

COS 484/584

Spring 2021

L2: Language Models

Reminder: Assignment 0 is out — due Monday, Feb 8, 1:30pm

- [COS 584] Readings and questions for this Friday's precept are out on Perusall
- Make sure you have notifications turned on for Canvas announcements!
- New: FAQ section on the class website will be continually updated
- If you have a question:
- Ask in chat! TA will help answer or bring to instructor's attention during pauses.
- Or use the raise hand feature

Last class

$p(w_1, w_2, w_3, \ldots, w_N) =$

Sentence: "the cat sat on the mat"

P(the cat sat on the mat) = P(the) * P(cat|the) * P(sat|the cat)*P(on|the cat sat) * P(the|the cat sat on)*P(mat|the cat sat on the)

 $p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) \times \ldots \times p(w_N|w_1, w_2, \ldots w_{N-1})$

Implicit order

- With a vocabulary of size v,
 - # sequences of length $n = v^n$
- Typical vocabulary ~ 40k words
 - (# of atoms in the earth ~ 10^{50})

Estimating probabilities

 $\frac{P(\text{sat}|\text{the cat})}{P(\text{sat}|\text{the cat})} = \frac{\text{count}(\text{the cat sat})}{\text{count}(\text{the cat})}$

 $P(\text{on}|\text{the cat sat}) = \frac{\text{count}(\text{the cat sat on})}{\text{count}(\text{the cat sat})}$

•

Maximum likelihood estimate (MLE)

• even sentences of length ≤ 11 results in more than 4 * 10^50 sequences!

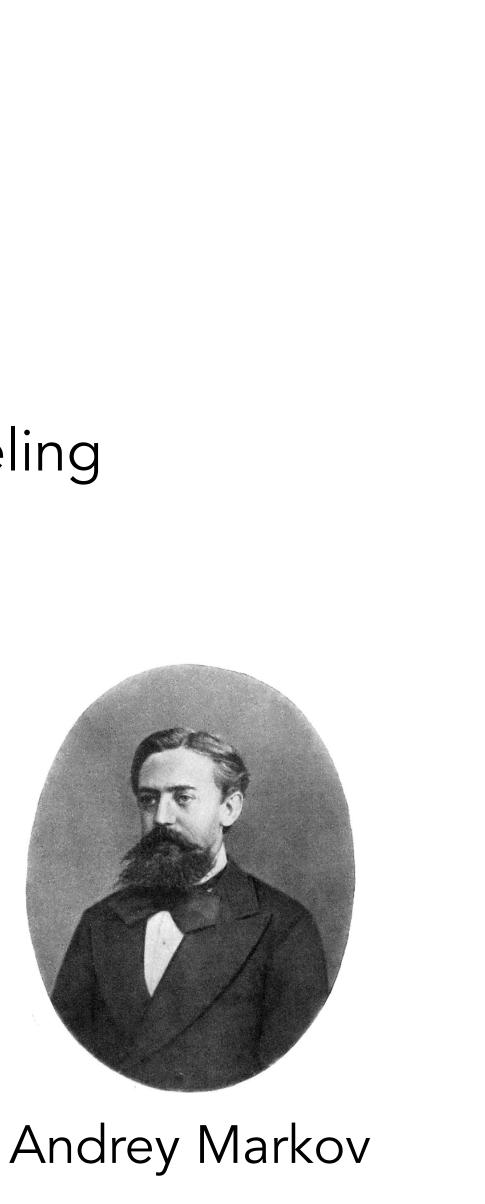
- Use only the recent past to predict the next word
- Reduces the number of estimated parameters in exchange for modeling capacity
- 1st order

 $P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{the})$

2nd order

 $P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{on the})$

Markov assumption



kth order Markov

• Consider only the last *k* words for context

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

which implies the probability of a sequence is:

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$
(assume $w_j = \phi \quad \forall j < 0$

n-gram models

Unigram P(u

P(uBigram

Caveat: Assuming infinite data!

$$v_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i)$$

$$w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i | w_{i-1})$$

and Trigram, 4-gram, and so on.

