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® Predicted class ¢ for document d
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Rule-based classification

® Combinations of features on words in document, meta-data

IF there exists word w in document d such that w in [good, great, extra-ordinary, ...],

THEN output Positive

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, ...]

THEN output
® Can be very accurate
® Rules may be hard to define (and some even unknown to us!)
® Expensive

® Not easily generalizable

VADER-Sentiment-Analysis
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Supervised Learning: Let’s use statistics!

® Data-driven approach
® et the machine figure out the best patterns to use

® |nputs:

® Set ot m classes C = {c¢y,¢5,...,C, }

® Set of n 'labeled’ documents: {(d;, ¢y), (dy,¢c),...,(d, )}

® Output: — Key questions:
/ a) What is the torm of F?

® Trained classifier, F: d — ¢ b) How do we learn F?




Types of supervised classifiers

S

N
ANB

Nailve Bayes

Support vector machines

p(ylx)

Logistic regression

Training instance - Class 1

New example
to classify

k-nearest neighbors
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Multinomial Naive Bayes

® Simple classitication model making use of Bayes rule

P
| d— doc
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® Bayes Rule:
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® Makes strong (‘naive’) independence assumptions
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Maximum

® Best class,

—>

a posteriori (MAP) ~
estimate

C

Predicting a class
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How to represent P(d | ¢)?

e Option 1: represent the entire sequence of words
* P(Wi,Ws,...,Wg|cC) (too many sequences!)
e Option 2: Bag of words

* Assume position of each word is irrelevant

(both absolute and relative)

e P(Wi,Wy,...,We|c) =Pw |c)Pw,|c)...P(w,|c)

* Probability of each word is conditionally independent

of the other words given class ¢



| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!
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® \We now have:
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Naive Bayes as a generative model
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Generate the entire data set one document at a time
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Maximum likelihood estimates:
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Data sparsity

e \What if count(amazing’, ) =07?
= |mplies P('amazing’ | ) =0
e Given areview document, d = “.... most amazing movie ever ..."
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Data sparsity

e \What if count('amazing’, ) =07?
= |mplies P(‘amazing’ | ) =0
e Given areview document, d = “.... most amazing movie ever ..."
A K
- ok C m Plw. |
Cornp = Ohgmax p (c) T\' p(w, o)
C = T
/\
_ ohgqmax P (c) ) = 0 This sounds
- a familiar...

C
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Solution: Smoothing!

* laplace smoothing:

N J RJ \f \ QOJDV\\O\"\‘J

* Simple, easy to use

e Effective in practice
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Overall process

Input: Set of annotated documents {(d, C)}iq

A. Compute vocabulary V of all words

Count(cj)

B. Calculate IA’(cj) =
N

Count(w;, ¢;) + o

ey |Count(w, ¢,) + a|

C. Calculate }A’(wi | ¢;) =

D. (Prediction) Given document d = (W, Wy, ..., w;)

C

K
Cap = arg max ]S(C)H]S(Wi | c) .
e orio
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I T

f’(c) _N, Training 1 Chinese Beijing Chinese
N 2 Chinese Chinese Shanghai C
3 Chinese Macao C
ﬁ(w e count(w,c) +1 4 Tokyo Japan Chinese j
count(c)+1V 1  Test 5 Chinese Chinese Chinese Tokyo Japan ?
Priors:
Plc)= 3.
. 4 1
Pl)= T

Conditional Probabilities:

P(Chinese|c) = (5+1)/(8+6)=6/14=3/7
P(Tokyol|c) = (0+1)/(8+6)=1/14
P(Japan|c) = (0+1)/(8+6)=1/14
P(Chinese|j) = (1+1)/(3+6)=2/9
P(Tokyo|j) = (1+1)/(3+6)=2/9
P(Japan|j) = (1+1)/(3+6)=2/9




Naive Bayes Example

I T

1’3(6) . NC Training 1 Chinese Beijing Chinese
N 2 Chinese Chinese Shanghai C
3 Chinese Macao C
IA)(W €)= count(w,c)+1 4  TokyoJapan Chinese j
count(c)+1V 1  Test 5 Chinese Chinese Chinese Tokyo Japan ?
Priors:
P(c)= 3 .
P(j)= 4 1 Choosing a class:
4 P(c|d5) o« 3/4*(3/7)**1/14 * 1/14
=~ 0.0003

Conditional Probabilities:

P(Chinese|c) = (5+1)/(8+6)=6/14=3/7

P(Tokyo|c) = (0+1)/(8+6)=1/14 P(j|d5) o« 1/4* (2/9)3*2/9 * 2/9
P(Japan|c) = (0+1)/(8+6)=1/14 ~ 0.0001
P(Chinese|j) = (1+1)/(3+6)=2/9

