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Constituency parsing (cont’d)
Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP) 

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP) 



Evaluating constituency parsing

• Recall: (# correct constituents in candidate) / (# constituents in gold tree) 

• Precision: (# correct constituents in candidate) / (# constituents in candidate) 

• Labeled precision/recall require getting the non-terminal label correct 

• F1 is the harmonic mean of precision and recall = (2 * precision * recall) / (precision + recall) 

• Part-of-speech tagging accuracy is evaluated separately



Zoom poll

What are the labeled precision (P) / recall (R) in the above example?

(a) P = 3/8, R = 3/7 
(b) P = 3/7, R = 3/8 
(c) P = 1/2, R = 1/2 
(d) P = 1, R = 1

The answer is (b). F1 = 40%, tagging accuracy = 100%

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP) 

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP) 



Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)

The only difference between these two parses:

 vs q(NP → NP PP) q(VP → VP PP)
… without looking at the words!



Weaknesses of PCFGs

Exactly the same set of context-free rules!

Lack of sensitivity to lexical information (words)



Lexicalized PCFGs

• Key idea: add headwords to trees

• Each context-free rule has one special child that is the head of the rule (a 
core idea in syntax)

[advanced]

The headwords are decided by manual rules!



Lexicalized PCFGs

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

[advanced]



Constituency vs dependency parsing

• Constituency structure 

• Context-free grammar (CFG) 

• Probabilistic context-free grammar (PCFG) 

• Treebanks 

• The CKY algorithm 

• Evaluation 

• Lexicalized PCFGs 

• Dependency structure 

• The Arc-standard algorithm 

• Dependency treebanks 

• Evaluation 



Constituency vs dependency structure



Dependency structure

• Consists of relations between lexical items, normally binary, asymmetric relations (“arrows”) 
called dependencies 

• The arrows are commonly typed with the name of grammatical relations (subject, prepositional 
object, apposition, etc) 

• The arrow connects a head (governor) and a dependent (modifier) 

• Usually, dependencies form a tree



Dependency relations



Dependency relations

 

https://universaldependencies.org/


Dependency structure: more examples

Book  me  the  morning  flight

I prefer the morning flight through Denver



Zoom poll

Which of the following is the correct dependency structure for “Satellites spot whales from space”?

Satellites   spot   whales   from   space

nsubj
dobj

nmod

case

Satellites   spot   whales   from   space

nsubj case
nmod

dobj

(a) (b)

Satellites   spot   whales   from   space

nsubj case
nmod
dobj(c)

Satellites   spot   whales   from   space

nsubj case
nmod

dobj

(d)

The answer is (b).



Dependency parsing

Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

Dependency parsing is the task of recognizing a sentence and assigning a dependency structure to it.

Input Output

I prefer the morning flight through Denver



Dependency formalisms

Usually a tree structure 

• There is only one root 

• Every word except for the root has one head (parent) 

• Alternatively, we can just add a fake node ROOT, so each word has exactly one head 

• No cycles: A —> B, B —> C, C —> A



Dependency formalisms

Additional constraint: projectivity 
• Definition: there are no crossing dependency arcs when the words are laid out in their 

linear order, with all arcs above the words

projective non-projective

Non-projectivity arises due to long distance 
dependencies or in languages with flexible word order.

We only focus on projective parsing



Two families of algorithms

Transition-based dependency parsing 

• Also called “shift-reduce parsing”

Graph-based dependency parsing



The Arc-standard algorithm

• The parsing process is modeled as a sequence of transitions

• A configuration consists of a stack , a buffer  and a set of dependency arcs :        
 

s b A
c = (s, b, A)

• Initially, , , s = [ROOT] b = [w1, w2, …, wn] A = ∅

• Three types of transitions: LEFT-ARC (r), RIGHT-ARC (r), SHIFT

• A configuration is terminal if  and s = [ROOT] b = ∅

I will define them in the next slides!

• Given: a sentence of w1, w2, …, wn



The Arc-standard algorithm

LEFT-ARC (r): add an arc ( ) to , remove  from the stack s1
r s2 A s2

ROOT

has

control .

He

nsubj

stack buffer
good

ROOT has good control .

He

stack buffer

amod

nsubj

: the top 2 words on the stack ( );  

: the first word in the buffer ( )

s1, s2 s1 = good, s2 = has

b1 b1 = control



The Arc-standard algorithm

RIGHT-ARC (r): add an arc ( ) to , remove  from the stack s2
r s1 A s1

ROOT has control .

He
nsubj

stack buffer

good

ROOT has good control .

He
nsubj

stack buffer

amod

: the top 2 words on the stack ( );  

: the first word in the buffer ( )

s1, s2 s1 = good, s2 = has

b1 b1 = control



The Arc-standard algorithm

: the top 2 words on the stack ( );  

: the first word in the buffer ( )

s1, s2 s1 = good, s2 = has

b1 b1 = control

SHIFT: move  from the buffer to the stackb1

ROOT has good .