Larger the n, more accurate and better the language model (but also higher costs)

Generations

Unigram

release millions See ABC accurate President of Donald Will cheat them a CNN megynkelly experience @ these word out- the

Bigram

Thank you believe that @ ABC news, Mississippi tonight and the false editorial I think the great people Bill Clinton

Trigram

We are going to MAKE AMERICA GREAT AGAIN! #MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

 $\arg \max_{(w_1, w_2, \dots, w_n)} P(w_1, w_2, \dots, w_n) =$

$$\arg \max_{(w_1, w_2, \dots, w_n)} \prod_{i=1}^n P(w_i | w_{i-k}, \dots, w_{i-1})$$

Generations

Unigram

release millions See ABC accurate President of Donald Will cheat them a CNN megynkelly experience @ these word out- the

Bigram

Thank you believe that @ ABC news, Mississippi tonight and the false editorial I think the great people Bill Clinton

Trigram

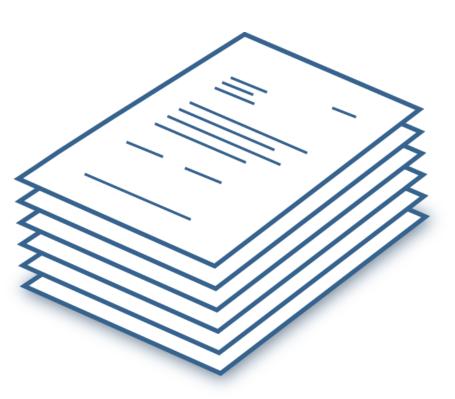
We are going to MAKE AMERICA GREAT AGAIN! #MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Typical LMs are not sufficient to handle long-range dependencies

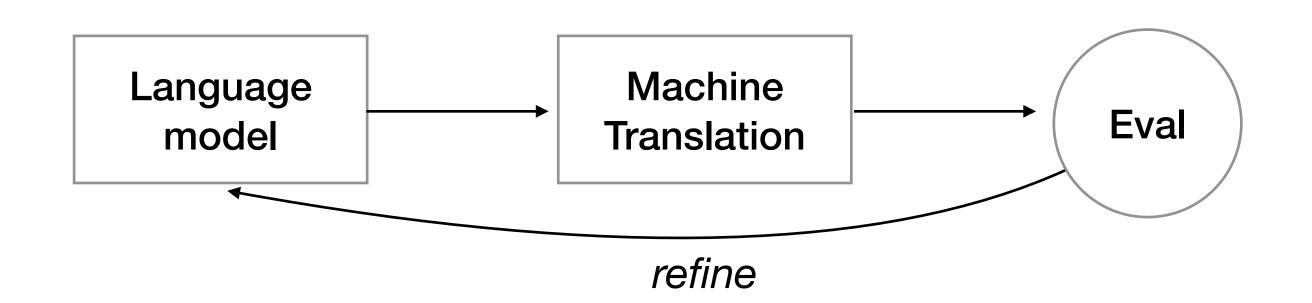
"Alice/Bob could not go to work that day because she/he had a doctor's appointment"

Evaluating language models

- A good language model should assign **higher probability** to typical, grammatically correct sentences
- Research process:
 - Train parameters on a suitable training corpus
 - Assumption: observed sentences ~ good sentences
 - Test on different, unseen corpus
 - Training on any part of test set not acceptable!
 - Evaluation metric



Extrinsic evaluation



- Train LM -> apply to task -> observe accuracy
- Directly optimized for downstream tasks
 - higher task accuracy -> better model
- Expensive, time consuming
- Hard to optimize downstream objective (indirect feedback)

Perplexity (ppl)

- Measure of how well a probability distribution (or LM) predicts a sample
- Fo

r a corpus S with sentences
$$S^1, S^2, ..., S^n$$

 $ppl(S) = 2^x$ where $x = -\frac{1}{W} \sum_{i=1}^n \log_2 P(S^i) \longrightarrow Cross-Entropy$
here W is the total number of words in test corpus

wh

- Unigram model: $x = -\frac{1}{W} \sum_{i=1}^{n} \sum_{j=1}^{m} \log_2 P(w_j^i)$ (since $P(S) = \prod_{i} P(w_i)$)
- Minimizing perplexity ~ maximizing probability of corpus $P(S^1S^2...S^n)$

Intuition on perplexity

If our n-gram model (with vocabulary V) has following probability:

 $P(w_i | w_{i-n}, ..., w_{i-n}) = 0$

what is the perplexity of the test cor

 $ppl = 2^{-\frac{1}{W}W}$

(model is 'fine' with observing any word at every step)

$$v_{i-1}) = rac{1}{|V|} \quad \forall w_i$$
pus?

$$V*log(1/|V|) = |V|$$

$$ppl(S) = 2^{x} \text{ where}$$
$$x = -\frac{1}{W} \sum_{i=1}^{n} \log_2 P(S^{i})$$

Measure of model's uncertainty about next word

Perplexity

Pros

У	as	a	metric

Cons

.....

