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• Assume   

• We then have:  

 

• How do we estimate  ?

p(am |m, M(s), M(t)) =
1

M(t)

p(w(s), w(t)) = p(w(t))∑
A

(
1

M(t)
)M(s) p(w(s) |w(t))

p(w(s) = v |w(t) = u)

Last time: IBM Model 1



• If we have word-to-word alignments, we can compute the probabilities using 

the MLE: 

•  

• where  = #instances where target word  was aligned to source 

word  in the training set 

• However, word-to-word alignments are often hard to come by

p(v |u) =
count(u, v)
count(u)

count(u, v) u
v

IBM Model 1

What can we do?



EM for Model 1

• (E-Step) If we had an accurate translation model, we can estimate 

likelihood of each alignment as: 

• (M Step) Use expected count to re-estimate translation parameters: 

                       

Remember 
these are 

fixed

How would you compute the new probabilities ? 

A)  

B)  

C) 

p(v |u)

p(v |u) =
Eq[count(u, v)]

count(u)

p(v |u) =
Eq[count(u, v)]

count(v)
p(v |u) = Eq[count(u, v)]



EM for Model 1

• (E-Step) If we had an accurate translation model, we can estimate 

likelihood of each alignment as: 

• (M Step) Use expected count to re-estimate translation parameters: 

                       

Remember 
these are 

fixed

p(v |u) =
Eq[count(u, v)]

count(u)



Decoding: How do we translate?

• We want:  

• Sum over all possible alignments: 

• Alternatively, take the max over alignments 

• Decoding: Greedy/beam search

arg max
w(t)

p(w(t) |w(s)) = arg max
w(t)

p(w(s), w(t))
p(w(s))



Model 1: Decoding

(source)

(target)

At every step , pick target word  to maximize product of: 
1. Language model:         

2. Translation model:       

where  is the inverse alignment from target to source

m w(t)
m

pLM(w(t)
m |w(t)

1 , . . . , w(t)
m−1)

p(w(s)
bm

|w(t)
m )

bm



• Assume   

• Each source word is aligned to at most one target word 

• We then have:  

p(am |m, M(s), M(t)) =
1

M(t)

p(w(s), w(t)) = p(w(t))∑
A

(
1

M(t)
)M(s) p(w(s) |w(t))

IBM Model 1

Restrictive assumptions



IBM Model 2

• Slightly relaxed assumption: 

•  is also estimated/learnedp(am |m, M(s), M(t))

• Some independence assumptions from Model 1 still required: 

• Alignment probability factors across tokens: 

• Translation probability factors across tokens:



Other IBM models

• Models 3 - 6 make successively weaker assumptions 

• But get progressively harder to optimize 

• Simpler models are often used to ‘initialize’ complex ones 

• e.g train Model 1 and use it to initialize Model 2 translation parameters



Phrase-based MT

• Word-by-word translation is not 

sufficient in many cases 

• Solution: build alignments and 

translation tables between multiword 

spans or “phrases”

(literal)

(actual)



Phrase-based MT

• Solution: build alignments and translation tables between 

multiword spans or “phrases” 

• Translations condition on multi-word units and assign probabilities 

to multi-word units 

• Alignments map from spans to spans



Vauquois Pyramid

• Hierarchy of concepts and 

distances between them in 

different languages 

• Lowest level: individual words/

characters 

• Higher levels: syntax, semantics 

• Interlingua: Generic language-

agnostic representation of 

meaning



Syntactic MT

(Slide credit: Greg Durrett)



Syntactic MT



Neural Machine Translation



Neural Machine Translation

‣ A single neural network is used to translate from source to target language 

‣ Architecture: Encoder-Decoder 

‣ Two main components: 

‣ Encoder: Convert source sentence (input) into a vector/matrix 

‣ Decoder: Convert encoding into a sentence in target language (output)



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd

What is the maximum sequence length an RNN could 
theoretically take as input? 

A) 10 
B) 128 
C) ∞



Sequence to Sequence learning 
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN) 

• Decode one word at a time (again, using an RNN!) 

• Beam search for better inference 

• Learning is not trivial! (vanishing/exploding gradients) (Sutskever et al., 2014)
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Sentence: This cat is cute
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Decoder
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Seq2seq training

‣ Similar to training a language model! 

‣ Minimize cross-entropy loss: 

 

‣ Back-propagate gradients through both 

decoder and encoder 

‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo! 



Seq2seq training

(slide credit: Abigail See)



Greedy decoding

‣ Compute argmax at every step of 

decoder to generate word 

‣ What’s wrong?



Exhaustive search?

‣ Find  

‣ Requires computing all possible sequences  

‣  complexity! 

‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

What is the complexity of doing this search? 
A) O(  ) 
B)  O(  ) 
C)  O(  ) 

VT
VT

TV

V - Vocabulary 
T - length of sequence



A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most probable partial 

translations (hypotheses) 

‣ Score of each hypothesis = log probability of sequence so far 

 

‣ Not guaranteed to be optimal 

‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



Beam decoding

(slide credit: Abigail See)



Beam decoding

(slide credit: Abigail See)



Beam decoding

(slide credit: Abigail See)



Backtrack

(slide credit: Abigail See)



Beam decoding

‣ Different hypotheses may produce  (end) token at different time steps 

‣ When a hypothesis produces , stop expanding it and place it aside 

‣ Continue beam search until: 

‣ All  hypotheses produce  OR 

‣ Hit max decoding limit T 

‣ Select top hypotheses using the normalized likelihood score 

 

‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



NMT vs SMT

Cons


‣
Pros


‣




