y

COS 484/584

L16: Neural Machine Translation - |

Spring 2021

Last time: IBM Model |

o Assume p(a, |m,M®,MD) =

M@

e \We then have:

pw®, w®) = p(w®) H (
A

e How do we estimate p(Ww® = v|wW =u) ?

IBM Model |

* |t we have word-to-word alignments, we can compute the probabilities using
the MLE:

count(u, v)
o P(V|u) =
count(u)
e where count(u,v) = #instances where target word u was aligned to source

word Vv in the training set

e However, word-to-word alignments are often hard to come by

What can we do?

EM for Model |

Il

e (E-Step) If we had an accurate translation model, we can estimate

ikelihood of each alignment as:

Remember
— these are
gm(am | W, w") o plam | m, M), M) x p(w}s) | wc(frl), fixed

e (M Step) Use expected count to re-estimate translation parameters:

How would you compute the new probabilities p(v | u)?
Eq[count(u, V)]
A)p(v]u) =

count(u)

Eq[count(u, V)]

B) p(v|u) =
count(v)
C)p(v|u) = Eq[caunt(u, V)]

EM for Model |

e (E-Step) If we had an accurate translation model, we can estimate

ikelihood of each alignment as:

Remember
— these are
gm(am | W, w) o plam | m, MO, MO) x p(w) | wl?), fixed

* (M Step) Use expected count to re-estimate translation parameters:

Eq [count(u,v)] =) gm(am | w'®, w®) x 6wl = v) x §(wl) = u).

Eq[count(u, V)]

plviu) = count(u)

Decoding: How do we translate?

(W(S), W(t))

We want: arg max p(w? | w®) = arg max
W@ w® p(w®)

Sum over all possible alignments:

ZP w®, A)
—p(w®) ZP

Alternatively, take the max over alignments

Decoding: Greedy/beam search

| w't) A)

Model |: Decoding

1 2 3 4 5 6

(target)

(source)

application
7

At every step m, pick target word w{" to maximize product of:

1. Language model: piw? | wl(t), . ,wg)_l)
2. Translation model: p(wlgs)\w,g?)

where b, is the inverse alignment from target to source

IBM Model |

o Assume p(a, |m,M®,MD) =

M@

e Fach source word is aligned to at most one target word

e \We then have:

1

pw®, w®) = pw®) ¥ (M® M7 pw® | w®)
A

Restrictive assumptions

IBM Model 2

o Slightly relaxed assumption:

* p(a,|m, M(S),M(t)) Is also estimated/learned

 Some independence assumptions from Model 1 still required:

e Alignment probability factors across tokens:

M (8)
p(A|w®,w") = T] plam | m, M), MY).
m=1

* Translation probability factors across tokens:

M ()
p(w(s) ‘ w(t)’ A H p (S) I wa'rn

Other IBM models

Model 1: lexical translation

Model 2: additional absolute alignment model

Model 3: extra fertility model

Model 4: added relative alignment model

Model 5: fixed deficiency problem.

Model 6: Model 4 combined with a HMM alignment model in a log linear way

* Models 3 - 6 make successively weaker assumptions
e But get progressively harder to optimize
* Simpler models are often used to ‘initialize’ complex ones

® e.gtrain Model 1 and use it to initialize Model 2 translation parameters

Phrase-based MT

Nous allons prendre un verre
(literal) We will take a glass

(actual) We’ll have a drink

 \Word-by-word translation is not

sufficient in many cases

e Solution: build alignments and

We'll - translation tables between multiword

spans or “phrases”

have

drink

Phrase-based MT

e Solution: build alignments and translation tables between

multiword spans or “phrases”

* Translations condition on multi-word units and assign probabilities

to multi-word units

e Alignments map from spans to spans

S S S t
pw® [w® A= [Puepen Wity wis - w”} [{w wiy, . w”})
((2,7),(k,£))EA

Vauquois Pyramid

Interlingua
Conceptual ' Conceptual
Analysis Generation
Semantic Semantic -
Semantic Transfe

Shallow Structure r’ Structure Semantic
Semantic Generation
Analysis

Syntactic - Syntactic
San ol ire G Syntactic Transfer q W —

Parsing

Generatlor
/
Words O Direct % Words
Morphological Morphological
Analysis Generation
Source Language Text Target Language Text

Hierarchy of concepts and
distances between them in

different languages

|l owest level: individual words/

characters
Higher levels: syntax, semantics

Interlingua: Generic language-
agnostic representation of

meaning

Syntactic MT

» Rather than use phrases, use a synchronous context-free grammar:
constructs “parallel” trees in two languages simultaneously

NP — [DT1 .Uz NN3; DT1 NN3 JJz]

DT — [the, |a]
DT — [the, |e]
NN — [car, voiture]

-
ppeeanAEEReCRRARRecssncsan,g,
-- -~
- - -
- -~ -
- -~ -
- -
oy ®eoa
- ..
- -
- -
- ®y

- ..

-'__------ UL I N I .
- I
- - -
- e

- -

- -
- -

-
-
-
-
e
-
-
-
~
-
ol
-

DT NNa ~ JJs

JJ — [yellow, jaune]
the vyellow car la voiture jaune

» Assumes parallel syntax up to reordering

» Translation = parse the input with “half” the grammar, read off other half

(Slide credit: Greg Durrett)

Syntactic MT

Input Output
S S
VP =
ADV %\ADV
lo hareé de muy buen grado . | will do it g|ald|y
Grammar

» Relax this by using lexicalized

. . s =+ {(w.31v.) OR s = (VP .3 vyou VP.)
rules, like “syntactic phrases” ’ » Y

VP — { lo haré ADV 3 will do it ADV)
» Leads to HUGE grammars,

parsing is slow

s =+ { loharé ADV . 3 | will do it ADV .)