Perplexity as a metric

Pros

Easy to compute

standardized

directly useful, easy to use to correct sentences

nice theoretical interpretation - matching distributions

Cons

Requires domain match between train and test

might not correspond to end task optimization

log 0 undefined

can be 'cheated' by predicting common tokens

size of test set matters

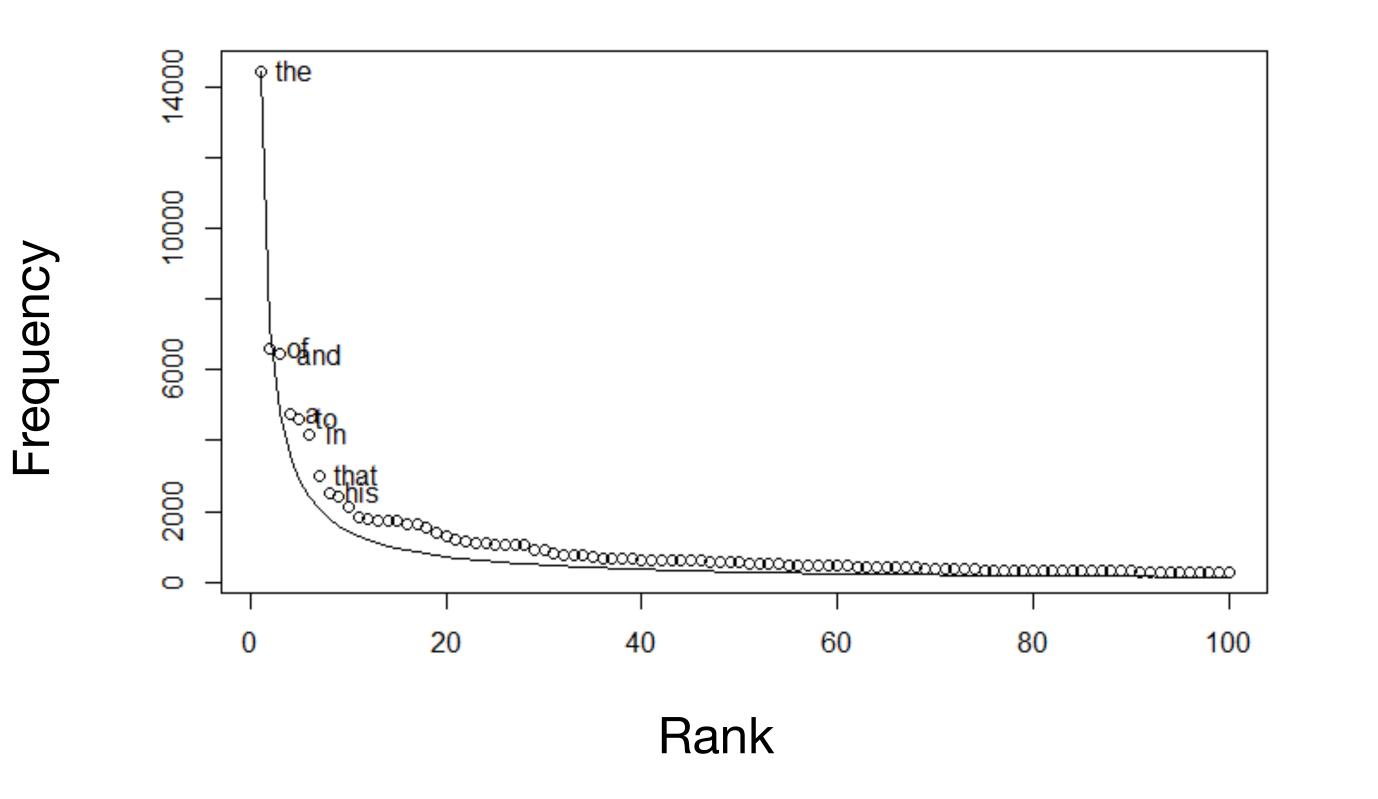
can be sensitive to low prob tokens/sentences

Generalization of n-grams

- Not all n-grams will be observed in training data
- under our model
 - Training set: Google news
 - Test set: Shakespeare
 - P (affray | voice doth us) = 0
 - Undefined perplexity

Test corpus might have some that have zero probability

P(test corpus) = 0



- Long tail of infrequent words
- Most finite-size corpora will have this problem.

