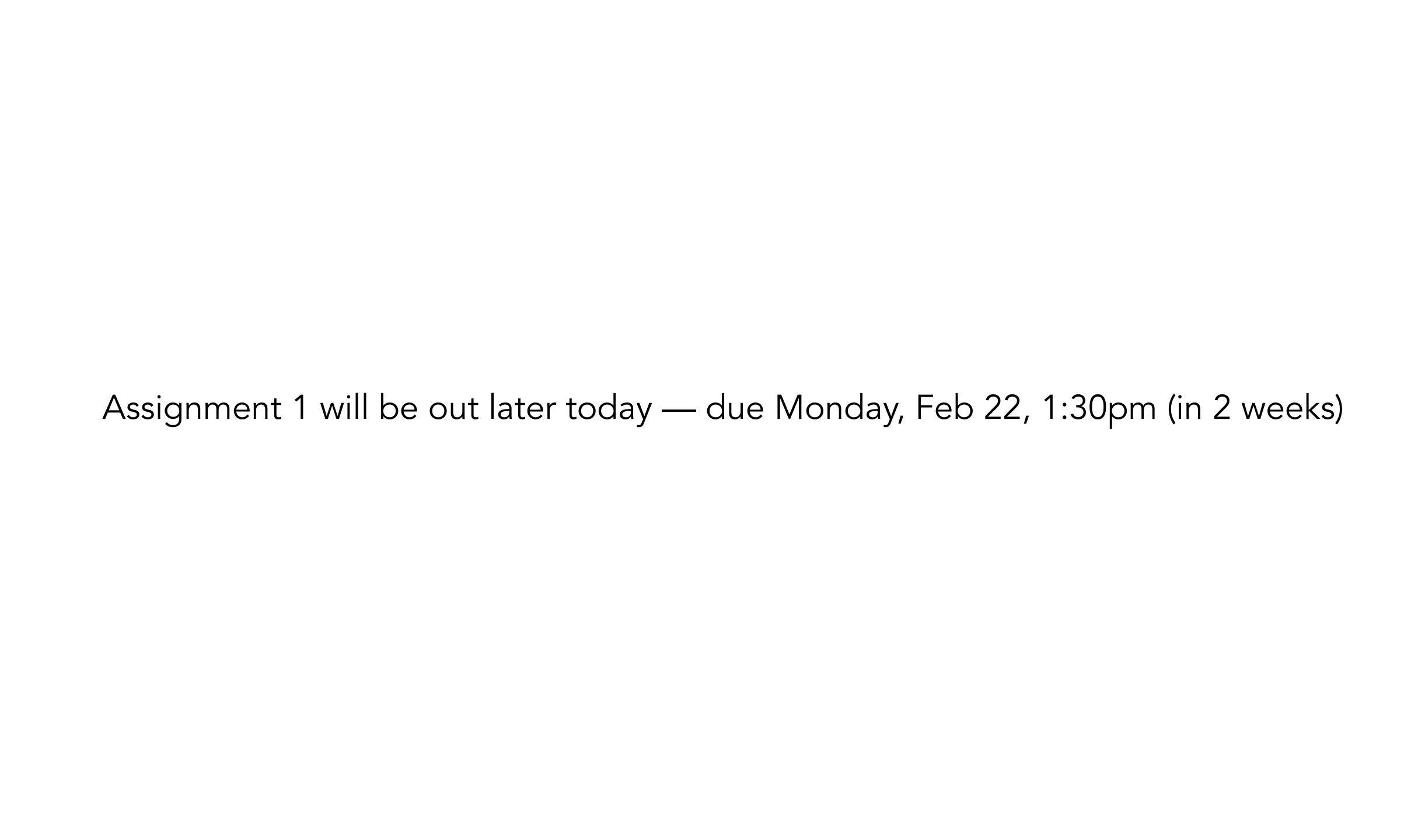
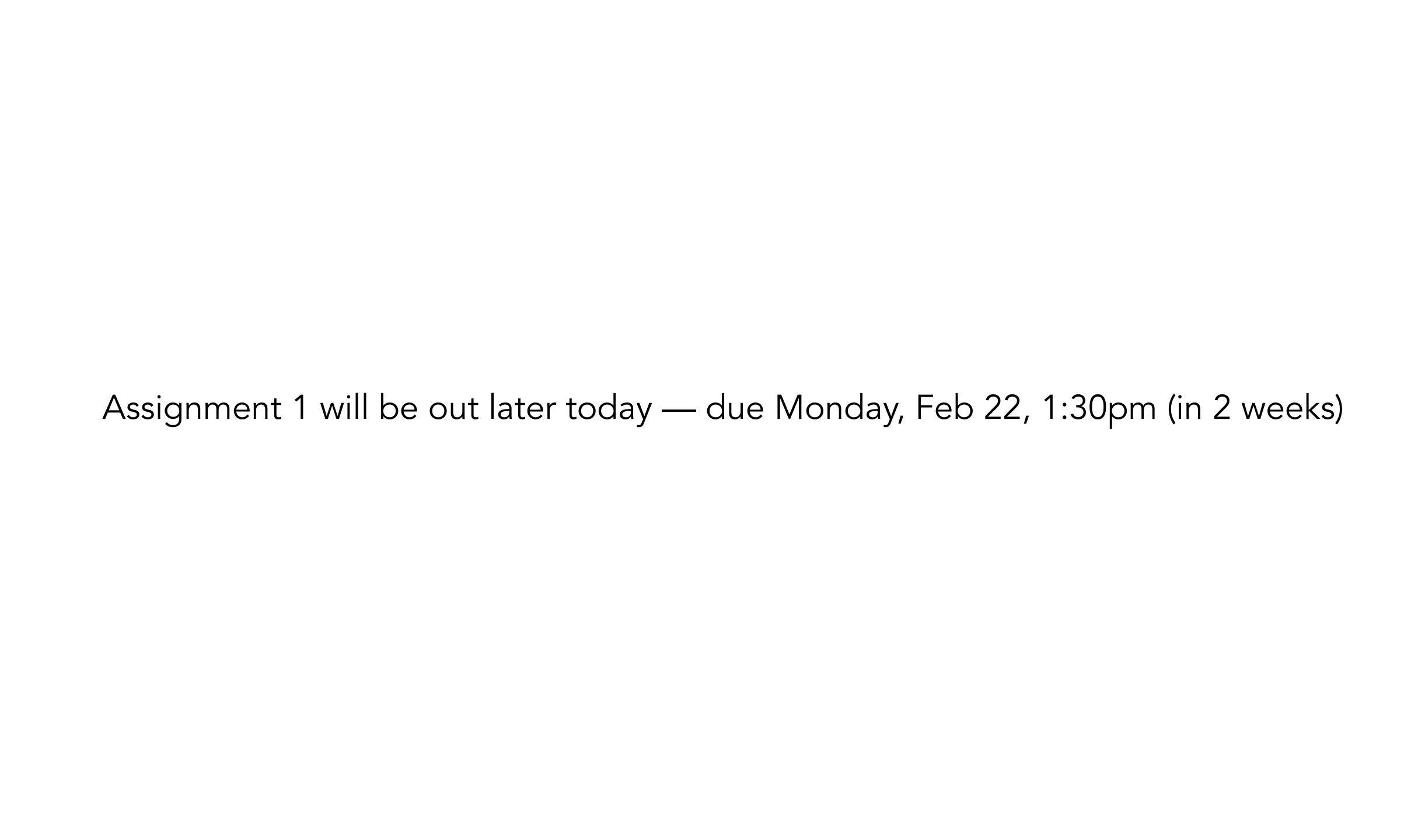