ADV — { de muy buen grado ; gladly)

Slide credit: Dan Klein

Neural Machine Translation

Neural Machine Translation

» A single neural network is used to translate from source to target language
» Architecture: Encoder-Decoder
» Two main components:
» Encoder: Convert source sentence (input) into a vector/matrix

» Decoder: Convert encoding into a sentence in target language (output)

Recall: RNNs

h, = g(Wh,_, + Ux, + b) € RY

outputs { g () g3 g
(optional) A A A A

h(1) h(2) h'3) h'4)

-
hidden states < w w w w > ...
(-

Input sequence
(any length) {

7(1) 7 (2) 7 (3) 7 (4)

Recall: RNNs

What is the maximum sequence length an RNN could
theoretically take as input?

A) 10
B) 128
C) o©

Sequence to Sequence learning
(Seg2seq)

thought
vector
encoder Nie
— —_— —_— —_— —_—

I

I

I Y I I I Y

hello how are you <s5> hallo

Encode entire input sequence into a single vector (using an RNN)

Beam search for better inference

Learning is not triviall (vanishing/exploding gradients)

Decode one word at a time (again, using an RNN!)

I

wie

I

geht

decoder

I

es

<[s>

I

dir

(Sutskever et al., 2014)

Encoder

Sentence: This cat is cute

moeiing 0900) (0000] (0000] (0000

This cat S cute

Encoder

Sentence: This cat is cute

()~
(=

moeiing 0900) (0000] (0000] (0000

This cat S cute

Encoder

Sentence: This cat is cute

() — ()
RO

moeiing 0900) (0000] (0000] (0000

This cat S cute

Encoder

Sentence: This cat is cute

(encoded representation)

| | henc

This cat IS cute

word
embedding

Decoder

word
embedding @

<S>

Decoder

ce

(-~
O

word
embedding @

<S>

Decoder

ce chat

d
emZ)VeOc;ding @ @

<S> ce

Decoder

e A conditioned language model

ce chat est mignon <e>

e Ml Sy ©
OO ()
@ @ (0000 (0000 (0000

chat est mignon

word
embedding

Seg2seq training

Similar to training a language model!

Minimize cross-entropy loss:
36M sentence pairs

y ~ -
Z — log P(yt | Yoo s V1A - - - 9xn) Russian: MalimHHbIM NepeBoA - 3TO KpyTO!
=1
Back—propagate gradients through both K English: Machine translation is cool! j

decoder and encoder

Need a really big corpus

Encoder RNN

Seg2seq training

= negative log = negative log = negative log

] T prob of “he” prob of “with” prob of <END>
]=FZ]t = Jil+ J2 + 3 HJa+ Js + Je +| J7
= Y A A A A A 3

A A A A A A A
>
O O 18
19 o - &
0 @ il
il
Z
il a m’ entarté <START> he hit me with a pie
\ J \)
Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seq2seq is optimized as a single system.
Backpropagation operates “end-to-end”.

(slide credit: Abigail See)

Greedy decoding

» Compute argmax at every step of

he pie <END>
A A decoder to generate wora
=
9_0 /
® » What's wrong?
O
O
O
O

<START> he hit me with a pie

Exhaustive search?

Il

, Find arg max P(y,....yr|Xx),....Xx,)

> 'n
» Requires computing all possible sequences

V - Vocabulary
T - length of sequence

What is the complexity ot doing this search?
A) O(VT)
B) O(V")
C) O(T")

A middle ground: Beam search

Key idea: At every step, keep track ot the k most probable partial

translations (hypotheses)

Score ot each hypothesis = log probability of sequence so far
J
Z 10 PV, | Vise e os V(s Xqs e v v 5 X))
=1

Not guaranteed to be optimal

More efficient than exhaustive search

Beam decoding

-0.7
he |

N\

<START>

N

-0.9
(slide credit: Abigail See)

Beam decoding

L
Beam size = k = 2. Blue numbers = score(y1,...,y) = Y log Pum(¥ilva, - - - yi-1,2)

=1

-1.7

0.1 hit

he <

/ struck
2.9

<START>

\ -1.6
was

I <
got

-1.8 (slide credit: Abigail See)

-0.9

Beam decoding

t
Beam size = k = 2. Blue numbers = score(y1,...,5:) = » log Pum(¥ily1, - - -, ¥i-1,)

=1

4.0 -4.8
tart In
-2.8 i
17 / pie with 4.9
0.7)) 3.4 4.5 pie
' hit | |
he < me 3.3 37 tart
/ struck Hc vk 3 e
-2.9 :
<START> -2.9 on one 50
\ e hit 35 43 pie
was <
/ < struck tart
0.9 gok 3.8 53
-1.8

(slide credit: Abigail See)

Backtrack

t
Beam size = k = 2. Blue numbers = score(yi,...,y:) = Zlog Pryv(wlyises« y¥i-1:2)

=1

4.0 4.8

tart In
-2.8 i
Z pie with 4.3

1.7 s
: _ pie
0.7 it < 3.4 4.5
he < me 33 a7 tart
/ struck D5 with a A8
29 \
<START> -2.9 on onhe 50

\ - hit 3.5 4.3 pie
was <
/ < struck tart
got

09 -3.8 i3
-1.8

(slide credit: Abigail See)

Beam decoding

» Different hypotheses may produce (e) (end) token at different time steps

» When a hypothesis produces (e), stop expanding it and place it aside

» Continue beam search until:

» All kK hypotheses produce (e) OR
» Hit max decoding limit T

» Select top hypotheses using the normalized likelihood score

1 T
TZIOgP(yt\yp---»yz—laxla-“’xn)

=1

» Otherwise shorter hypotheses have higher scores

NMT vs SMT

Pros Cons

