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• Authorship attribution 

• Language detection 

• News categorization 

• …

Spam detection

Sentiment analysis
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Classification: The Task

• Inputs:

• A document d

• A set of classes C = {c1, c2, c3, . . . , cm}

• Output:

• Predicted class  for document c d

Movie was 
terrible

Amazing 
acting

Classify

Classify

Negative

Positive
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Supervised Learning: Let’s use statistics!

• Data-driven approach

• Let the machine figure out the best patterns to use

• Inputs:

• Set of  classes m C = {c1, c2, . . . , cm}

• Set of  ‘labeled’ documents:  n {(d1, c1), (d2, c2), . . . , (dn, cn)}

• Output:

• Trained classifier, F : d → c

Key questions: 
a) What is the form of F? 
b) How do we learn F? 



Types of supervised classifiers

Naive Bayes Logistic regression

Support vector machines k-nearest neighbors
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Multinomial Naive Bayes

• Simple classification model making use of Bayes rule

• Bayes Rule:

• Makes strong (‘naive’) independence assumptions
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Predicting a class
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Predicting a class

• Best class, Maximum 
a posteriori (MAP) 

estimate 
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How to represent P(d | c)?

• Option 1: represent the entire sequence of words 

•                  (too many sequences!)P(w1, w2, . . . , wK |c)

• Option 2: Bag of words 

• Assume position of each word is irrelevant  

(both absolute and relative)

• P(w1, w2, . . . , wK |c) = P(w1 |c)P(w2 |c) . . . P(wk |c)

• Probability of each word is conditionally independent 

 of the other words given class c



Bag of words
The%Bag%of%Words%Representation
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• We now have:
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Naive Bayes as a generative model

Generate the entire data set one document at a time
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Maximum likelihood estimates:



Data sparsity



Data sparsity

• What if count(‘amazing’, positive) = 0?



Data sparsity

• What if count(‘amazing’, positive) = 0?

➡ Implies P(‘amazing’ | positive) = 0



Data sparsity

• What if count(‘amazing’, positive) = 0?

➡ Implies P(‘amazing’ | positive) = 0

• Given a review document, d = “…. most amazing movie ever …”



Data sparsity

• What if count(‘amazing’, positive) = 0?

➡ Implies P(‘amazing’ | positive) = 0

• Given a review document, d = “…. most amazing movie ever …”



Data sparsity

• What if count(‘amazing’, positive) = 0?

➡ Implies P(‘amazing’ | positive) = 0

• Given a review document, d = “…. most amazing movie ever …”

This sounds 
familiar…
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Solution: Smoothing!

• Laplace smoothing:

• Simple, easy to use

• Effective in practice
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Input: Set of annotated documents  {(di, ci)}n
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A. Compute vocabulary V of all words 

B. Calculate  ̂P(cj) =
Count(cj)

n
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Count(wi, cj) + α

∑w∈V [Count(w, cj) + α]

D. (Prediction) Given document   

               

d = (w1, w2, . . . , wk)

cMAP = arg max
c

̂P(c)
K
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Naive Bayes Example

Choosing%a%class:
P(c|d5)$

P(j|d5)$ 1/4$*$(2/9)3 *$2/9$*$2/9$
≈$0.0001

Doc Words Class
Training 1 Chinese Beijing$Chinese c

2 Chinese$Chinese$Shanghai c

3 Chinese$Macao c

4 Tokyo$Japan$Chinese j

Test 5 Chinese$Chinese$Chinese$Tokyo Japan ?

41

Conditional%Probabilities:
P(Chinese|c)$=
P(Tokyo|c)$$$$=
P(Japan|c)$$$$$=
P(Chinese|j)$=
P(Tokyo|j)$$$$$=
P(Japan|j)$$$$$$=$

Priors:
P(c)=$
P(j)=$

3
4 1

4

P̂(w | c) = count(w,c)+1
count(c)+ |V |

P̂(c) = Nc

N

(5+1)$/$(8+6)$=$6/14$=$3/7
(0+1)$/$(8+6)$=$1/14

(1+1)$/$(3+6)$=$2/9$
(0+1)$/$(8+6)$=$1/14

(1+1)$/$(3+6)$=$2/9$
(1+1)$/$(3+6)$=$2/9$

3/4$*$(3/7)3 *$1/14$*$1/14$
≈$0.0003
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Features

• In general, Naive Bayes can 

use any set of features, not 

just words: 

• URLs, email addresses, 

Capitalization, … 

• Domain knowledge crucial 

to performance

Top features for spam detection



Naive Bayes and Language Models



Naive Bayes and Language Models

• If features = bag of words, each class is a unigram language 

model!



Naive Bayes and Language Models

• If features = bag of words, each class is a unigram language 

model!

• For class c, assigning each word:   

                    assigning sentence:  

P(w |c)
P(S |c) = ∏

w∈S

P(w |c)



Naive Bayes and Language Models

Each%class%=%a%unigram%language%model
• Assigning$each$word:$P(word$|$c)
• Assigning$each$sentence:$P(s|c)=Π P(word|c)

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

…

I love this fun film

0.1 0.1 .05 0.01 0.1

Class$pos

P(s$|$pos)$=$0.0000005$

Sec.13.2.1
• If features = bag of words, each class is a unigram language 

model!