COS 484/584

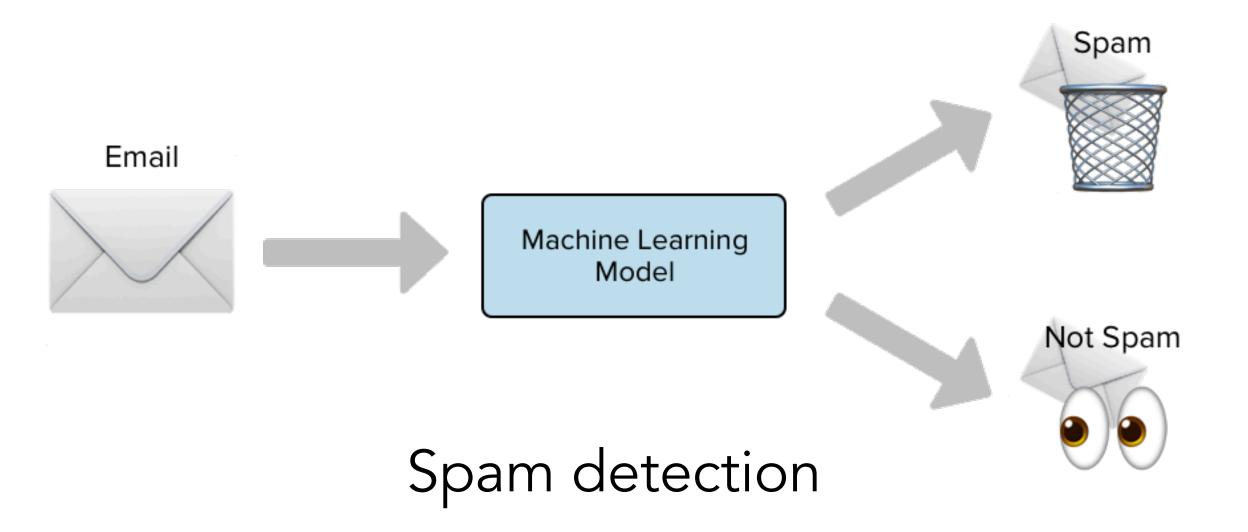
L3: Text Classification

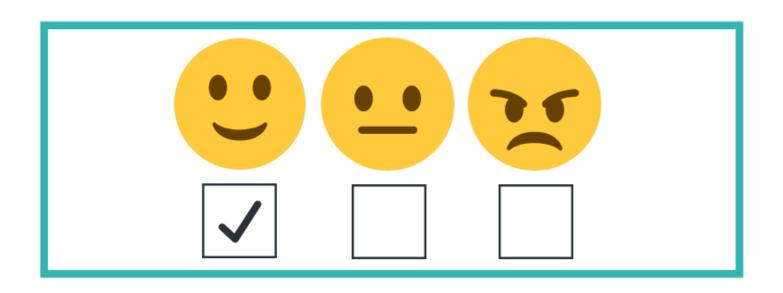
Spring 2021





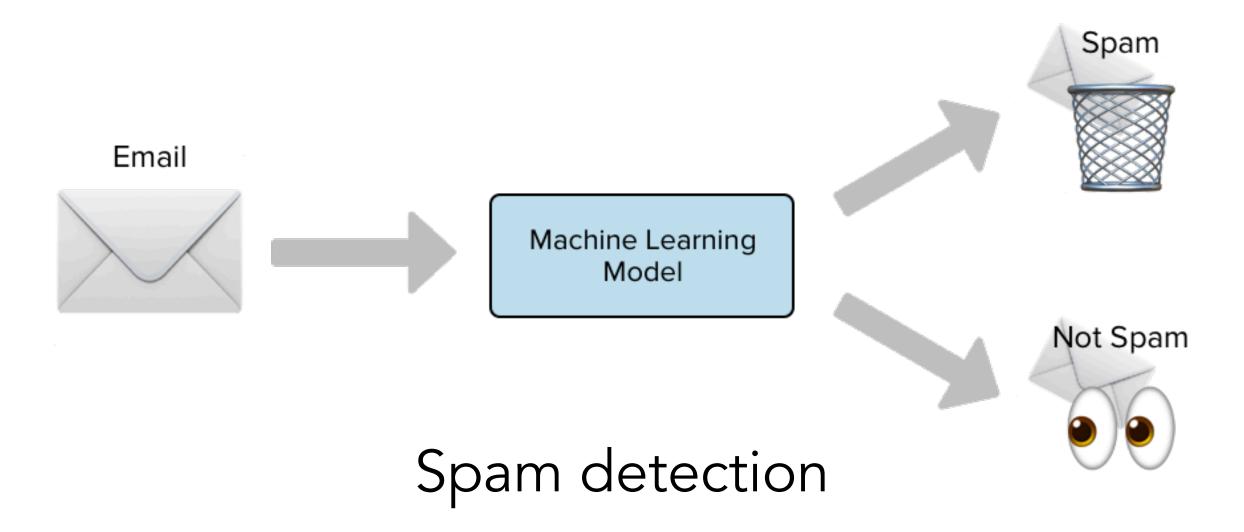
Why classify?

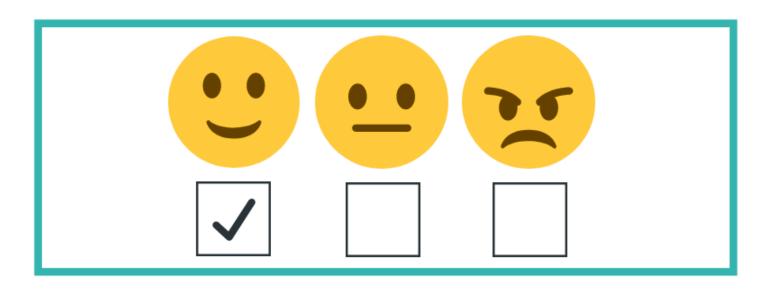




Sentiment analysis

Why classify?