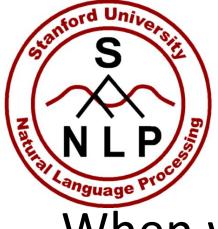
Sparsity in language

 $freq \propto \frac{1}{rank}$

Zipf's Law

Smoothing

- Handle sparsity by making sure all probabilities are non-zero in our model
 - Additive: Add a small amount to all probabilities
 - Discounting: Redistribute probability mass from observed n-grams to unobserved ones
 - Back-off: Use lower order n-grams if higher ones are too sparse
 - Interpolation: Use a combination of different granularities of n-grams



When we have sparse statistics:

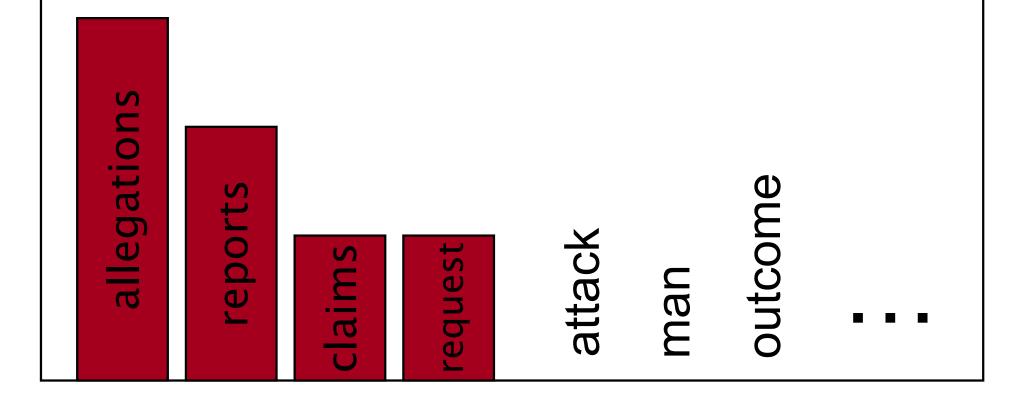
P(w | denied the) 3 allegations

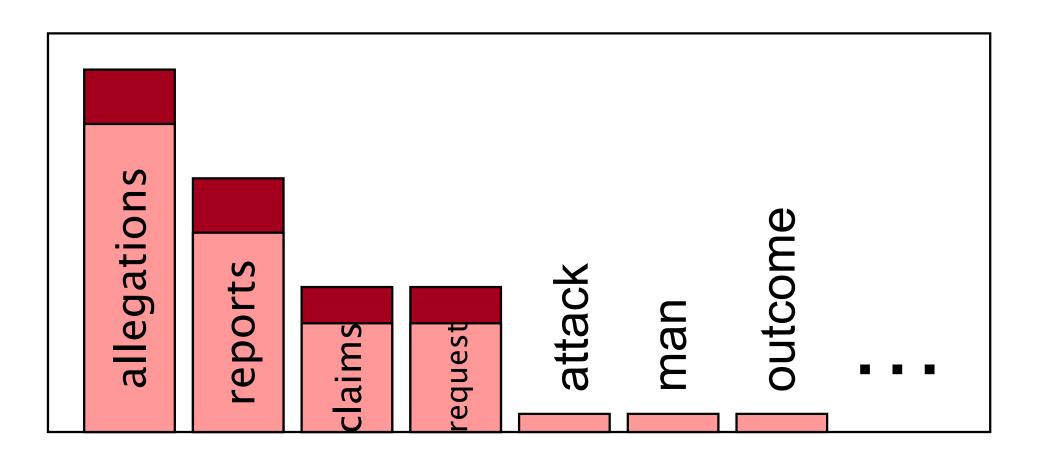
- 2 reports
- 1 claims
- 1 request
- 7 total

Steal probability mass to generalize better

- P(w | denied the)
- 2.5 allegations
- 1.5 reports
- 0.5 claims
- 0.5 request
- 2 other
- 7 total

Smoothing intuition





(Credits: Dan Klein)

- Also known as add-alpha
- renormalize!
- Max likelihood estimate for bigrams:

 $P(w_i)$

• After smoothing:

$$P(w_i|w_{i-1})$$

Laplace smoothing

• Simplest form of smoothing: Just add alpha to all counts and

$$|w_{i-1}) = \frac{C(w_{i-1}, w_i)}{C(w_{i-1})}$$

$$C(w_{i-1}, w_i) + \alpha + \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

Raw bigram counts (Berkeley restaurant corpus)

Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Smoothed bigram counts

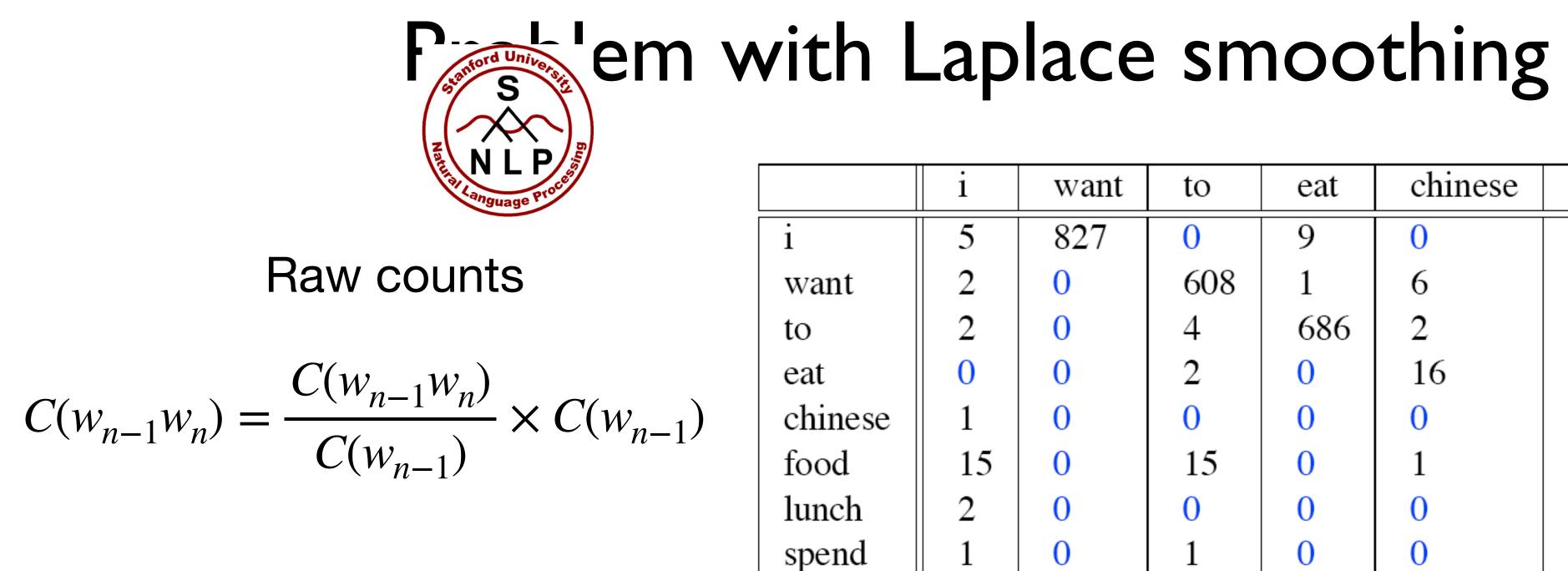
Add 1 to all the entries in the matrix

Smoothed bigram probabilities

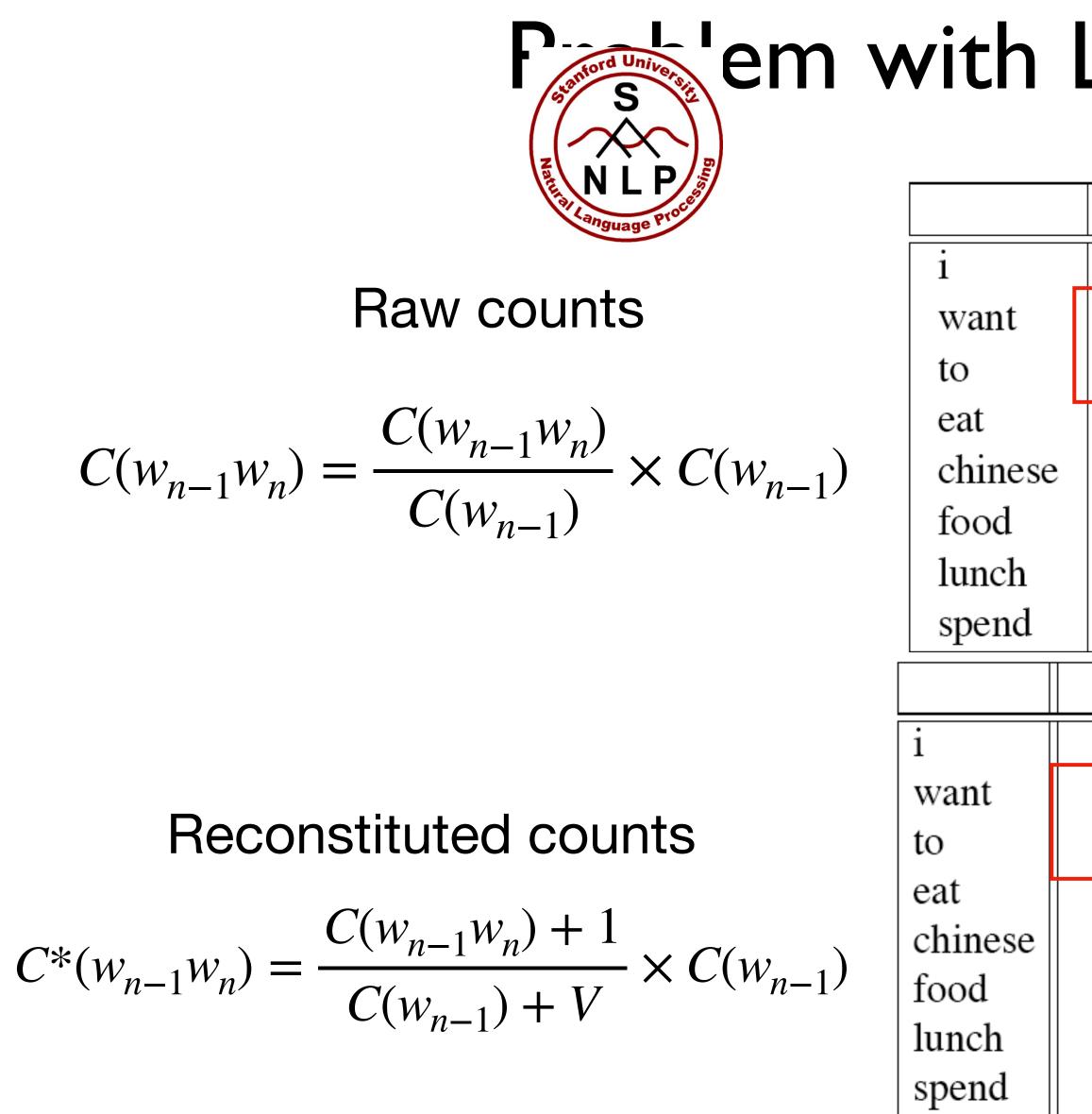
 $P^*(w_n|w_{n-1}) = -$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

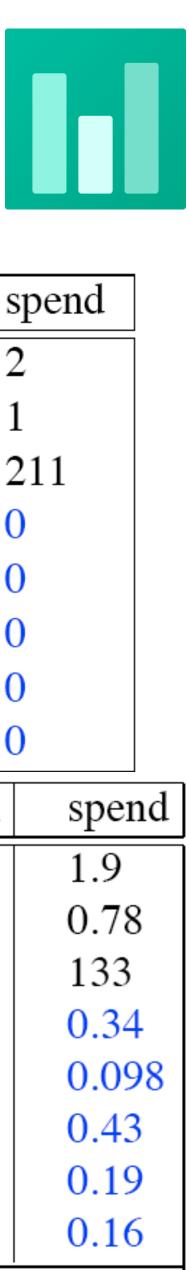
$$\frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V}$$



i	want	to	eat	chinese	food	lunch	spend
5	827	0	9	0	0	0	2
2	0	608	1	6	6	5	1
2	0	4	686	2	0	6	211
0	0	2	0	16	2	42	0
1	0	0	0	0	82	1	0
15	0	15	0	1	4	0	0
2	0	0	0	0	1	0	0
1	0	1	0	0	0	0	0



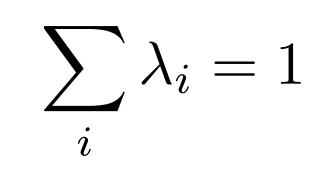
em with Laplace smoothing



i	want	to	eat	cł	ninese	f	ood	lu	inch	S	penc
5	827	0	9	0		0		0		2	
2	0	608	1	6		6		5		1	
2	0	4	686	2		0		6		2	11
0	0	2	0	10	5	2	,	42	2	0	
1	0	0	0	0		8	2	1		0	
15	0	15	0	1		4		0		0	
2	0	0	0	0		1		0		0	
1	0	1	0	0		0		0		0	
i	want	to	eat		chine	ese	fo	od	lunc	ch	sp
3.8	527	0.64	6.4		0.64		0.0	54	0.64	1	1
1.2	0.39	238	0.7	8	2.7		2.7	7	2.3		0.
1.9	0.63	3.1	430)	1.9		0.0	53	4.4		1
0.34	0.34	1	0.3	4	5.8		1		15		0
0.2	0.098	0.098	0.0	98	0.098	3	8.2	2	0.2		0
6.9	0.43	6.9	0.4	3	0.86		2.2	2	0.43	3	0
0.57	0.19	0.19	0.1	9	0.19		0.3	38	0.19)	0
0.32	0.16	0.32	0.1	6	0.16		0.1	16	0.16	5	0