• For class c, assigning each word:   

                    assigning sentence:  

P(w |c)
P(S |c) = ∏

w∈S

P(w |c)



Naive Bayes as a language model
Naïve Bayes%as%a%Language%Model

• Which$class$assigns$the$higher$probability$to$s?

0.1 I

0.1 love

0.01 this

0.05 fun

0.1 film

Model$pos Model$neg

filmlove this funI

0.10.1 0.01 0.050.1
0.10.001 0.01 0.0050.2

P(s|pos)$$>$$P(s|neg)

0.2 I

0.001 love

0.01 this

0.005 fun

0.1 film

Sec.13.2.1
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Evaluation Metrics

Accuracy =
TP + TN

Total
=

200
250

= 80 %

Positive Negative

Positive 100 5

Negative 45 100

Truth

Predicted

Coarse metric

Positive Negative

Positive 100 25

Negative 25 100

Both have same accuracy, but 
clearly the models are 

behaving very differently



Precision and Recall



Precision and Recall

• Precision: % of selected classes that are correct



Precision and Recall

• Precision: % of selected classes that are correct

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN



Precision and Recall

• Precision: % of selected classes that are correct

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN



Precision and Recall

• Precision: % of selected classes that are correct

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN



Precision and Recall

• Precision: % of selected classes that are correct

• Recall: % of correct items selected

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN



Precision and Recall

• Precision: % of selected classes that are correct

• Recall: % of correct items selected

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN

Recall( + ) =
TP

TP + FN
Recall( − ) =

TN
TN + FP
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F-Score

• Combined measure using precision and recall

• Harmonic mean of Precision and Recall

• Or more generally,

F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall

Fβ =
(1 + β2) ⋅ Precision ⋅ Recall

β2 ⋅ Precision + Recall



Choosing Beta

Which value of Beta maximizes     for the positive class? 

A.   

B.   

C.  

Fβ

Positive Negative

Positive 200 100

Negative 50 100

Fβ =
(1 + β2) ⋅ Precision ⋅ Recall

β2 ⋅ Precision + Recall

β = 0.5

β = 1

β = 2

Truth

Predicted

 



Aggregating scores 

• We now have Precision, Recall, F1 for each class 

• Can we combine them for an overall score? 

• Macro-average: Compute for each class, then average 

• Micro-average: Collect predictions for all classes and 

jointly evaluate



Macro vs Micro average

58

MicroG vs.%MacroGAveraging:%Example

Truth:$
yes

Truth:$
no

Classifier:$yes 10 10

Classifier:$no 10 970

Truth:$
yes

Truth:$
no

Classifier:$yes 90 10

Classifier:$no 10 890

Truth:$
yes

Truth:$
no

Classifier:$yes 100 20

Classifier:$no 20 1860

Class$1 Class$2 Micro$Ave.$Table

Sec.$15.2.4

• Macroaveraged precision:$(0.5$+$0.9)/2$=$0.7
• Microaveraged precision:$100/120$=$.83
• Microaveraged score$is$dominated$by$score$on$common$classes
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Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

• Finally evaluate on ‘unseen’ test set

• Choice of data splits may affect your evaluation

• Cross-validation:

• Repeatedly sample several train-val splits

• Reduces bias due to sampling errors

Train Validation

Test

Train Valid

Train                        Valid

Train                        Valid
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Advantages of Naive Bayes

• Very fast, low storage requirements

• Robust to irrelevant features 

    Irrelevant features cancel each other without affecting results

• Very good in domains with many equally important features 

     Decision trees suffer from fragmentation in such cases — especially if little data

• Optimal if the independence assumptions hold 

     If assumed independence is correct, this is the ‘Bayes optimal’ classifier

• A good dependable baseline for text classification 

     However, other classifiers can give better accuracy
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Practical Naive Bayes

• Small data sizes: 

• Naive Bayes is great! (high bias) 

• Rule-based classifiers might work well too

• Medium size datasets: 

• More advanced classifiers might perform better (e.g. SVM, logistic regression)

• Large datasets: 

• Naive Bayes becomes competitive again (although most classifiers work well)
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Failings of Naive Bayes (1)

Independence assumptions are too strong 

 

• XOR problem: Naive Bayes cannot learn a decision boundary

• Both variables are jointly required to predict class
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Failings of Naive Bayes (3)

Weight magnitude errors

• Classes with larger weights are preferred

• 10 documents with class=MA and “Boston” occurring once each

• 10 documents with class=CA and “San Francisco” occurring once each

• New document: “Boston Boston Boston San Francisco San Francisco”

P(class = CA |document) > P(class = MA |document)?

(assuming  added for smoothing)ϵ
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Practical text classification

• Domain knowledge is crucial to selecting good features

• Handle class imbalance by re-weighting classes

• Use log scale operations instead of multiplying probabilities

• Since log(xy) = log(x) + log(y) 

    Better to sum logs of probabilities instead of multiplying probabilities

• Class with highest un-normalized log probability score is still most probable 

                  CNB = arg max
cj∈C

log P(cj) + ∑
i∈positions

log P(xi |cj)

• Model is now just max of sum of weights




