
L16: Neural Machine Translation - 1

Spring 2021

COS 484/584

• Assume

• We then have:

• How do we estimate ?

p(am |m, M(s), M(t)) =
1

M(t)

p(w(s), w(t)) = p(w(t))∑
A

(
1

M(t)
)M(s) p(w(s) |w(t))

p(w(s) = v |w(t) = u)

Last time: IBM Model 1

• If we have word-to-word alignments, we can compute the probabilities using

the MLE:

•

• where = #instances where target word was aligned to source

word in the training set

• However, word-to-word alignments are often hard to come by

p(v |u) =
count(u, v)
count(u)

count(u, v) u
v

IBM Model 1

What can we do?

EM for Model 1

• (E-Step) If we had an accurate translation model, we can estimate

likelihood of each alignment as:

• (M Step) Use expected count to re-estimate translation parameters:

Remember
these are

fixed

How would you compute the new probabilities ?

A)

B)

C)

p(v |u)

p(v |u) =
Eq[count(u, v)]

count(u)

p(v |u) =
Eq[count(u, v)]

count(v)
p(v |u) = Eq[count(u, v)]

EM for Model 1

• (E-Step) If we had an accurate translation model, we can estimate

likelihood of each alignment as:

• (M Step) Use expected count to re-estimate translation parameters:

Remember
these are

fixed

p(v |u) =
Eq[count(u, v)]

count(u)

Decoding: How do we translate?

• We want:

• Sum over all possible alignments:

• Alternatively, take the max over alignments

• Decoding: Greedy/beam search

arg max
w(t)

p(w(t) |w(s)) = arg max
w(t)

p(w(s), w(t))
p(w(s))

Model 1: Decoding

(source)

(target)

At every step , pick target word to maximize product of:
1. Language model:

2. Translation model:

where is the inverse alignment from target to source

m w(t)
m

pLM(w(t)
m |w(t)

1 , . . . , w(t)
m−1)

p(w(s)
bm

|w(t)
m)

bm

• Assume

• Each source word is aligned to at most one target word

• We then have:

p(am |m, M(s), M(t)) =
1

M(t)

p(w(s), w(t)) = p(w(t))∑
A

(
1

M(t)
)M(s) p(w(s) |w(t))

IBM Model 1

Restrictive assumptions

IBM Model 2

• Slightly relaxed assumption:

• is also estimated/learnedp(am |m, M(s), M(t))

• Some independence assumptions from Model 1 still required:

• Alignment probability factors across tokens:

• Translation probability factors across tokens:

Other IBM models

• Models 3 - 6 make successively weaker assumptions

• But get progressively harder to optimize

• Simpler models are often used to ‘initialize’ complex ones

• e.g train Model 1 and use it to initialize Model 2 translation parameters

Phrase-based MT

• Word-by-word translation is not

sufficient in many cases

• Solution: build alignments and

translation tables between multiword

spans or “phrases”

(literal)

(actual)

Phrase-based MT

• Solution: build alignments and translation tables between

multiword spans or “phrases”

• Translations condition on multi-word units and assign probabilities

to multi-word units

• Alignments map from spans to spans

Vauquois Pyramid

• Hierarchy of concepts and

distances between them in

different languages

• Lowest level: individual words/

characters

• Higher levels: syntax, semantics

• Interlingua: Generic language-

agnostic representation of

meaning

Syntactic MT

(Slide credit: Greg Durrett)

Syntactic MT

Neural Machine Translation

Neural Machine Translation

‣ A single neural network is used to translate from source to target language

‣ Architecture: Encoder-Decoder

‣ Two main components:

‣ Encoder: Convert source sentence (input) into a vector/matrix

‣ Decoder: Convert encoding into a sentence in target language (output)

Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd

Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd

What is the maximum sequence length an RNN could
theoretically take as input?

A) 10
B) 128
C) ∞

Sequence to Sequence learning
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)

• Decode one word at a time (again, using an RNN!)

• Beam search for better inference

• Learning is not trivial! (vanishing/exploding gradients) (Sutskever et al., 2014)

Encoder

xt

ht−1

xt+1

ht

xt+2

ht+1 ht+2

xt+3

ht+3

h

This cat is cute

Sentence: This cat is cute

word
embedding

Encoder

x1

h0

xt+1

h1

xt+2

ht+1 ht+2

xt+3

ht+3

h

Sentence: This cat is cute

word
embedding

This cat is cute

x1

h0

x2

h1

x3

h2 h3

x4

h4

Encoder

xt+2

ht+2

xt+3

ht+3

h

Sentence: This cat is cute

word
embedding

This cat is cute

Encoder

x1

h0

x2

h1

x3

h2 h3

x4

h4

(encoded representation)

Sentence: This cat is cute

word
embedding

henc

This cat is cute

Decoder

x′ 1 x′ 2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

<s> ce chat est

chat mignonest

x′ 5

z5

o

<e>

mignon

word
embedding

henc

Decoder

y1

henc

x′ 2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

<s> ce chat est

chat mignonest

x′ 5

z5

o

<e>

mignon

word
embedding

Decoder

y1 y2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

chat mignonest

x′ 5

z5

o

<e>

mignon

henc

word
embedding

<s> ce

Decoder

y1 y2

z1

y3

z2

ce

o o

z3

o

y4

z4

o

<s> ce chat est

chat mignon
• A conditioned language model

est

y5

z5

o

<e>

mignon

henc

word
embedding

Seq2seq training

‣ Similar to training a language model!

‣ Minimize cross-entropy loss:

‣ Back-propagate gradients through both

decoder and encoder

‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo!

Seq2seq training

(slide credit: Abigail See)

Greedy decoding

‣ Compute argmax at every step of

decoder to generate word

‣ What’s wrong?

Exhaustive search?

‣ Find

‣ Requires computing all possible sequences

‣ complexity!

‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

What is the complexity of doing this search?
A) O()
B) O()
C) O()

VT
VT

TV

V - Vocabulary
T - length of sequence

A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most probable partial

translations (hypotheses)

‣ Score of each hypothesis = log probability of sequence so far

‣ Not guaranteed to be optimal

‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Backtrack

(slide credit: Abigail See)

Beam decoding

‣ Different hypotheses may produce (end) token at different time steps

‣ When a hypothesis produces , stop expanding it and place it aside

‣ Continue beam search until:

‣ All hypotheses produce OR

‣ Hit max decoding limit T

‣ Select top hypotheses using the normalized likelihood score

‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

NMT vs SMT

Cons

‣
Pros

‣