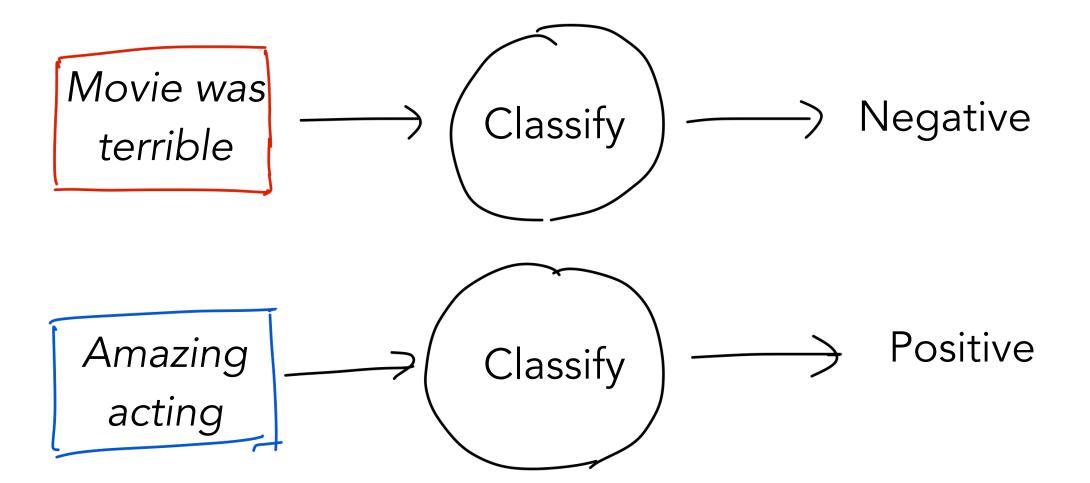




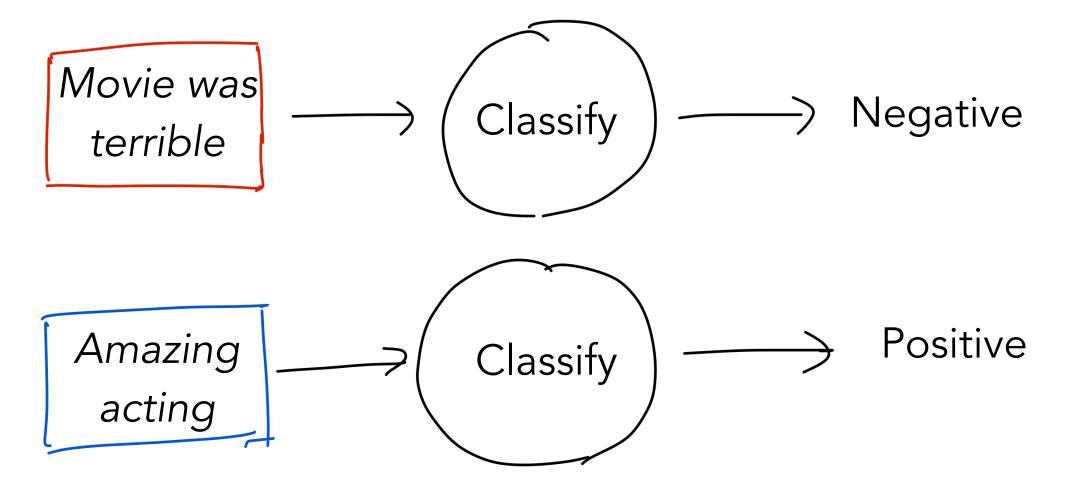
Sentiment analysis

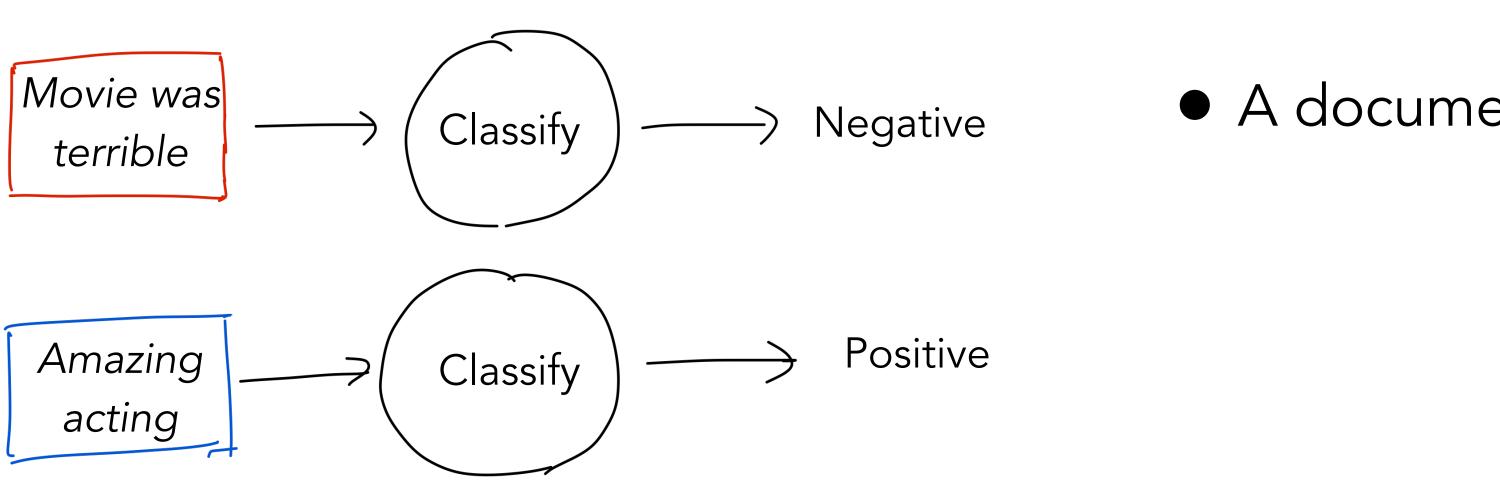
- Authorship attribution
- Language detection
- News categorization

•



• Inputs:





• Inputs:

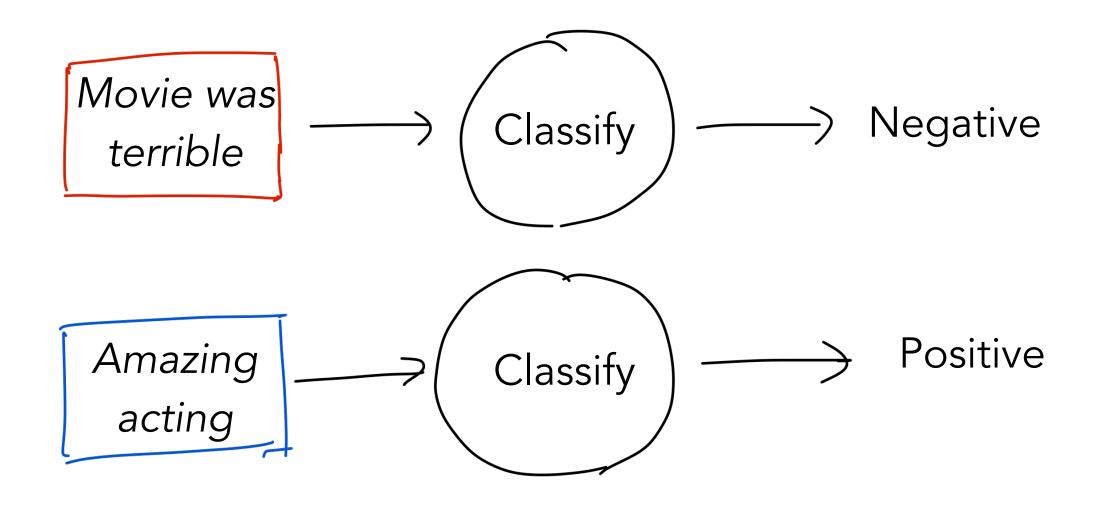
A document d



• Inputs:

A document d

• A set of classes $C = \{c_1, c_2, c_3, \dots, c_m\}$

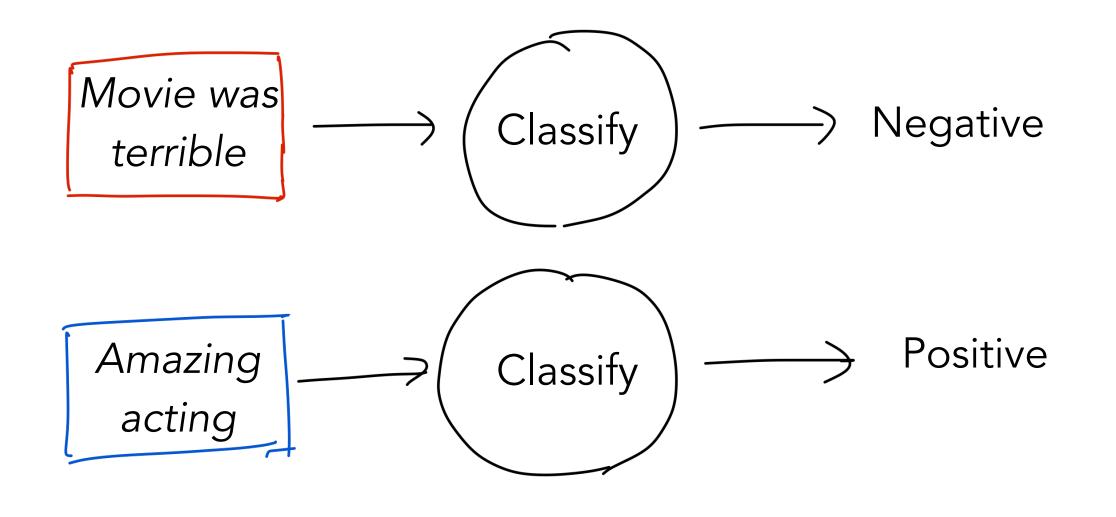


• Inputs:

