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Last time: Sequence to Sequence 
learning (Seq2seq)

• Encode entire input sequence into a single vector (using an RNN) 

• Decode one word at a time (again, using an RNN!)

(Sutskever et al., 2014)



How seq2seq changed the MT 
landscape



MT Progress

(source: Rico Sennrich)



(Wu et al., 2016)



Versatile seq2seq

‣ Seq2seq finds applications in many other tasks! 

‣ Any task where inputs and outputs are sequences of words/

characters 

‣ Summarization (input text  summary) 

‣ Dialogue (previous utterance  reply) 

‣ Parsing (sentence  parse tree in sequence form) 

‣ Question answering (context+question  answer)
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Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence 

‣ Longer sequences can lead to vanishing gradients 

‣ Model may “overfit” to training sequences
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Remember alignments?



Attention

‣ The neural MT equivalent of alignment models 

‣ Key idea: At each time step during decoding, focus on a particular part 
of source sentence 

‣ This depends on the decoder’s current hidden state  (i.e. an idea of 

what you are trying to decode) 

‣ Usually implemented as a probability distribution over the hidden 

states of the encoder (  )
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Seq2seq with attention

(slide credit: Abigail See)











Computing attention

‣ Encoder hidden states:  

‣ Decoder hidden state at time :  

‣ First, get attention scores for this time step of decoder (we’ll define  soon): 

                                  

‣ Obtain the attention distribution using softmax: 

                                         

‣ Compute weighted sum of encoder hidden states: 

                                         

‣ Finally, concatenate with decoder state and pass on to output layer: 
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(credits: Jay Alammar)



Types of attention

‣ Assume encoder hidden states  and a decoder hidden state  

1. Dot-product attention (assumes equal dimensions for  and ): 

                     

2. Multiplicative attention: 
             , where  is a weight matrix (learned) 

3. Additive attention: 
                   

where  are weight matrices (learned) and  is a weight vector (learned)
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Assuming we use dot product attention, which input word 
will have the highest attention value at current time step? 

A) the 
B) cat 
C) sat
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What if we use multiplicative attention with ? 

Which input word will have the highest attention value at 
current time step? 

A) the 
B) cat 
C) sat

W = [1 0
0 0]
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Which value of  in multiplicative attention will provide the same word 
with highest attention value as dot-product attention? 

A)     B)    C) both 

W
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(Luong et al., 2015)

Attention improves translation



(credits: Jay Alammar)

Visualizing attention



Going all in on attention

• More recent models (e.g. Transformer, 

Vaswani et al., 2017) have replaced RNNs 

entirely with attention mechanisms 

• Theoretically limiting (since recurrence can 

help handle arbitrarily long sequences) 

• Huge gains in practical performance



WMT 2014, English-German



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence 

‣ Longer sequences can lead to vanishing gradients 

‣ Model may “overfit” to training sequences
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Dropout

‣ Form of regularization for RNNs (and any NN in general) 

‣ Idea: “Handicap” NN  by removing hidden units stochastically 

‣ set each hidden unit in a layer to 0 with probability  during 

training (  usually works well) 

‣ scale outputs by  

‣ hidden units forced to learn more general patterns and 

improve redundancy 

‣ Test time: Simply compute identity

p
p = 0.5

1/(1 − p)

(Srivastava et al., 2014)



(Araabi and Monz, 2020)



Other challenges with NMT

‣ Out-of-vocabulary words 

‣ Low-resource languages  

‣ Long-term context 

‣ Common sense knowledge (e.g. hot dog, paper jam) 

‣ Fairness and bias 

‣ Uninterpretable



Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with English (remember Interlingua?) 

‣ Massive improvements on low-resource languages





Bias and Fairness

‣ NMT systems suffer from issues of 

systematic bias (e.g. gender) 

‣ Evident when translating from/to a 

language with gender-specific (or gender-

agnostic) terms 

‣ Models learn (and amplify) stereotypes 

from data

(Farkas and Nemeth, 2020)



Measuring bias in MT

‣ WinoMT: Stanovsky et al. (2019) use coreference resolution to construct a dataset of 

non-stereotypical gender roles  

‣ e.g. “The doctor asked the nurse to help her in the operation” 

‣ Systems consistently performed worse on non-stereotypical gender translation



(Stanovsky et al. 2019)



Mitigating bias

‣ Stafanovics et al. (2020) use word-level annotations of subject’s gender to train NMT 

systems 

‣ TGA (target gender annotations) help reduce gender bias (  = diff. in F1 between 

sentences with male and female antecedents,  = diff. in accuracy between sentences 

w/ or w/o stereotypes)
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Anonymous feedback form: 
 https://forms.gle/7BxYDUTebogndJQE8




