
L17: Neural Machine Translation - 2

Spring 2021

COS 484/584

Last time: Sequence to Sequence
learning (Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)

• Decode one word at a time (again, using an RNN!)

(Sutskever et al., 2014)

How seq2seq changed the MT
landscape

MT Progress

(source: Rico Sennrich)

(Wu et al., 2016)

Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!

‣ Any task where inputs and outputs are sequences of words/

characters

‣ Summarization (input text summary)

‣ Dialogue (previous utterance reply)

‣ Parsing (sentence parse tree in sequence form)

‣ Question answering (context+question answer)

→

→

→

→

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Remember alignments?

Attention

‣ The neural MT equivalent of alignment models

‣ Key idea: At each time step during decoding, focus on a particular part
of source sentence

‣ This depends on the decoder’s current hidden state (i.e. an idea of

what you are trying to decode)

‣ Usually implemented as a probability distribution over the hidden

states of the encoder ()

hdec

henc
i

Seq2seq with attention

(slide credit: Abigail See)

Computing attention

‣ Encoder hidden states:

‣ Decoder hidden state at time :

‣ First, get attention scores for this time step of decoder (we’ll define soon):

‣ Obtain the attention distribution using softmax:

‣ Compute weighted sum of encoder hidden states:

‣ Finally, concatenate with decoder state and pass on to output layer:

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc

1 , hdec
t), . . . , g(henc

n , hdec
t)]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t] ∈ ℝ2h

henc
1

hdec
1

(credits: Jay Alammar)

Types of attention

‣ Assume encoder hidden states and a decoder hidden state

1. Dot-product attention (assumes equal dimensions for and):

2. Multiplicative attention:
 , where is a weight matrix (learned)

3. Additive attention:

where are weight matrices (learned) and is a weight vector (learned)

henc
1 , henc

2 , . . . , henc
n hdec

henc hdec

ei = g(henc
i , hdec) = (hdec)T henc

i ∈ ℝ

g(henc
i , hdec) = (hdec)T W henc

i ∈ ℝ W

g(henc
i , hdec) = vT tanh (W1henc

i + W2hdec) ∈ ℝ
W1, W2 v

Assuming we use dot product attention, which input word
will have the highest attention value at current time step?

A) the
B) cat
C) sat

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

the -> -0.05 + 0.02
cat -> -0.02 + 0.08
sat -> 0.01 + 0.04

Dot-product
attention:
g(henc

i , hdec) = hdec ⋅ henc

What if we use multiplicative attention with ?

Which input word will have the highest attention value at
current time step?

A) the
B) cat
C) sat

W = [1 0
0 0]

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

the -> -0.05
cat -> -0.02
sat -> 0.01

Multiplicative
attention:
g(henc

i , hdec) = (hdec)T W henc
i

Which value of in multiplicative attention will provide the same word
with highest attention value as dot-product attention?

A) B) C) both

W

W = [1 0
0 1] W = [0.5 0

0 0.5]

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

Multiplicative
attention:
g(henc

i , hdec) = (hdec)T W henc
i

(Luong et al., 2015)

Attention improves translation

(credits: Jay Alammar)

Visualizing attention

Going all in on attention

• More recent models (e.g. Transformer,

Vaswani et al., 2017) have replaced RNNs

entirely with attention mechanisms

• Theoretically limiting (since recurrence can

help handle arbitrarily long sequences)

• Huge gains in practical performance

WMT 2014, English-German

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Dropout

‣ Form of regularization for RNNs (and any NN in general)

‣ Idea: “Handicap” NN by removing hidden units stochastically

‣ set each hidden unit in a layer to 0 with probability during

training (usually works well)

‣ scale outputs by

‣ hidden units forced to learn more general patterns and

improve redundancy

‣ Test time: Simply compute identity

p
p = 0.5

1/(1 − p)

(Srivastava et al., 2014)

(Araabi and Monz, 2020)

Other challenges with NMT

‣ Out-of-vocabulary words

‣ Low-resource languages

‣ Long-term context

‣ Common sense knowledge (e.g. hot dog, paper jam)

‣ Fairness and bias

‣ Uninterpretable

Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with English (remember Interlingua?)

‣ Massive improvements on low-resource languages

Bias and Fairness

‣ NMT systems suffer from issues of

systematic bias (e.g. gender)

‣ Evident when translating from/to a

language with gender-specific (or gender-

agnostic) terms

‣ Models learn (and amplify) stereotypes

from data

(Farkas and Nemeth, 2020)

Measuring bias in MT

‣ WinoMT: Stanovsky et al. (2019) use coreference resolution to construct a dataset of

non-stereotypical gender roles

‣ e.g. “The doctor asked the nurse to help her in the operation”

‣ Systems consistently performed worse on non-stereotypical gender translation

(Stanovsky et al. 2019)

Mitigating bias

‣ Stafanovics et al. (2020) use word-level annotations of subject’s gender to train NMT

systems

‣ TGA (target gender annotations) help reduce gender bias (= diff. in F1 between

sentences with male and female antecedents, = diff. in accuracy between sentences

w/ or w/o stereotypes)

∇G
∇S

Anonymous feedback form:
 https://forms.gle/7BxYDUTebogndJQE8