A document d

• A set of classes $C = \{c_1, c_2, c_3, \dots, c_m\}$

Output:



• Inputs:

A document d

• A set of classes $C = \{c_1, c_2, c_3, \dots, c_m\}$

Output:

ullet Predicted class c for document d

Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive
```

• Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive
```

IF email address ends in [<u>ithelpdesk.com</u>, <u>makemoney.com</u>, <u>spinthewheel.com</u>, ...]

THEN output SPAM

Can be very accurate

• Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive
```

- Can be very accurate
- Rules may be hard to define (and some even unknown to us!)

• Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...], THEN output Positive
```

- Can be very accurate
- Rules may be hard to define (and some even unknown to us!)
- Expensive

• Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...],

THEN output Positive
```

- Can be very accurate
- Rules may be hard to define (and some even unknown to us!)
- Expensive
- Not easily generalizable

• Combinations of features on words in document, meta-data

```
IF there exists word w in document d such that w in [good, great, extra-ordinary, ...],

THEN output Positive
```

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, ...]

THEN output SPAM

- Can be very accurate
- Rules may be hard to define (and some even unknown to us!)

VADER-Sentiment-Analysis

- Expensive
- Not easily generalizable

Data-driven approach

- Data-driven approach
- Let the machine figure out the best patterns to use

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of m classes $C = \{c_1, c_2, \dots, c_m\}$

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of m classes $C = \{c_1, c_2, \dots, c_m\}$
 - Set of n 'labeled' documents: $\{(d_1, c_1), (d_2, c_2), \dots, (d_n, c_n)\}$

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of m classes $C = \{c_1, c_2, \dots, c_m\}$
 - Set of n 'labeled' documents: $\{(d_1, c_1), (d_2, c_2), \dots, (d_n, c_n)\}$
- Output:

- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of m classes $C = \{c_1, c_2, \dots, c_m\}$
 - Set of n 'labeled' documents: $\{(d_1,c_1),(d_2,c_2),\ldots,(d_n,c_n)\}$
- Output:
 - Trained classifier, $F: d \rightarrow c$

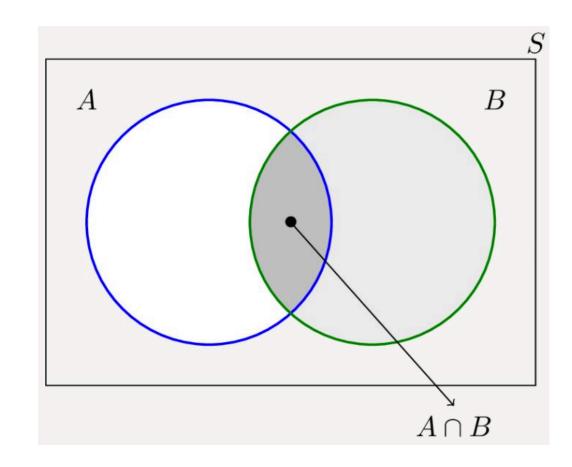
- Data-driven approach
- Let the machine figure out the best patterns to use
- Inputs:
 - Set of m classes $C = \{c_1, c_2, \dots, c_m\}$
 - Set of n 'labeled' documents: $\{(d_1,c_1),(d_2,c_2),\ldots,(d_n,c_n)\}$
- Output:

• Trained classifier, $F: d \rightarrow c$

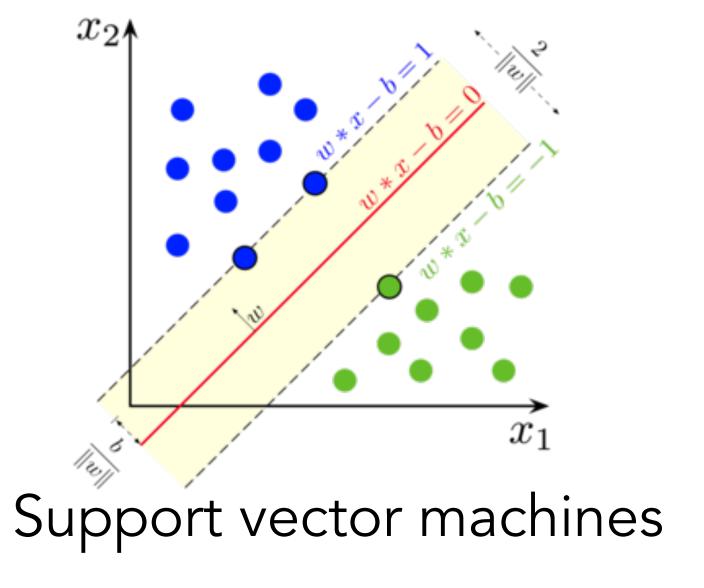
Key questions:

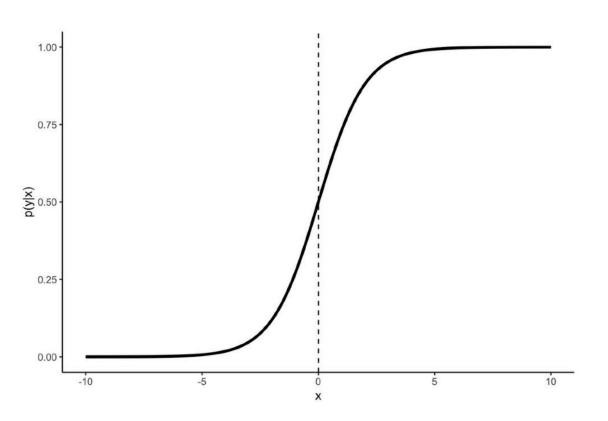
- a) What is the form of F?
- b) How do we learn F?

Types of supervised classifiers

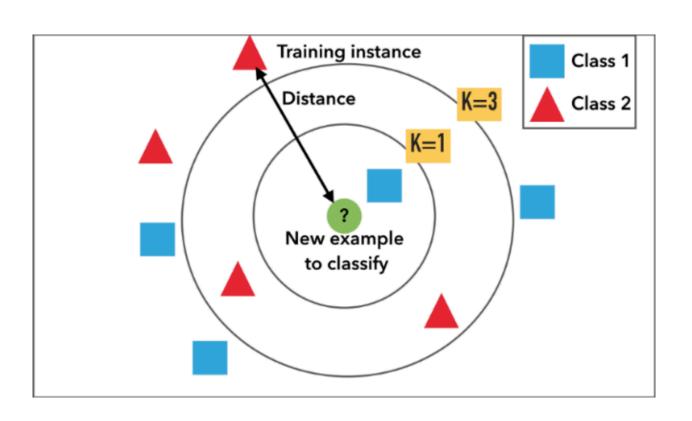


Naive Bayes





Logistic regression



k-nearest neighbors

Simple classification model making use of Bayes rule

Simple classification model making use of Bayes rule

Simple classification model making use of Bayes rule

$$P(c|d) = \frac{P(c) P(d|c)}{P(d)}$$

Simple classification model making use of Bayes rule

$$P(c|d) = \frac{P(c) P(d|c)}{P(d)}$$

Simple classification model making use of Bayes rule

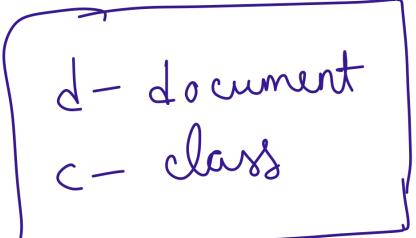
$$P(c|d) = \frac{P(c) P(d|c)}{P(d)}$$

Simple classification model making use of Bayes rule

Bayes Rule:

$$P(c|d) = \frac{P(c) P(d|c)}{P(d)}$$

Makes strong ('naive') independence assumptions



• Best class,
$$C_{MAP} = agmax p(cld)$$

• Best class,
$$C_{MAP} = a \lambda g m a \times P(c|d)$$

$$c \in C$$

$$= a \lambda g m a \times P(c) P(d|c)$$

$$C = P(d)$$

• Best class,
$$c_{MAP} = \underset{c \in C}{\operatorname{asymax}} p(c|d)$$

$$= \underset{c}{\operatorname{asymax}} \frac{P(c) P(d|c)}{P(d)}$$

$$= \underset{c}{\operatorname{asymax}} P(c) P(d|c)$$

• Best class,
$$C_{MAP} = \underset{c \in C}{\text{algmax}} p(c|d)$$

$$= \underset{c}{\text{algmax}} \frac{p(c) p(d|c)}{p(d)}$$

$$= \underset{c}{\text{algmax}} p(c) p(d|c)$$

$$= \underset{c}{\text{algmax}} p(c) p(d|c)$$

$$p(c) \longrightarrow \underset{c}{\text{Priol}} probability of class C$$

• Best class,
$$C_{MAP} = agmax P(c|d)$$

= argmax
$$P(c) P(d|c)$$

Maximum

Best class,
$$C_{MAP} = angmax P(c|d)$$

ce C

estimate

$$= angmax P(c) P(d|c)$$

$$= angmax P(c) P(d|c)$$

$$= angmax P(c) P(d|c)$$

$$= angmax P(c) P(d|c)$$

$$P(c) \rightarrow Pnion probability of class C$$

$$P(d|c) \rightarrow Conditional probability of generating document d from class C.$$

• Option 1: represent the entire sequence of words