Linear Interpolation

$\hat{P}(w_i|w_{i-1},w_{i-2}) =$



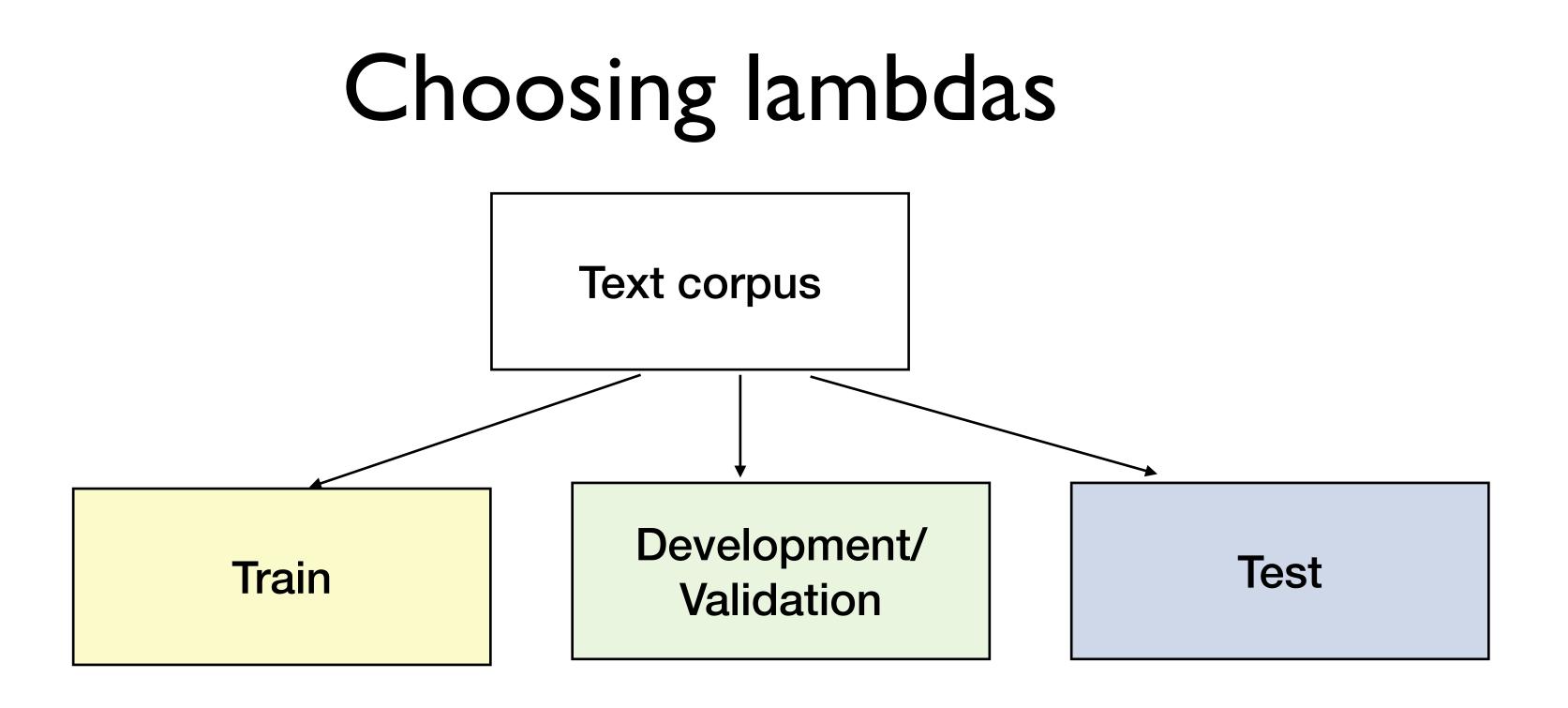
- Use a combination of models to estimate probability
- Strong empirical performance

$$\lambda_1 P(w_i | w_{i-1}, w_{i-2})$$

$$+ \lambda_2 P(w_i | w_{i-1})$$

$$+ \lambda_3 P(w_i)$$

Trigram Bigram Unigram



- First, estimate n-gram prob. on training set
- Use best model from above to evaluate on test set

• Then, estimate lambdas (hyperparameters) to maximize probability on the held-out development/validation set

$$\hat{P}(w_i|w_{i-1}, w_{i-2}) = \lambda_1 P(w_i|w_{i-1}, w_{i-2})$$
$$+\lambda_2 P(w_i|w_{i-1})$$
$$+\lambda_3 P(w_i)$$

- Can we do better than naive interpolation?
- • •
- Which provides a better trigram estimate for P(mat I on the)?
- Larger weights (λ) on non-sparse estimates

• Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the rat) = 10, C(on the bat) = 10,

• Case 2: C (on the mat) = 40, C(on the cat) = 5, C (on the rat) = 0, C(on the bat) = 0, ...

