P(yj = s, yj+1 = s′ |X, θ, ϕ) =
αs( j) θs→s′ 

ϕs→xj
βs′ 

( j + 1)

Z

Count(s → s′ ) = ∑
i

m

∑
j=1

P(yj = s, yj+1 = s′ |Xi, θ, ϕ)

Count(s → o) = ∑
i

∑
j:Xij = o

P(yj = s |Xi, θ, ϕ)

s, s′ , o
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 EM applications

(By Chire - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/

index.php?curid=20494862)

Clustering

• Any task with unobserved latent variables 

• In NLP: 

• Sequence modeling 

• Syntactic parsing (inside-outside algorithm) 

• Clustering (cluster IDs = hidden variables) 

• Computer vision (segmentation, activity 

recognition) 

• Quantitative genetics, psychometrics, medical 

image reconstruction, structural engineering …
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