- Option 1: represent the entire sequence of words
 - $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)

Option 1: represent the entire sequence of words

• $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)

Option 2: Bag of words

Option 1: represent the entire sequence of words

• $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)

• Option 2: Bag of words

- Option 1: represent the entire sequence of words
 - $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)
- Option 2: Bag of words
 - Assume position of each word is irrelevant (both absolute and relative)

- Option 1: represent the entire sequence of words
 - $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)
- Option 2: Bag of words
 - Assume position of each word is irrelevant (both absolute and relative)
 - $P(w_1, w_2, ..., w_K | c) = P(w_1 | c)P(w_2 | c)...P(w_k | c)$

- Option 1: represent the entire sequence of words
 - $P(w_1, w_2, \dots, w_K | c)$ (too many sequences!)
- Option 2: Bag of words
 - Assume position of each word is irrelevant (both absolute and relative)
 - $P(w_1, w_2, ..., w_K | c) = P(w_1 | c)P(w_2 | c)...P(w_k | c)$
 - Probability of each word is conditionally independent of the other words given class c

Bag of words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

6 the and seen yet would whimsical times sweet satirical adventure genre fairy humor have great

Predicting with Naive Bayes

• We now have:

Predicting with Naive Bayes

• We now have:

$$C_{MAP} = a_{gmax} P(d|c) P(c)$$

$$= a_{gmax} P(w_{1}, w_{2}, ..., w_{k}|c) P(c)$$

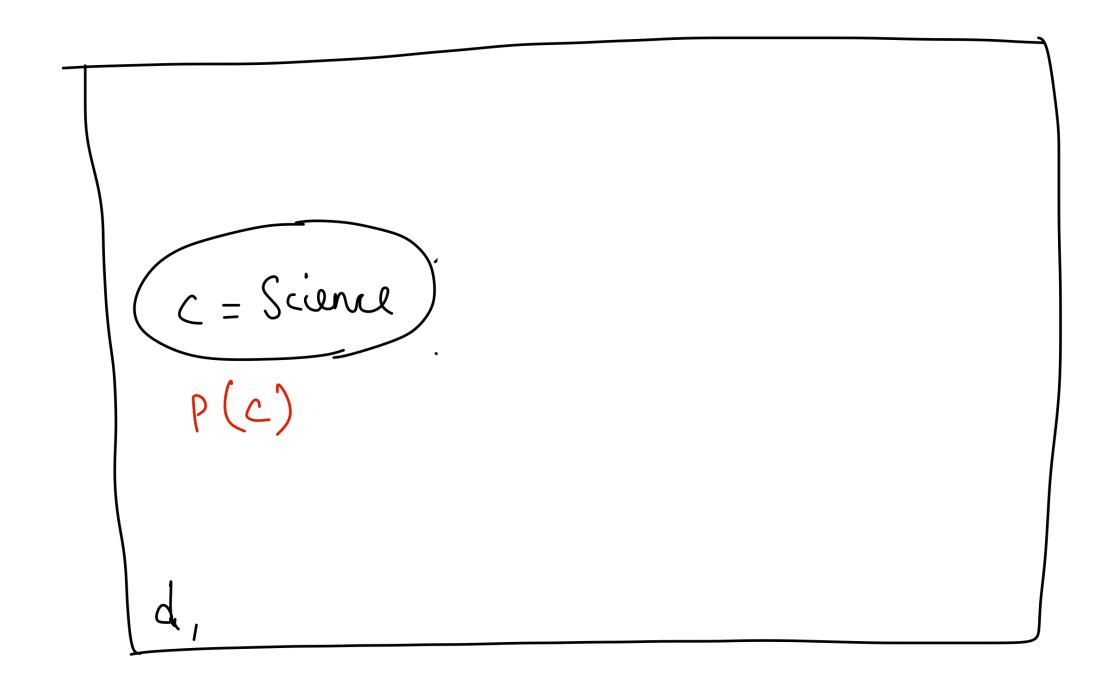
Predicting with Naive Bayes

• We now have:

$$C_{MAP} = a_{sg} \max_{c} P(d|c) P(c)$$

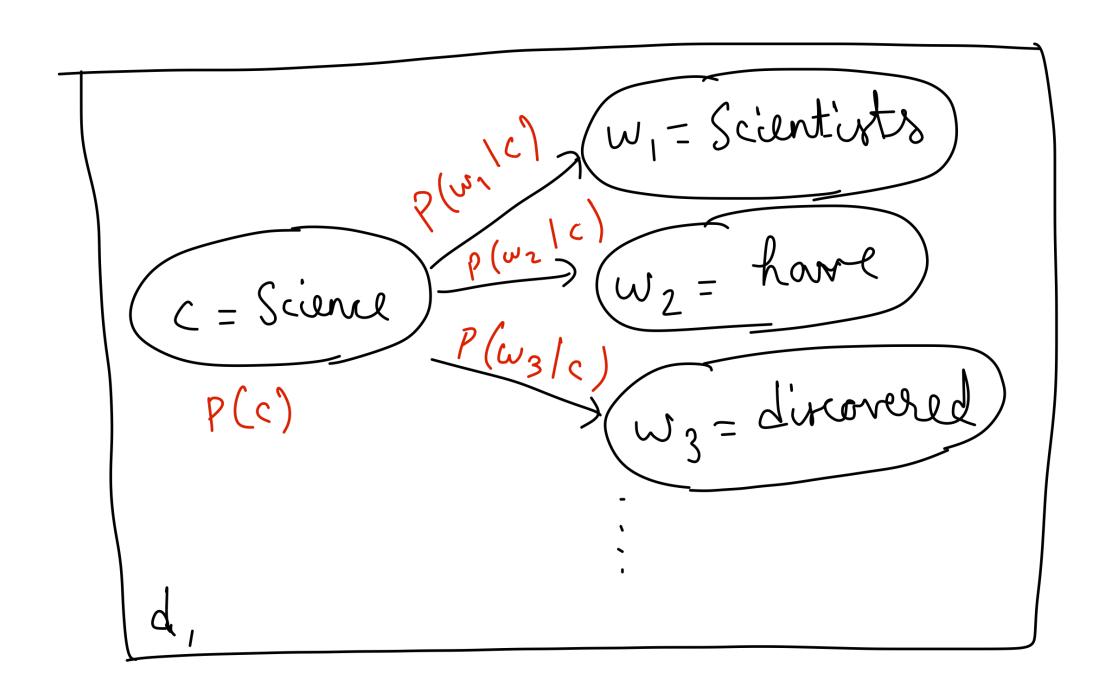
$$= a_{sg} \max_{c} P(w_{1}, w_{2}, ..., w_{k}|c) P(c)$$

$$= a_{sg} \max_{c} P(c) \frac{k}{TT} P(w_{1}|c)$$



,

,



,

Generate the entire data set one document at a time

Estimating probabilities

Maximum likelihood estimates:

$$\hat{P}(cj) = \frac{(\text{ount (class = Cj)})}{\sum_{c} (\text{ount (class = c)})}$$

$$= \frac{1}{\sum_{c} (\text{ount (class = c)})}$$

$$= \frac{1}{\sum_{c} (\text{ount (class = c)})}$$

Estimating probabilities

Maximum likelihood estimates:

$$\hat{P}(c_j) = \frac{\text{(ount (class = c_j)}}{\sum_{c} \text{(ount (class = c))}}$$

$$\hat{P}(\omega_{i}|c_{j}) = \frac{(\text{ount}(w_{i}|c_{j}))}{\sum_{w} (\text{ount}(w_{i}|c_{j}))}$$

• What if count('amazing', positive) = 0?

What if count('amazing', positive) = 0?

→ Implies P('amazing' | positive) = 0

• What if count('amazing', positive) = 0?

→ Implies P('amazing' | positive) = 0

• Given a review document, d = ".... most amazing movie ever ..."

- What if count('amazing', positive) = 0?
 - → Implies P('amazing' | positive) = 0
- Given a review document, d = ".... most amazing movie ever ..."

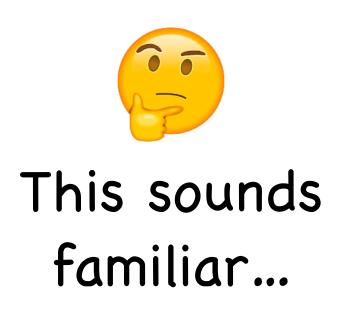
$$C_{MAP} = \underset{C}{\text{algmax}} \hat{p}(c) \stackrel{K}{\text{TT}} p(\omega_{i}(c))$$

$$= \underset{C}{\text{algmax}} \hat{p}(c) \cdot 0 = 0$$

- What if count('amazing', positive) = 0?
 - → Implies P('amazing' | positive) = 0
- Given a review document, d = ".... most amazing movie ever ..."

$$C_{MAP} = \underset{C}{\text{algmax}} \hat{p}(c) \stackrel{K}{\text{TT}} p(\omega_{i}(c))$$

$$= \underset{C}{\text{algmax}} \hat{p}(c) \cdot 0 = 0$$



Laplace smoothing:

• Laplace smoothing:

$$\hat{P}(\omega_{1}|c) = \frac{\text{Court}(\omega_{1},c) + \alpha}{\left[\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|\right]}$$

$$\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|$$
Size

• Laplace smoothing:

$$\hat{P}(\omega_{1}|c) = \frac{\text{Court}(\omega_{1},c) + \alpha}{\left[\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|\right]}$$

$$\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|$$
Size

• Laplace smoothing:

$$\hat{P}(\omega_{1}|c) = \frac{\text{Court}(\omega_{1},c) + \alpha}{\left[\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|\right]}$$

$$\sum_{\omega} (\text{ourt}(\omega_{1},c)) + \alpha|V|$$
Size

• Laplace smoothing:

$$\hat{P}(w_i|c) = \frac{\text{Count}(w_i,c) + x}{\left[\sum_{w} (\text{ount}(w,c)) + x|V|\right]}$$
Vocabulary
Size

• Simple, easy to use

Solution: Smoothing!

• Laplace smoothing:

$$\hat{p}(\omega_{i}|c) = \frac{\text{Count}(w_{i},c) + \alpha}{\left[\sum_{\omega} (\text{ount}(w,c)) + \alpha|V|\right]}$$

$$\sum_{\omega} (\text{ount}(w,c)) + \alpha|V|$$
Size

- Simple, easy to use
- Effective in practice

