
L11: Recurrent Neural Networks

Spring 2021

COS 484/584

(Advanced) Natural Language Processing

(Some slides adapted from Chris Manning, Abigail See)

Announcements

• Midterm - Wednesday to Thursday (24 hours)

• You can open the exam after Wed 12pm-Thu 9am (NOT later than that!!!)

• This lecture will be included in the midterm

• Open book: you can have access to our course materials (lecture slides, readings, videos)
and calculators. Not allowed to access the internet otherwise. You can prepare a cheatsheet
if you want.

• Please don’t use Ed during the exam period. If you have any questions, please write to
cos484584.midterm@gmail.com (mention the problem ID in your email title)

• Please fill out your preference of exam time TODAY if you haven’t:

https://forms.gle/E5dpMct7Y5v9AUbN8

mailto:cos484584.midterm@gmail.com

Recurrent neural networks (RNNs)
How can we model sequences using neural networks?

• Recurrent neural networks = A class of neural networks used to model sequences,
allowing to handle variable length inputs

• Very crucial in NLP problems (different from images) because sentences/paragraphs are
variable-length, sequential inputs

Motivation: language models

n-gram language models

Q: How do we know what size of k is needed?

Motivation: language models

n-gram language models

the students opened their ______

as the proctor started the clock, the students opened their ______

Q: Why can’t we just keep a very large value of k?

Because it is too sparse to estimate the probabilities as k increases:

Motivation: language models

n-gram language models

Generate text with a 4-gram LM:

Motivation: language models

Feedforward neural language model

Previous n words = k-th order Markov assumption!

Q: Why is this model still not good enough?

Motivation: language models

Feedforward neural language model

• scales with nW ∈ ℝh×nd

• The model learns separate patterns for the same item!

“all the” appears in different positions of two sliding windows

What are recurrent neural networks?

Recurrent neural networks (RNNs)

A family of neural networks allowing to handle variable length inputs

A function: where y = RNN(x1, x2, …, xn) ∈ ℝh x1, …, xn ∈ ℝd

Core idea: apply the same weights repeatedly at different positions

Recurrent neural networks (RNNs)

Proven to be an highly effective approach to language modeling, sequence tagging as well as
text classification tasks:

Language modeling Sequence tagging

The movie sucks .

👎

Text classification

the students opened their …exams

…

Recurrent neural networks (RNNs)
Form the basis for the modern approaches to machine translation, question
answering and dialogue systems:

sequence-to-sequence models

Simple recurrent neural networks

h0 ∈ ℝh is an initial state

ht = f(ht−1, xt) ∈ ℝh

ht = g(Wht−1 + Uxt + b) ∈ ℝh

Simple RNNs:

W ∈ ℝh×h, U ∈ ℝh×d, b ∈ ℝh

: nonlinearity (e.g. tanh),g

ht : hidden states which store information from to x1 xt

A function: where y = RNN(x1, x2, …, xn) ∈ ℝh x1, …, xn ∈ ℝd

This model contains parameters, and optionally h for (a common way is just to set as)h × (h + d + 1) h0 h0 0

Key idea: apply the same weights repeatedlyW, U, b

ht = g(Wht−1 + Uxt + b) ∈ ℝh

Simple recurrent neural networks

RNNs vs Feedforward NNs

Recurrent Neural Language Models (RNNLMs)

P(w1, w2, …, wn) = P(w1) × P(w2 ∣ w1) × P(w3 ∣ w1, w2) × … × P(wn ∣ w1, w2, …, wn−1)

= P(w1 ∣ h0) × P(w2 ∣ h1) × P(w3 ∣ h2) × … × P(wn ∣ hn−1)

• Denote , ŷt = softmax(Woht) Wo ∈ ℝ|V|×h

• Cross-entropy loss:

L(θ) = −
1
n

n

∑
t=1

log ŷt−1(wt)

θ = {W, U, b, Wo, E}

No Markov assumption here!

the students opened their …exams

…

Wo Wo Wo Wo

Progress on language models

On the Penn Treebank (PTB) dataset
Metric: perplexity

(Mikolov and Zweig, 2012): Context dependent recurrent neural network language model

KN5: Kneser-Ney 5-gram

https://ieeexplore.ieee.org/author/37298983000

Progress on language models

(Yang et al, 2018): Breaking the Softmax Bottleneck: A High-Rank RNN Language Model

On the Penn Treebank (PTB) dataset
Metric: perplexity

We will talk about LSTMs later

RNNs: pros and cons

Advantages:

• Can process any length input

• Computation for step t can (in theory) use information from many steps back

• Model size doesn’t increase for longer input context

Disadvantages:

• Recurrent computation is slow (can’t parallelize)

• In practice, difficult to access information from many steps back
(optimization issue)

We will learn Transformer networks!

We will see some advanced RNNs (e.g., LSTMs, GRUs)

Training RNNLMs

• Forward pass + backward pass (compute gradients)

For t =1, 2, …, n

xt = e(wt)
y = − log softmax(Woht−1)(wt)

ht = g(Wht−1 + Uxt + b)

L = L +
1
n

y

• Forward pass:

L = 0 h0 = 0

Zoom poll

What is the running time of a forward pass?

(a)

(b)

(c)

(d)

O(h × (d + h + |V |))
O(n × h × (d + h + |V |))
O(n × (d + h + |V |))
O(n × h × (d + h))

For t =1, 2, …, n

xt = e(wt)
y = − log softmax(Woht−1)(wt)

ht = g(Wht−1 + Uxt + b)

L = L +
1
n

y

L = 0 h0 = 0

The answer is (b).

Training RNNLMs

• Backward pass:

• Backpropagation? Yes, but not that simple!

• The algorithm is called Backpropagation Through Time (BPTT).

Backpropagation through time
h1 = g(Wh0 + Ux1 + b)
h2 = g(Wh1 + Ux2 + b)
h3 = g(Wh2 + Ux3 + b)

L3 = − log ŷ3(w4)

You should know how to compute:
∂L3

∂h3

∂L3

∂W
=

∂L3

∂h3

∂h3

∂W
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂W
+

∂L3

∂h3

∂h3

∂h2

∂h2

∂h1

∂h1

∂W

∂L
∂W

= −
1
n

n

∑
t=1

t

∑
k=1

∂Lt

∂ht

t

∏
j=k+1

∂hj

∂hj−1

∂hk

∂W

[advanced]

If k and t are far away, the gradients are very easy to grow/shrink exponentially

(called the gradient exploding or gradient vanishing problem)

Zoom poll

What will happen if the gradients become too large or too small?

(a) If too large, the model will become difficult to converge

(b) If too small, the model can’t capture long-term dependencies

(c) If too small, the model may capture a wrong recent dependency

(d) None of the above

All of these are correct (a) (b) (c) ☺

Backpropagation through time

 One solution for gradient exploding is called gradient clipping — if the norm of the
gradient is greater than some threshold, scale it down before applying SGD update.

Backpropagation through time

When she tried to print her tickets, she found that the printer was out of toner.
She went to the stationery store to buy more toner. It was very overpriced.
After installing the toner into the printer, she finally printed her ________

The writer of the books is/are (planning a sequel)

Gradient vanishing is a harder problem to solve:

Truncated backpropagation through time

• Backpropagation is very expensive if you handle long sequences

• Run forward and backward through chunks of the sequence instead of whole sequence

• Carry hidden states forward in time forever, but only back-propagate for some smaller number of steps

Applications and Variants

Application: Text Generation

You can generate text by repeated sampling.

Sampled output is next step’s input.

Let’s have some fun

https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

You can train an RNN-LM on any kind of text, then generate text in that style.

Let’s have some fun

You can train an RNN-LM on any kind of text, then generate text in that style.

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Let’s have some fun

 http://karpathy.github.io/2015/05/21/rnn-effectiveness/

You can train an RNN-LM on any kind of text, then generate text in that style.

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Application: Sequence Tagging

P(yi = k) = softmaxk(Wohi) Wo ∈ ℝC×h L = −
1
n

n

∑
i=1

log P(yi = k)

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}

Q: How do we decode at testing time?yi

Application: Sequence Tagging

Input: a sentence of n words: x1, …, xn

Output: y1, …, yn, yi ∈ {1,…C}

The model doesn’t model dependencies
between output labels!

[advanced] • We can still model the joint probabilities over { } and use beam
search at decoding time

• The main difference compared to MEMMs - you don’t need to define manual
features and the RNNs can derive features automatically!

y1, y2, …, yn

(Lample et al, 2016): Neural Architectures for Named Entity Recognition

Application: Text Classification

the movie was terribly exciting !

hn

P(y = k) = softmaxk(Wohn) Wo ∈ ℝC×h

Input: a sentence of n words

Output: y ∈ {1,2,…, C}

L = − log P(y = c)

Multi-layer RNNs

• RNNs are already “deep” on one dimension (unroll over time steps)

• We can also make them “deep” in another dimension by applying multiple RNNs

• Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

The hidden states from RNN layer

are the inputs to RNN layer

i
i + 1

• In practice, using 2 to 4 layers is common (usually better than 1 layer)

• Transformer networks can be up to 24 layers with lots of skip-connections.

Bidirectional RNNs

• Bidirectionality is important in language representations:

terribly:

•left context “the movie was”

•right context “exciting !”

Bidirectional RNNs

ht = f(ht−1, xt) ∈ ℝh

h t = f1(h t−1, xt), t = 1,2,…n

h t = f2(h t+1, xt), t = n, n − 1,…1

ht = [h t, h t] ∈ ℝ2h

Zoom poll

Can we use bidirectional RNNs in the following tasks?

(1) text classification, (2) sequence tagging, (3) text generation

(a) Yes, Yes, Yes

(b) Yes, No, Yes

(c) Yes, Yes, No

(d) No, Yes, No

The answer is (c).

Bidirectional RNNs
• Sequence tagging: Yes! (esp. important)

Bidirectional RNNs
• Sequence tagging: Yes!

• Text generation: No. Because we can’t see the future to predict the next word.

terribly exciting !the movie was
terribly exciting !the movie was

Sentence encoding

element-wise mean/max element-wise mean/max

• Text classification: Yes!

• Common practice: concatenate the last hidden vectors in two directions or take the mean/
max over all the hidden vectors

A note on terminology

• Simple RNNs are also called vanilla RNNs

Slide credit: Abigail See (with modifications)

• Sometimes vanilla RNNs don’t work that well, so we need to use some advanced

RNN variants such as LSTMs or GRUs (next lecture)

• In practice, we always use multi-layer RNNs

… together with fancy ingredients such as residual
connections with self-attention, variational dropout..

Next Lecture

• Advanced RNN variants: LSTMs vs GRUs ht = f(ht−1, xt) ∈ ℝh

• PyTorch/final project

Good luck with the midterm!