He
nsubj

stack buffer

control

ROOT has good control .

He
nsubj

stack buffer



A running example

0 [ROOT] [Book, me, the, morning, flight] SHIFT

1 [ROOT, Book] [me, the, morning, flight] SHIFT

2 [ROOT, Book, me] [the, morning, flight] RIGHT-ARC(iobj) (Book, iobj, me)

3 [ROOT, Book] [the, morning, flight] SHIFT

4 [ROOT, Book, the] [morning, flight] SHIFT

5 [ROOT, Book, the, morning] [flight] SHIFT

6 [ROOT, Book, the,morning,flight] [] LEFT-ARC(nmod) (flight,nmod,morning)

7 [ROOT, Book, the, flight] [] LEFT-ARC(det) (flight,det,the)

8 [ROOT, Book, flight] [] RIGHT-ARC(dobj) (Book,dobj,flight)

9 [ROOT, Book] [] RIGHT-ARC(root) (ROOT,root,Book)

10 [ROOT] []

“Book me the morning flight”

stack buffer    action added arc



Transition-based dependency parsing

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html


Zoom poll

Which of the following transition sequences is correct for the sentence “He likes dogs”?

(a)

(c)

Both (b) and (c) are correct.

He    likes     dogs

nsubj dobj
root

SHIFT, SHIFT, LEFT-ARC(nsubj), SHIFT, RIGHT-ARC(dobj), RIGHT-ARC(root)

(b) SHIFT, SHIFT, SHIFT, RIGHT-ARC(dobj), LEFT-ARC(nsubj), RIGHT-ARC(root)

SHIFT, SHIFT, RIGHT-ARC(dobj), SHIFT, LEFT-ARC(nsubj), RIGHT-ARC(root)

(d) SHIFT, SHIFT, SHIFT, LEFT-ARC(nsubj), RIGHT-ARC(dobj), RIGHT-ARC(root)



Transition-based dependency parsing

However, one parse tree can have multiple valid transition sequences. 

• For every projective dependency tree G, there is 
a transition sequence that generates G 
(completeness)

Correctness

• For every complete transition sequence, the 
resulting graph is a projective dependency forest 
(soundness)

[advanced]

❌

Q: How many transitions are needed? How many times of SHIFT?

Given: a sentence of w1, w2, …, wn



How to decide which transitions to take?

• The major English dependency treebank: converting from Penn Treebank using 
rule-based algorithms 
• (De Marneffe et al, 2006): Generating typed dependency parses from phrase structure parses 

• (Johansson and Nugues, 2007): Extended Constituent-to-dependency Conversion for English

• Universal Dependencies: nearly 200 treebanks in 100 languages were collected since 2016 

https://universaldependencies.org/

Key idea: we can learn a statistical machine learning model from dependency treebanks!

https://universaldependencies.org/


Universal Dependencies

https://universaldependencies.org/

https://universaldependencies.org/


Train a classifier to predict transitions

• Given  where  is a sentence and  is a dependency parse{xi, yi} xi yi

• The goal becomes how to learn a classifier from  to ck tk

• For each  with  words, we can construct a transition sequence of length  which 
generates , so we can generate 2n training examples: 

xi n 2n
yi {(ck, tk)}

• “shortest stack” strategy: prefer LEFT-ARC over SHIFT.
: configuration, : transitionck tk

(2|R| + 1) -way classification! 
R: dependency labels

LEFT-ARC(r)

RIGHT-ARC(r)

SHIFT

classifier
ROOT has good control .

He

stack buffer



During testing, we use the classifier to repeat predicting the transition, until we 
reach a terminal configuration

Classifier

Train a classifier to predict transitions



Feature extraction

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

• Extract features from the configuration

• Use your favorite classifier: logistic regression, SVM, FFNNs, …

w: word, t: part-of-speech tag

LEFT-ARC(r)

RIGHT-ARC(r)

SHIFT

classifier
ROOT has good control .

He

stack buffer

https://universaldependencies.org/


(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Feature templates

s2 . w ∘ s2 . t
s1 . w ∘ s1 . t ∘ b1 . w

Features
s2 . w = has ∘ s2 . t = VBZ

s1 . w = good ∘ s1 . t = JJ ∘ b1 . w = control

w: words, t: part-of-speech tags

Feature extraction

Today we can use neural networks to extract features!

https://universaldependencies.org/


Evaluating dependency parsing

• Unlabeled attachment score (UAS) 
         = percentage of words that have been assigned the correct head 

• Labeled attachment score (LAS)   
         = percentage of words that have been assigned the correct head & label

UAS = 5/6       LAS = 2/3



Evaluating dependency parsing

T: transition-based / G: graph-based