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

A. Compute vocabulary \mathbf{V} of all words

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

A. Compute vocabulary \mathbf{V} of all words

B. Calculate
$$\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{\mathsf{n}}$$

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

- A. Compute vocabulary \mathbf{V} of all words
- B. Calculate $\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{\mathsf{n}}$

C. Calculate
$$\hat{P}(w_i | c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} \left[\text{Count}(w, c_j) + \alpha \right]}$$

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

- A. Compute vocabulary \mathbf{V} of all words
- B. Calculate $\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{\mathsf{n}}$

C. Calculate
$$\hat{P}(w_i | c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} \left[\text{Count}(w, c_j) + \alpha \right]}$$

D. (Prediction) Given document $d = (w_1, w_2, \dots, w_k)$

$$c_{MAP} = \arg\max_{c} \hat{P}(c) \prod_{i=1}^{K} \hat{P}(w_i | c)$$

Input: Set of annotated documents $\{(d_i, c_i)\}_{i=1}^n$

- A. Compute vocabulary \mathbf{V} of all words
- B. Calculate $\hat{P}(c_j) = \frac{\mathsf{Count}(c_j)}{\mathsf{n}}$

C. Calculate
$$\hat{P}(w_i | c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} \left[\text{Count}(w, c_j) + \alpha \right]}$$

D. (Prediction) Given document $d = (w_1, w_2, \dots, w_k)$

$$c_{MAP} = \arg\max_{c} \hat{P}(c) \prod_{i=1}^{K} \hat{P}(w_i | c)$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese|c) =
$$(5+1) / (8+6) = 6/14 = 3/7$$

P(Tokyo|c) = $(0+1) / (8+6) = 1/14$
P(Japan|c) = $(0+1) / (8+6) = 1/14$
P(Chinese|j) = $(1+1) / (3+6) = 2/9$
P(Tokyo|j) = $(1+1) / (3+6) = 2/9$
P(Japan|j) = $(1+1) / (3+6) = 2/9$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w,c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	3

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese|c) =
$$(5+1)/(8+6) = 6/14 = 3/7$$

P(Tokyo|c) = $(0+1)/(8+6) = 1/14$
P(Japan|c) = $(0+1)/(8+6) = 1/14$
P(Chinese|j) = $(1+1)/(3+6) = 2/9$
P(Tokyo|j) = $(1+1)/(3+6) = 2/9$
P(Japan|j) = $(1+1)/(3+6) = 2/9$

Choosing a class:

P(c|d5)
$$\propto 3/4*(3/7)^3*1/14*1/14$$

 ≈ 0.0003

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9$$

 ≈ 0.0001

Features

Rank	Category	Feature	Rank	Category	Feature	
1	Subject	Number of capitalized words	1	Subject	Min of the compression ratio for the bz2 compressor	
2	Subject	Sum of all the character lengths of words	2	Subject	Min of the compression ratio for the zlib compressor	
3	Subject	Number of words containing letters and numbers	3	Subject	Min of character diversity of each word	
4	Subject	Max of ratio of digit characters to all characters of each word	4	Subject	Min of the compression ratio for the lzw compressor	
5	Header	Hour of day when email was sent	5	Subject	Max of the character lengths of words	
		(a)	(b)			
		Spam URLs Feat	tures			
1	URL	The number of all URLs in an email	1	Header	Day of week when email was sent	
2	URL	The number of unique URLs in an email	2	Payload	Number of characters	
3	Payload	Number of words containing letters and numbers	3	Payload	Sum of all the character lengths of words	
4	Payload	Min of the compression ratio for the bz2 compressor	4	Header	Minute of hour when email was sent	
4	1 ayload	ivini or the compression ratio for the one compressor				

Features

Rank	Category	Feature	Rank	Category	Feature
1	Subject	Number of capitalized words	1	Subject	Min of the compression ratio for the bz2 compressor
2	Subject	Sum of all the character lengths of words	2	Subject	Min of the compression ratio for the zlib compressor
3	Subject	Number of words containing letters and numbers	3	Subject	Min of character diversity of each word
4	Subject	Max of ratio of digit characters to all characters of each word	4	Subject	Min of the compression ratio for the lzw compressor
5	Header	Hour of day when email was sent	5	Subject	Max of the character lengths of words
(a)					4.5
		(a)			(b)
		(a) Spam URLs Feat	tures		(b)
1	URL		tures	Header	Day of week when email was sent
1 2	URL URL	Spam URLs Feat	tures 1 2	Header Payload	
1 2 3		Spam URLs Feat The number of all URLs in an email	1		Day of week when email was sent
	URL	Spam URLs Feat The number of all URLs in an email The number of unique URLs in an email	2	Payload	Day of week when email was sent Number of characters

- In general, Naive Bayes can use any set of features, not just words:
 - URLs, email addresses,
 Capitalization, ...