P(Tokyo|j) = (1+1)/(3+6)=2/9

P(Japan|j) = (1+1)/(3+6)=2/9




Rank

Category

Rank Category

Features

Feature Feature
| Subject Number of capitalized words I Subject Mi?O(:t;lt‘l;eb(;gn;gﬁs::g:;?tio
2 Subject Sum of all the character lengths of words 2 Subject Ml?;:‘(;t:;?:ﬂﬁl‘l‘:gm
3 Subject Number of words containing letters and numbers 3 Subject  Min of character diversity of each word
' st et s G e Mt conpreion o
5 Header Hour of day when email was sent 5 Subject Max of the character lengths of words
(a) (b)
Spam URLSs Features
I URL The number of all URLs in an email 1 Header Day of week when email was sent
2 URL The number of unique URLSs in an email 2 Payload Number of characters
3 Payload Number of words containing letters and numbers 3 Payload Sum of all the character lengths of words
4 Payload  Min of the compression ratio for the bz2 compressor 4 Header Minute of hour when email was sent
S Payload Number of words containing only letters S5 Header Hour of day when email was sent

Top features for spam detection
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Category
Subject
Subject
Subject
Subject

Header

URL
URL
Payload
Payload

Payload

Feature Rank Category

Number of capitalized words l Subject

Sum of all the character lengths of words 2 Subject
Number of words containing letters and numbers 3 Subject
Hour of day when email was sent 5 Subject

(a)
Spam URLSs Features

The number of all URLs in an email 1 Header

The number of unique URLs in an email 2 Payload
Number of words containing letters and numbers 3 Payload
Min of the compression ratio for the bz2 compressor 4 Header
Number of words containing only letters 5 Header

Top features for spam detection

Features

Feature

Min of the compression ratio
for the bz2 compressor

Min of the compression ratio
for the zlib compressor

Min of character diversity of each word

Min of the compression ratio
for the lzw compressor

Max of the character lengths of words

(b)

Day of week when email was sent
Number of characters
Sum of all the character lengths of words
Minute of hour when email was sent

Hour of day when email was sent

* |n general, Naive Bayes can
use any set of features, not

just words:

e URLs, email addresses,

Capitalization, ...

e Domain knowledge crucial

to performance
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Naive Bayes and Language Models

® |f features = bag of words, each class is a unigram language

model!

® For class ¢, assigning each word: P(w|c)

assigning sentence: P(S|c) = HP(W | c)

wesS
Class pos
0.1 | : :
I love this  fun film
0.1 love
| 0.1 0.1 .05 0.01 0.1
0.01 this
0.05 fun

0.1 film P(s | pos) = 0.0000005



Naive Bayes as a language model

 Which class assigns the higher probability to s?

Model pos
0.1 |
0.1 love
0.01 this
0.05 fun

0.1 film

Model neg
0.2 |
0.001 love
0.01 this
0.005 fun
0.1 film

0.1
0.2
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0.1 0.01 0.05 0.1
0.001 0.01 0.005 0.1

P(s|pos) ? P(s|neg)

Il



Naive Bayes as a language model

 Which class assigns the higher probability to s?

Model pos
0.1 |
0.1 love
0.01 this
0.05 fun

0.1 film

Model neg
0.2 |
0.001 love
0.01 this
0.005 fun
0.1 film

0.1
0.2

love this fun film
0.1 0.01 0.05 0.1
0.001 0.01 0.005 0.1

P(s|pos) > P(s|neg)

Il
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e Consider binary classification

e Table of predictions
Truth

Positive Negative

Predicted Positive

Negative

e |deally, we want:

T e o
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Prodicted T ® True positive: Predicted + and actual +

Negative

® True negative: Predicted - and actual -

® [alse positive: Predicted + and actual -
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Evaluation Metrics

Truth

Positive Negative Positive Negative

Predicted Positive Positive

Negative Negative

Both have same accuracy, but

TP+ TN 200 clearly the models are

ACCU;CV T ol 950 80 % behaving very ditterently

Coarse metric
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Precision and Recall

® Precision: % of selected classes that are correct

TP L TN
Precision( — ) =

Precision( + ) =
TP+ FP IN + FN

® Recall: % of correct items selected

TP TN
Recall(+) = Recall( —) =
TP + FN TN + FP
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e Combined measure using precision and recall

e Harmonic mean of Precision and Recall

r 2 - Precision - Recall
™ Precision + Recall

e Or more generally,

s + f3%) - Precision - Recall
4 (2 - Precision + Recall




Choosing Beta

Truth

Positive Negative
(1 + %) - Precision - Recall

Positive F. =
g f? - Precision + Recall

Predicted

Negative

Which value of Beta maximizes Fj for the positive class?
A =05

B. p=1
C. p=2



Aggregating scores

e \We now have Precision, Recall, F1 for each class
e Can we combine them for an overall score?
 Macro-average: Compute for each class, then average

* Micro-average: Collect predictions for all classes ana

jointly evaluate



Macro vs Micro average

Class 1 Class 2 Micro Ave. Table

Classifier: yes Classifier: yes Classifier: yes

Classifier: no Classifier: no Classifier: no

* Macroaveraged precision: (0.5+ 0.9)/2 =0.7
e Microaveraged precision: 100/120 = .83

* Microaveraged score is dominated by score on common classes
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Validation

Choose a metric: Precision/Recall/F1 Validation

Optimize for metric on Validation (aka Development) set

Finally evaluate on ‘unseen’ test set

Choice of data splits may affect your evaluation
Train

/ frain valid

Cross-validation:
* Repeatedly sample several train-val splits

* Reduces bias due to sampling errors
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Advantages of Naive Bayes

Very tast, low storage requirements

Robust to irrelevant features

Irrelevant teatures cancel each other without affecting results

Very good in domains with many equally important features

Decision trees sufter from fragmentation in such cases — especially if little data

Optimal if the independence assumptions hold

f assumed independence is correct, this is the ‘Bayes optimal’ classifier

A good dependable baseline for text classification

However, other classifiers can give better accuracy
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Practical Naive Bayes

e Small data sizes:

 Naive Bayes is great! (high bias)

e Rule-based classitiers might work well too
e Medium size datasets:

 More advanced classitiers might perform better (e.g. SVM, logistic regression)
* |arge datasets:

* Naive Bayes becomes competitive again (although most classifiers work well)
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Failings of Naive Bayes (1)

Independence assumptions are too strong

X1 X2 Class: x, XOR Xx,

1 1 0

0 1 1

1 0 1

0 0 0

e XOR problem: Naive Bayes cannot learn a decision boundary

e Both variables are jointly required to predict class
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Class imbalance
® One or more classes have more instances than others
® Data skew causes NB to prefer one class over the other

® Potential solution: Complement Naive Bayes (Rennie et al., 2003)

50 10N - Z Gt (wy,C) i atiey
P (o (CJX ) "o don ©
2 2 lowk (w,C)

C_#QJ' )



Failings of Naive Bayes (3)

(assuming € added tor smoothing)



Failings of Naive Bayes (3)

Weight magnitude errors

(assuming € added tor smoothing)



Failings of Naive Bayes (3)
Weight magnitude errors

® Classes with larger weights are preferred

(assuming € added tor smoothing)



Failings of Naive Bayes (3)
Weight magnitude errors
® Classes with larger weights are preferred

® 10 documents with class=MA and “Boston” occurring once each

(assuming € added tor smoothing)



Failings of Naive Bayes (3)
Weight magnitude errors
® Classes with larger weights are preferred
® 10 documents with class=MA and “Boston” occurring once each

® 10 documents with class=CA and "San Francisco” occurring once each

(assuming € added tor smoothing)



Failings of Naive Bayes (3)
Weight magnitude errors
® Classes with larger weights are preferred
® 10 documents with class=MA and “Boston” occurring once each
® 10 documents with class=CA and "“San Francisco” occurring once each

® New document: “"Boston Boston Boston San Francisco San Francisco”

(assuming € added tor smoothing)



Il

Failings of Naive Bayes (3)
Weight magnitude errors
® Classes with larger weights are preferred
® 10 documents with class=MA and “Boston” occurring once each
® 10 documents with class=CA and "“San Francisco” occurring once each

® New document: “"Boston Boston Boston San Francisco San Francisco”

(assuming € added tor smoothing)



Il

Failings of Naive Bayes (3)
Weight magnitude errors
® Classes with larger weights are preferred
® 10 documents with class=MA and “Boston” occurring once each
® 10 documents with class=CA and "“San Francisco” occurring once each

® New document: “"Boston Boston Boston San Francisco San Francisco”

P(class = CA|document) ? P(class = MA |document)

(assuming € added tor smoothing)
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Practical text classification

Domain knowledge is crucial to selecting good features
Handle class imbalance by re-weighting classes

Use log scale operations instead of multiplying probabilities

Since log(xy) = log(x) + log(y)
Better to sum logs ot probabilities instead of multiplying probabilities

Class with highest un-normalized log probability score is still most probable

Cyp = arg max log P(c) + Z log P(x; | C;)
GEC IEpositions

Model is now just max of sum of weights






