COS 484/584

(Advanced) Natural Language Processing

L 18: Self-Attention and Transformers

Spring 2021

(Some slides adapted from Stanford CS224N)

Issues with RNNs?

® Sequential nature = difficult to parallelize

h =f(h_,,x) € R"

LSTMs
¢ Input gate (how much to write): e New memory cell (what to write):
i, =c(Wh,_, +Ux, +b') e R” g, = tanh(W*h,_; + U%x, + b¥) € R"
® Forget gate (how much to erase): e Final memorycell: ¢,=f,0c¢,_;+1,0 g,

f.=c(Wh,_, +Ux +b/)eR"
¢ Final hidden cell: h, = o, © tanh(c,)
® Qutput gate (how much to reveal):

0, = 6(W°h,_, + U’%x, + b°) € R”

Issues with RNNs?

® [onger sequences can lead to vanishing gradients = It is hard to capture
long-distance information

: Attention pie
: output T
- T ;
. . : S i B > Ye
Attention is the key to 25]
. - [= ' |
solving the problem! 28 - =
©
S
2 i
§ S { éMszc
g (V)
s _ [[e] [e] [®] [e@ o] (e] [e] [e] [e] |[o
SZ.) (oo ol e lo| Jo| Jo| Jo| o] .o
S Z o[lo[o[|@ e[l e[e[
ST L (e (o (o (o ol (o] |o| o] [of |o
il a m’ entarté <START> he hit me with a
N o J

Source sentence (input)

NNY 42p02a(

This lecture

® Do we really need RNNs to model the arbitrary context?

® Maybe attention is all you need!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Lukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Vaswani et al., 2017: Attention Is All You Need

N x

Positional
Encoding

r

Add & Norm

Feed
Forward

|

A

Add & Norm

.

\

Multi-Head
Attention

|

At

J

Sa

Input
Embedding

|

T

Inputs

Transformers

Qutput
Probabilities
|
Softmax
1 ® Consists of an encoder and a decoder
A
G D
== e Originally proposed for neural machine translation and
\ overs J later adapted for almost all the NLP tasks
——— a e For example, BERT only uses the encoder of the
_}Aﬁj"“on - N Transformer architecture (next lecture)
Add &_Norm - .
Vaskes ® Both encoder and decoder consist of N layers
Multi-Head
Attention
- ® Each encoder layer has two sub-layers
- v,
eg—@ Positional ® Each decoder layer has three sublayers
Encoding
Output e Key innovation: multi-head self-attention
Embedding
Outputs
(shifted right)

Vaswani et al., 2017: Attention Is All You Need

Transformers: roadmap

Qutput
Probabilities

1

Softmax

i

Linear
A

(
Add & Norm J<=~

Feed
Forward

- w 1 /
e \ Add & Norm Je=~
> Add & Norm Multi-Head
’ Feed l Attention
Forward _j JYD) N x
L A 4 y
Add & Norm -
N x r
~—>| Add & Norm VR
Multi-Head Multi-Head
Attention Attention
A+ At 2
(S J <)
Positional Positional
. + + :
Encoding %@ Encoding
Input Output
Embedding Embedding
Inputs OQutputs

(shifted right)

From attention to self-attention

From self-attention to multi-head self-attention
Transformer encoder

Transformer decoder

Putting the pieces together

Attention
distribution

Attention

Encoder

scores

RNN

Recap: Attention in NMT

: Attention
o
® output

>
[E—

>

Y
Source sentence (input)

Re—

(@) (@) (@) (@) @)

(@) (@) e O 3| @

(@) (@) | |O 10

(@) (@) (@) (@) @)

il a m’ entarté <START>
L 0

@)
@)
@)
@)
he

\ 4

I~

. —>1 0000

—>1 0000

me

pie

N\

> Je

N

(@) (@)
|0 (@)
10 (@)
(@) (@)
with a

4

4

4

4

Encoder hidden states: h{", ..., h "

g(-) takes dot product

Decoder hidden state at time t: htd"c in the simplest form!

First, get attention scores for this time step of decoder (we'll define g soon):
et — [g(hlenc’ htdeC), o, g(hsnc, htdeC)]

Obtain the attention distribution using softmax:

a' = softmax (e’) € R”

Compute weighted sum of encoder hidden states:

n
at — Z ait hien(; = Rh
i=1

Attention is a general deep learning technique

® Given a set of vector values, and a vector query, attention is a technique to compute a
weighted sum of the values, dependent on the query.

e We sometimes say that the query attends to the values.

® In the NMT case, each decoder hidden state (query) attends to all the encoder hidden
states (values).

® [ntuition:

® The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

® Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

Attention is a general deep learning technique

€ R% and a query vector € R%

e Assume that we have a set of values v, ..., v,

® Attention always involves the following steps:

e Computing the attention scores e = g(v;,q) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:
n
a = Z Q;V; € Rd”
1=1

® A more general form: use a set of keys and values (k{,v;),...,(K ,v), K. & R%. V. € R keys
are used to compute the attention scores and values are used to compute the output vector

Attention is a general deep learning technique

e Assume that we have a set of key-value pairs (K, v{), ..., (K,, v), K. € R%. V. € R% and a
query vector (€ R%

® Attention always involves the following steps:

e Computing the attention scores €= g(k;,q) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:

n
a= E a;v; € R%
i=1

Self-attention

® We saw attention from the decoder (query) to

the encoder (values), now we think about 1 T T T
attention within one single sequence. self-attention
® Self-attention = attention from the ki g1 v1 ky, @ v, ks q3 Vs kr qr vy
sequence to itself e L7 L L
T 1 1

, : , self-attention
e Self-attention: let’s use each word in a sequence

: ki @1 V1 ky G2 v, k3 q3 v k v
as the query, and all the other words in the 1 71 Y1 Ky 42 Va K3 43 V3 r qr Vr
quety L7 N % %
sequence as keys and values. ‘ _ vee |
The chef who food

® The queries, keys and values are drawn
from the same source.

Self-attention doesn’t know the order of the
inputs - we will come back to this later!

Self-attention in equations

e A self-attention layer maps a sequence of input vectors Xy, ..., X, € R% to a
sequence of n vectors: yy, ..., Yy, € R%

® The same abstraction as RNNs - can be used as a drop-in replacement for an RNN layer

® First, construct a set of queries, keys and values:
K 1%
q; = W, k; = Whx;, v, = W'k,
WQ c quxdl WK c dexdl WV c Rdvxdl

® Second, for each q;, compute attention scores and attention distribution:

q; - K;) aka. “scaled dot product”

o; ; = softmax(
/ v di It must be dq = d, in this case

e Finally, compute the weighted sum:

Yi — Z Q; Vi & Rd” (dv = dz)
j=1

Input

Embedding

Queries

Keys

Values

Self-attention: illustration

Input

Embedding

Queries 1

Keys

Values

Score

Divide by 8 (d;.)

http://jalammar.github.io/illustrated-transformer/

Zoom poll

What would be the output vector for the word “Thinking” approximately?

(a) O.5V1 -+ O.5V2
(b) 0.594v1 + 0.46v5
(c) 0.88vy; +0.12vo

(d) 0.12v; + 0.88vs

(c) 1s correct.

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (/d.)

Thinking

-
[

Machines

Input

Embedding

Queries

Keys

Values

I'hinking

Self-attention: illustration

Input

Embedding

Machines

Queries

Keys

Values

Score

Divide by 8 (Vdy)

Softmax

Softmax
X

Sum

'hinking

http://jalammar.github.io/illustrated-transformer/

Self-attention: matrix notations

X € R X d1 Note: the notations we use h.ere gre follc?wing the f)riginal paper
(= the transpose of the matrices in previous notations)

Q=XWe K=xwEK v=xwV
WQ - Rd1><dq WK = Rledk WV c Rledv

nxd, d, X n
Q T
Attention(Q, K, V') = softmax(@ nXd, Y
d softmax (
Vi

Q: What is this softmax operation?

http://jalammar.github.io/illustrated-transformer/

’ hardmaru

The most important formula in deep learning after 2018

Self-Attention

What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,

X € R™* % is projected using three matrices Wqg € R%%%q_
Wg € R%*9% and Wy € R%*% to extract feature repre-
sentations (), K, and V, referred to as query, key, and value
respectively with di, = d,. The outputs), K, V' are com-
puted as

Q=XWo, K=XWk, V=XWy. (1)

So, self-attention can be written as,

T
S = D(Q, K,V) = softmax (QI;) V.

where softmax denotes a row-wise softmax normalization
function. Thus, each element in .S depends on all other ele-
ments 1n the same row.

Multi-head attention

® [t is better to use multiple attention functions instead of one!

e Each attention function (“head”) can focus on different positions.

® How to do this? Use different sets of query, key and value matrices!

ATTENTION HEAD #0 ATTENTION HEAD #1

SARF N t T | SAF N

http://jalammar.github.io/illustrated-transformer/

softmax(

Multi-head attention

® [t is better to use multiple attention functions instead of one!

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

e Finally, we just concatenate all the heads and apply an output projection matrix.

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
head; = Attention(X W,L-Q, XWHE XW,))

http://jalammar.github.io/illustrated-transformer/

Multi-head attention

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
head; = Attention(X WZ-Q, XWHE XW,))

® In practice, we use a reduced dimension for each head.
WZQ c Rdl ><dq7 WZK c Rdl ><Clk7 W@'V c Rdl X d o,
dy =dr =d, =d/h d = hidden size, h = # of heads

WO e Rdxdz If we stack multiple layers, usually d; = ds = d

® The total computational cost is similar to that of single-head attention with full dimensionality.

http://jalammar.github.io/illustrated-transformer/

What does multi-head attention learn?

Layer:| 5 § Attention: Input - Input v

The_
animal_
didn_

street_
because_
it_

was_
too_

d

Layer: 5 5| Attention:

The_ 'The_
animal_ animal_
didn didn_

Cross_
Cross._ o
the ©-
street
street_
because _
because .
: Iit_
It_
was_
was_
00 too_
t're— I tire
|
d_
d

https://github.com/jessevig/bertviz

Input - Input

The_
animal_
didn_

street
because
it

wadas

too
tire

Missing piece: positional information!

e Unlike RNNs, self-attention doesn’t build in order information, we need to encode the order
of the sentence.

® Solution: Add “positional encoding” to the input embeddings
Xi < Xi + Pi
® Use sine and cosine functions of different frequencies (not learnable):

(sin(i/100002*/a) | :
cos(i/10000%*1/@)

Pi

d
sin(i/10000%2/%)

Z*Qd
c0s(i/10000%°2/¢),

Dimension

Index in the sequence

e Later, people just use a learnable embedding p, € R% for every unique position.

Adding nonlinearities

® There is no elementwise nonlinearities in self-
attention; stacking more self-attention layers just re-
averages value vectors

e Simple fix: add a feed-forward network to FF FF FF FF
post-process each output vector T T ! T
self-attention
) — | r ! L
FFN(x;) = WaReLU(Wix; + by) + bs i 1 i 1
T T T T
Wy € R¥%4 by € R/ self-attention
W2 E Rddef ’ b2 E Rd W1 W2 W3 WT
The chef who food

In practice, they use dyr = 4d

Zoom poll

Which of the following statements is correct?

(a) Transformers run faster than LSTMs

(b) Transformers are easier to parallelize compared to LSTMs

(c) Transformers have less parameters compared to LSTMs

(d) Transformers are better at capturing positional information than LSTMs

(b) is correct.

Transformers: pros and cons

® Easier to capture dependencies: we draw attention between every pair of words!

® Fasier to parallelize: Q=XW® K=xwK v=xwV"

. K*
Attention(Q, K,V) = softmax(cf/? 1%
k
® (Quadratic computation in self-attention:
® Can become very slow when the sequence length is large
[T
(a) Random attention (b) Window attention (¢) Global Attention (d) BIGBIRD

® Are these positional representations enough to capture positional information?

Add & Norm

Add & Norm
Multi-Head
Attention
1 J

Positional
Encoding e &
Input
Embedding

INnputs

N x

Transformer encoder

Each encoder layer has two sub-layers:
e A multi-head self-attention layer

e A feedforward layer

Add & Norm:

LayerNorm(x + Sublayer(z))

® Residual connection (He et al., 2016)

® Layer normalization (Ba et al., 2016)

[advanced]

T E|z!
/ v/ Var|z| + €

In (Vaswani et al., 2017), N = 6

Transformer decoder

Qutput
Probabillities
t
Softmax
L_T Each decoder layer has three sub-layers:
Inear
) : :
(e ¢ A masked multi-head attention layer
| oo | e A multi-head cross-attention layer
A)
| | (Foaz Nom J—~ e A feedforward layer
’ Multi-Head ‘
Attention N
77 x : :
+——) Masked multi-head attention:
Add &'Norm - .
Masked self-attention on the decoder states
Multi-Head
Attention ,
T However, you can’t see the future!
_ J
e{)_® Egggggg‘ Multi-head cross-attention:
[Emoding l Decoder attends to encoder states
Outouts encoder: keys/values, decoder: queries
(shifted right)

In (Vaswani et al., 2017), N = 6

Transformer decoder

Decoding time step: 1@3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

ENCODERS

LK—J

E’._'._‘ !

E’T’T .

OUTPUT
g O

|

~

DECODERS

t : t
N O I I I Ry I I I

(rririy1 orriy] [Orrd

Je Suis étudiant

PREVIOUS
OUTPUTS

http://jalammar.github.io/illustrated-transformer/

Masked multi-head attention

® Key point: you can’t see the future words for the decoder!

Y

(@O ¢+ O ++00)
A

Y2

(@@ ++ @ «-00)
A

Ys Y4 Ys

&.oo:oo..) m.o:oo._.) @.oo:oo.!)

Self-Attention
Layer A

(@O ++ © ++-00)

X

— = .|

(OO ¢+ © - 00)

X2

(@@ ++ @ - 0Q0) (OO0 ¢+ @ +»+ Q00) (OO *+ @ ++ 00)

X, X, X,

e Solution: for every 4, only attend to {(kj,v;)},J <1

Masked multi-head attention

Q= We,, ki = Whx;, v, = WVx,

qz"kj)
Vi

a; ; = softmax(

raw attention weights mask X1

W7t

¢
. '-‘

AN
N\

@-

Y 9%

dot = torch.bmm(queries, keys.transpose(l, 2))

Efficient implementation: compute
attention as we normally do, mask
out attention to future words by

.) dot[:, indices[(0], indices[1]]
settmg attention scores to —

dot = F.softmax(dot, dim=2)

http://peterbloem.nl/blog/transtormers

indices = torch.triu indices(t, t, offset=1)

float('-inf')

Ye

Multi-head cross-attention

W9 . — W E v v. — VY .
Qi = W=x;, ki = Wox;, vi =W"xy e hy,..., h,: hidden states from encoder

q; - K;) * X1,...,Xp: hidden states from decoder

Vg

a; ; = softmax(

|

q; = WQX?Z k; = WKhjan — thj

%'kj)
Vdg

Q: What is the size of a?

a; ; = softmax(

™m
yi=) Qi;V,
j=1

Putting the pieces together

[predictions!]
¢

Transformer

Decoder
[decoder attends t

)
to encoder states] ®

®
t

Transformer
Decoder

wmw e

[input sequence] loutput sequence]

Putting the pieces together

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]
t
. Transformer
: Decoder
Residual + LayerNorm [decoder attends ¢
Feed-Forward 0 encoder states] -
°
Residual + LayerNorm t
. : Transformer
Multi-Head Attention Decoder

[input sequence] [output sequence]

Putting the pieces together

[predictions!]

Looking back at the whole model,)
zooming in on a Decoder block: , Transformer
Decoder

t
Residual + LayerNorm

T

Feed-Forward

t

TN
-

Residual + LayerNorm

T

TN

Multi-Head Cross-Attention =~~~

T/"‘"
Residual + LayerNorm

T
Masked Multi-Head Self-Attention

linput sequence]

[output sequence]

Transformers: machine translation

Aodel BLEU Training Cost (FLOPs)
ot EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 -10%°
GNMT + RL [31] 24.6 39.92 2.3-10*° 1.4-10%°
ConvS2S [8] 25.16 40.46 9.6-10® 1.5.10%
MOoE [26] 26.03 40.56 2.0-10*Y 1.2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 10%°
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 26.36 41.29 7.7-10 1.2-10%
Transformer (base model) 27.3 38.1 3.3-1018
Transformer (big) 28.4 41.0 2.3-1019

Vaswani et al., 2017: Attention Is All You Need

Transformers: document generation

Model Test perplexity ROUGE-L
seqg2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 34.2
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 37.9
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8

Very large gains compared to
seq2seq-attention with LSTMs!

Liu et al., 2018: Generating Wikipedia by Summarizing Long Sequences