 - Domain knowledge crucial to performance

 If features = bag of words, each class is a unigram language model!

- If features = bag of words, each class is a unigram language model!
- For class c, assigning each word: P(w | c)

assigning sentence:
$$P(S | c) = \prod_{w \in S} P(w | c)$$

- If features = bag of words, each class is a unigram language model!
- For class c, assigning each word: P(w | c)

assigning sentence:
$$P(S | c) = \prod_{w \in S} P(w | c)$$

Class	pos					
0.1			love	this	fun	film
0.1	love					
0.01	this	0.1	0.1	.05	0.01	0.1
0.05	fun					
0.1	film			P(s	pos)	= 0.000005

• Which class assigns the higher probability to s?

Model pos				
0.1				
0.1	love			
0.01	this			
0.05	fun			
0.1	film			

Model neg					
0.2					
0.001	love				
0.01	this				
0.005	fun				
0.1	film				

<u> </u>	love	this	fun	film
0.1 0.2	0.10.001	0.01 0.01	0.05 0.005	0.1 0.1
	P(s pos	s) ? P(s	neg)	

• Which class assigns the higher probability to s?

Model pos				
0.1				
0.1	love			
0.01	this			
0.05	fun			
0.1	film			

<u> </u>	love	this	fun	film
0.1 0.2	0.1 0.001	0.01 0.01	0.05	0.1 0.1
	P(s po	s) > P(s	neg)	

Consider binary classification

- Consider binary classification
- Table of predictions

- Consider binary classification
- Table of predictions

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

- Consider binary classification
- Table of predictions

Predicted

Truth

PositiveNegativePositive1005Negative45100

Confusion Matrix

- Consider binary classification
- Table of predictions

Predicted

Truth

PositiveNegativePositive1005Negative45100

Confusion Matrix

- Consider binary classification
- Table of predictions

Truth

PositiveNegativePositive1005Negative45100

• Ideally, we want:

Predicted

Confusion Matrix

Consider binary classification

Table of predictions

Truth

Confusion Matrix

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

• Ideally, we want:

	Positive	Negative
Positive	145	0
Negative	0	105

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

• True positive: Predicted + and actual +

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

- True positive: Predicted + and actual +
- True negative: Predicted and actual -

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

Truth

	Positive	Negative
Positive	100	5
Negative	45	100

$$Accuracy = \frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

- True positive: Predicted + and actual +
- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

- True negative: Predicted and actual -
- False positive: Predicted + and actual -
- False negative: Predicted and actual +

Accuracy =
$$\frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Coarse metric

Truth

Predicted

	Positive	Negative
Positive	100	5
Negative	45	100

	Positive	Negative
Positive	100	25
Negative	25	100

Accuracy =
$$\frac{TP + TN}{Total} = \frac{200}{250} = 80\%$$

Coarse metric

Both have same accuracy, but clearly the models are behaving very differently

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

• Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

Recall: % of correct items selected

• Precision: % of selected classes that are correct

$$Precision(+) = \frac{TP}{TP + FP}$$

$$Precision(-) = \frac{TN}{TN + FN}$$

Recall: % of correct items selected

Recall(+) =
$$\frac{TP}{TP + FN}$$
 Recall(-) = $\frac{TN}{TN + FP}$

Combined measure using precision and recall

• Combined measure using precision and recall

• Harmonic mean of Precision and Recall

- Combined measure using precision and recall
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

- Combined measure using precision and recall
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

- Combined measure using precision and recall
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Or more generally,

- Combined measure using precision and recall
- Harmonic mean of Precision and Recall

$$F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Or more generally,

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Choosing Beta

Truth

Predicted

	Positive	Negative
Positive	200	100
Negative	50	100

$$F_{\beta} = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$$

Which value of Beta maximizes F_{β} for the positive class?

A.
$$\beta = 0.5$$

B. $\beta = 1$

B.
$$\beta = 1$$

C.
$$\beta = 2$$

Aggregating scores

- We now have Precision, Recall, F1 for each class
- Can we combine them for an overall score?
 - Macro-average: Compute for each class, then average
 - Micro-average: Collect predictions for all classes and jointly evaluate

Macro vs Micro average

Class 1

	Truth:	Truth:
	yes	no
Classifier: yes	10	10
Classifier: no	10	970

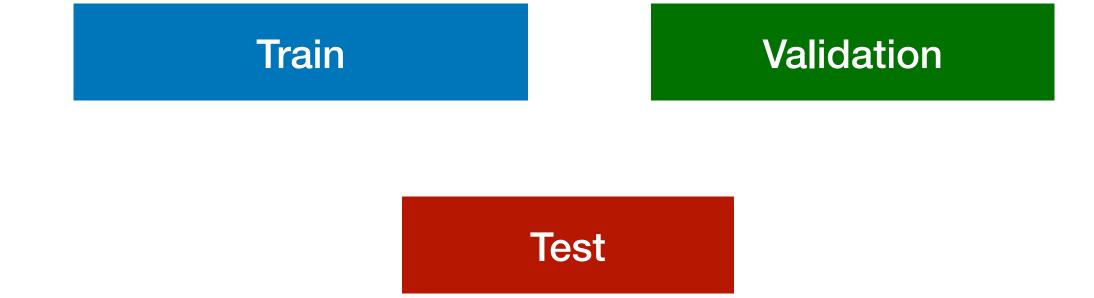
Class 2

	Truth:	Truth:
	yes	no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth:	Truth:
	yes	no
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes



• Choose a metric: Precision/Recall/F1

Train Validation

Test

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

Train Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

• Finally evaluate on 'unseen' test set

Train Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

• Finally evaluate on 'unseen' test set

• Choice of data splits may affect your evaluation

Train Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

• Finally evaluate on 'unseen' test set

• Choice of data splits may affect your evaluation

Cross-validation:

Train

Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

- Finally evaluate on 'unseen' test set
- Choice of data splits may affect your evaluation
- Cross-validation:
 - Repeatedly sample several train-val splits

Train Validation

• Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

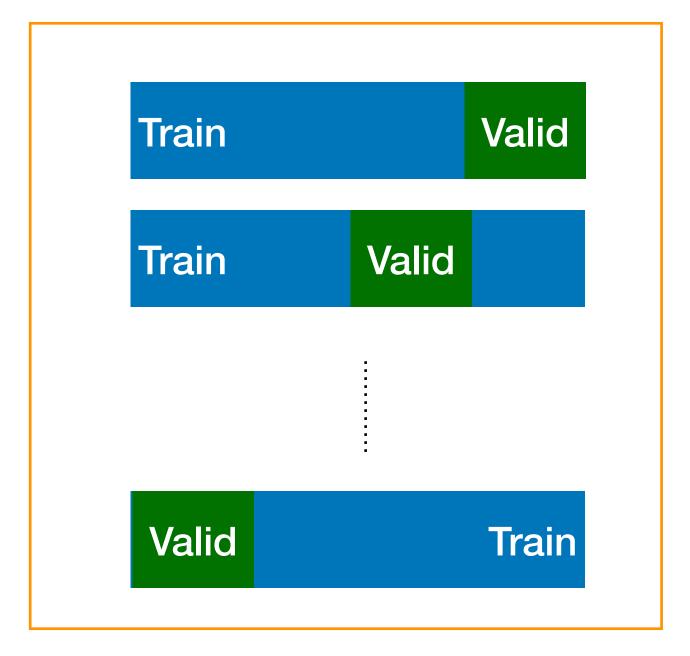
• Finally evaluate on 'unseen' test set

• Choice of data splits may affect your evaluation

Cross-validation:

Repeatedly sample several train-val splits

Train Validation



Choose a metric: Precision/Recall/F1

• Optimize for metric on Validation (aka Development) set

• Finally evaluate on 'unseen' test set

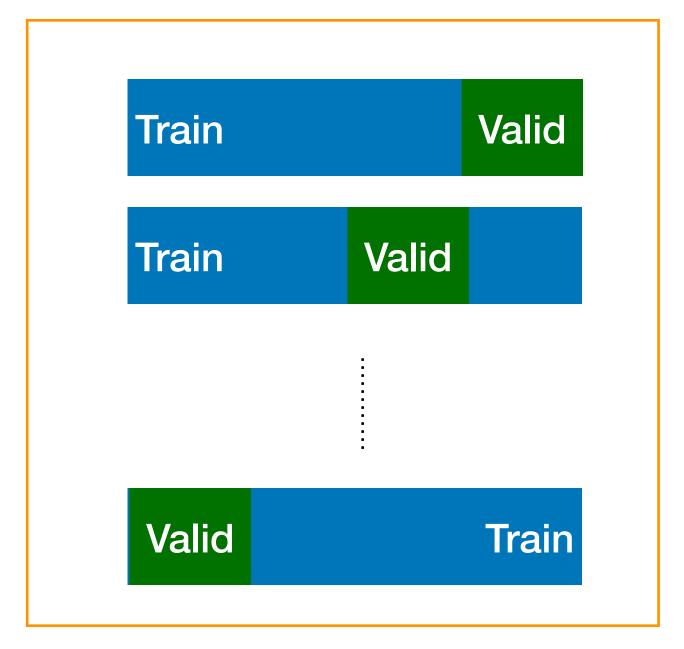
• Choice of data splits may affect your evaluation

Cross-validation:

• Repeatedly sample several train-val splits

Reduces bias due to sampling errors

Train Validation



Very fast, low storage requirements

- Very fast, low storage requirements
- Robust to irrelevant features

Irrelevant features cancel each other without affecting results

- Very fast, low storage requirements
- Robust to irrelevant features
 Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
 Decision trees suffer from fragmentation in such cases especially if little data

- Very fast, low storage requirements
- Robust to irrelevant features
 Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
 Decision trees suffer from fragmentation in such cases especially if little data
- Optimal if the independence assumptions hold

 If assumed independence is correct, this is the 'Bayes optimal' classifier

- Very fast, low storage requirements
- Robust to irrelevant features
 Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
 Decision trees suffer from fragmentation in such cases especially if little data
- Optimal if the independence assumptions hold
 If assumed independence is correct, this is the 'Bayes optimal' classifier
- A good dependable baseline for text classification
 However, other classifiers can give better accuracy

- Small data sizes:
 - Naive Bayes is great! (high bias)
 - Rule-based classifiers might work well too

- Small data sizes:
 - Naive Bayes is great! (high bias)
 - Rule-based classifiers might work well too
- Medium size datasets:
 - More advanced classifiers might perform better (e.g. SVM, logistic regression)

- Small data sizes:
 - Naive Bayes is great! (high bias)
 - Rule-based classifiers might work well too
- Medium size datasets:
 - More advanced classifiers might perform better (e.g. SVM, logistic regression)
- Large datasets:
 - Naive Bayes becomes competitive again (although most classifiers work well)

x1	x2 Class: x ₁ XOR x ₂	
1	1	0
0	1	1
1	0	1
0	0	0

x1	x2 Class: x ₁ XOR x ₂	
1	1	0
0	1	1
1	0	1
0	0	0

x1	x2 Class: x ₁ XOR x ₂	
1	1	0
0	1	1
1	0	1
0	0	0

Independence assumptions are too strong

x1	x2 Class: x ₁ XOR x ₂	
1	1	0
0	1	1
1	0	1
0	0	0

• XOR problem: Naive Bayes cannot learn a decision boundary

x1	x2	x2 Class: x ₁ XOR x ₂	
1	1	0	
0	1	1	
1	0	1	
0	0	0	

- XOR problem: Naive Bayes cannot learn a decision boundary
- Both variables are jointly required to predict class

Class imbalance

• One or more classes have more instances than others

- One or more classes have more instances than others
- Data skew causes NB to prefer one class over the other

- One or more classes have more instances than others
- Data skew causes NB to prefer one class over the other
- Potential solution: Complement Naive Bayes (Rennie et al., 2003)

- One or more classes have more instances than others
- Data skew causes NB to prefer one class over the other
- