
L2: Language Models

COS 484/584

Spring 2021

Reminder: Assignment 0 is out — due Monday, Feb 8, 1:30pm

[COS 584] Readings and questions for this Friday’s precept are out on Perusall

- Make sure you have notifications turned on for Canvas announcements!

- New: FAQ section on the class website - will be continually updated

- If you have a question:

• Ask in chat! TA will help answer or bring to instructor’s attention during pauses.

• Or use the raise hand feature

Last class

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat”

Estimating probabilities

• With a vocabulary of size v,

• # sequences of length n = vn

• Typical vocabulary ~ 40k words

• even sentences of length <= 11 results in more than 4 * 10^50 sequences!
(# of atoms in the earth ~ 10^50)

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Implicit order

Markov assumption

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling
capacity

• 1st order

• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the) Andrey Markov

kth order Markov

• Consider only the last k words for context

which implies the probability of a sequence is:

(k+1) gram

P(w1w2 . . . wn) ≈
n

∏
i=1

P(wi |wi−k . . . wi−1 ∀k < i)

(assume)wj = ϕ ∀j < 0

n-gram models

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model  
(but also higher costs)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

Caveat: Assuming infinite data!

Generations

release millions See ABC accurate President of Donald Will
cheat them a CNN megynkelly experience @ these word

out- the

Thank you believe that @ ABC news, Mississippi tonight
and the false editorial I think the great people Bill Clinton

. ''

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

arg max
(w1,w2,...,wn)

P(w1, w2, . . . , wn) = arg max
(w1,w2,...,wn)

n

∏
i=1

P(wi |wi−k, . . . , wi−1)

Generations

release millions See ABC accurate President of Donald Will
cheat them a CNN megynkelly experience @ these word

out- the

Thank you believe that @ ABC news, Mississippi tonight
and the false editorial I think the great people Bill Clinton

. ''

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Unigram

Bigram

Trigram

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies

Evaluating language models

• A good language model should assign higher probability to
typical, grammatically correct sentences

• Research process:

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• Training on any part of test set not acceptable!

• Evaluation metric

Extrinsic evaluation

• Train LM -> apply to task -> observe accuracy

• Directly optimized for downstream tasks

• higher task accuracy -> better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

Language
model

Machine
Translation Eval

refine

Perplexity (ppl)

• Measure of how well a probability distribution (or LM) predicts a sample

• For a corpus S with sentences

 where W is the total number of words in test corpus

• Unigram model:

• Minimizing perplexity ~ maximizing probability of corpus

S1, S2, . . . , Sn

P(S1S2 . . . Sn)

x = � 1

W

nX

i=1

mX

j=1

log2P (wi
j)

(since)P(S) = ∏
j

P(wj)

Cross-
Entropy

 where ppl(S) = 2x x = −
1
W

n

∑
i=1

log2 P(Si)

Intuition on perplexity

If our n-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

(model is ‘fine’ with observing any word at every step)

Measure of model’s uncertainty about next word

P (wi|wi�n, ...wi�1) =
1

|V | 8wi

ppl = 2�
1
W W⇤log(1/|V |) = |V |

 where ppl(S) = 2x

x = −
1
W

n

∑
i=1

log2 P(Si)

Perplexity as a metric

Pros Cons

Pros Cons

Easy to compute Requires domain match between train and test

standardized might not correspond to end task optimization

directly useful, easy to use to correct sentences log 0 undefined

nice theoretical interpretation - matching
distributions can be ‘cheated’ by predicting common tokens

size of test set matters

can be sensitive to low prob tokens/sentences

Perplexity as a metric

Generalization of n-grams

• Not all n-grams will be observed in training data

• Test corpus might have some that have zero probability
under our model

• Training set: Google news

• Test set: Shakespeare

• P (affray | voice doth us) = 0 P(test corpus) = 0

• Undefined perplexity

Sparsity in language

Fr
eq

ue
nc

y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

freq / 1

rank

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

• Back-off: Use lower order n-grams if higher ones are too sparse

• Interpolation: Use a combination of different granularities of n-grams

Smoothing intuition
Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

(Credits: Dan Klein)

Laplace smoothing

• Also known as add-alpha

• Simplest form of smoothing: Just add alpha to all counts and
renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

P (wi|wi�1) =
C(wi�1, wi)

C(wi�1)

P (wi|wi�1) =
C(wi�1, wi) + ↵

C(wi�1 + ↵|V |
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

Raw bigram counts
 (Berkeley restaurant corpus)

Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Credits: Dan Jurafsky)

Smoothed bigram counts
Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Add 1 to all the entries in the matrix

(Credits: Dan Jurafsky)

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams

Problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw counts

Reconstituted counts

C(wn−1wn) =
C(wn−1wn)
C(wn−1)

× C(wn−1)

C*(wn−1wn) =
C(wn−1wn) + 1
C(wn−1) + V

× C(wn−1)

Problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw counts

Reconstituted counts

C(wn−1wn) =
C(wn−1wn)
C(wn−1)

× C(wn−1)

C*(wn−1wn) =
C(wn−1wn) + 1
C(wn−1) + V

× C(wn−1)

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)X

i

�i = 1

Trigram

Bigram

Unigram

Choosing lambdas

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation Test

• Can we do better than naive interpolation?

• Case 1: C (on the mat) = 10, C(on the cat) = 10, C(on the rat) = 10, C(on the bat) = 10,
…

• Case 2: C (on the mat) = 40, C(on the cat) = 5, C (on the rat) = 0, C(on the bat) = 0, …

• Which provides a better trigram estimate for P(mat | on the)?

• Larger weights () on non-sparse estimatesλ

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)

Average-count (Chen and Goodman, 1996)

• Like simple interpolation, but with more specific lambdas,

• Partition according to average number of counts per
non-zero element:

• Larger for denser estimates of n-gram probabilities

Discounting

• Determine some “mass” to remove from
probability estimates

• Redistribute mass among unseen n-grams

• Just choose an absolute value to discount
(usually <1)

 if

 for all s.t. if

Pabs_discount(wi |wi−1) =
c(wi−1, wi) − d

c(wi−1)
c(wi−1, wi) > 0

α(wi−1)
P(wi)

∑w′
P(w′)

w′ c(wi−1, w′) = 0 c(wi−1, wi) = 0

Unigram probabilities

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words w
for which Count(the, w) = 0

Back-off

• Use n-gram if enough evidence, else back off to
(n-1)-gram

(Katz back-off)

• d = amount of discounting

• = back-off weight↵

Other language models

• Discriminative models:

‣ train n-gram probabilities to directly maximize performance on end task
(e.g. as feature weights)

• Parsing-based models

‣ handle syntactic/grammatical dependencies

• Topic models

• Neural networks
We’ll see these later on