Average-count (Chen and Goodman, 1996)

- $P_{\text{interp}}(w_i|w_{i-n}^{i-1})$ $\lambda_{w_{i-n+1}^{i-1}} P_{\mathbb{F}}$ $(1-\lambda_{w_{i-1}})$
- non-zero element:

 $w_i:c($

$$P_{ML}(w_{i}|w_{i-n+1}^{i-1}) + P_{interp}(w_{i}|w_{i-n+2}^{i-1})$$

• Like simple interpolation, but with more specific lambdas, $\lambda_{w_{i-n+1}^{i-1}}$

• Partition $\lambda_{w_{i-n+1}}^{i-1}$ according to average number of counts per

$$\frac{w_{i-1}^{i-1}}{|w_{i-n+1}^{i}| > 0|}$$

• Larger $\lambda_{w_{i-n+1}}$ for denser estimates of n-gram probabilities

Discounting

Bigram count in training	Bigram of heldout		
0	.000027	0	
1	0.448		
2	1.25		р
3	2.24		
4	3.23		• R
5	4.21		• •
6	5.23		
7	6.21		• Ju
8	7.21		(L
9	8.26		Ţ

 $P_{\text{abs_discount}}(w_{i} | w_{i-1}) = \frac{c(w_{i-1}, w_{i}) - c}{c(w_{i-1})} \frac{P(w_{i-1})}{P(w_{i-1})} \frac{P(w_{i-1})}{\sum_{w'} P(w_{i-1})} \frac{P(w_{i-1})}{\sum_{w'} P(w_{i-$

- Determine some "mass" to remove from probability estimates
- Redistribute mass among unseen n-grams
- ust choose an absolute value to discount usually <1)

$$\frac{d}{P(w')} \text{ for all } w' \text{ s.t. } c(w_{i-1}, w') = 0 \text{ if } c(w_{i-1}, w_i) = 0$$

ties

Absolute Discounting

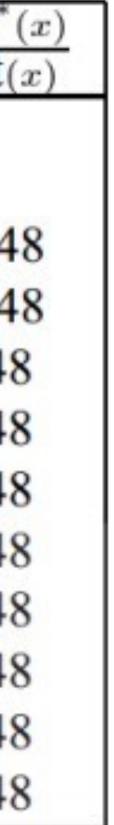
- Define Count*(x) = Count(x) 0.5
- Missing probability mass:

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\operatorname{Count}^*(w_{i-1}, w)}{\operatorname{Count}(w_{i-1})}$$

$$\alpha(the) = 10 \times 0.5/48 = 5/48$$

 Divide this mass between words w for which Count(the, w) = 0

x	Count(x)	$\operatorname{Count}^*(x)$	Count*
the	48		
the, dog	15	14.5	14.5/4
the, woman	11	10.5	10.5/4
the, man	10	9.5	9.5/48
the, park	5	4.5	4.5/48
the, job	2	1.5	1.5/48
the, telescope	1	0.5	0.5/48
the, manual	1	0.5	0.5/48
the, afternoon	1	0.5	0.5/48
the, country	1	0.5	0.5/48
the, street	1	0.5	0.5/48



Back-off

• Use n-gram if enough evidence, else back off to (n-1)-gram

$$egin{aligned} P_{bo}(w_i \mid w_{i-n+1} \cdots w_{i-1}) \ &= egin{cases} d_{w_{i-n+1} \cdots w_i} rac{C(w_{i-n+1} \cdots w_{i-1} w_i)}{C(w_{i-n+1} \cdots w_{i-1})} & ext{if } C(w_{i-n+1} \cdots w_i) > k \ &lpha_{w_{i-n+1} \cdots w_{i-1}} P_{bo}(w_i \mid w_{i-n+2} \cdots w_{i-1}) & ext{otherwise} \ & ext{(Katz back-off} \end{aligned}$$

• d = amount of discounting

• α = back-off weight

Other language models

- Discriminative models:
 - (e.g. as feature weights)
- Parsing-based models
 - handle syntactic/grammatical dependencies
- Topic models
- Neural networks -

train n-gram probabilities to directly maximize performance on end task

We'll see these later on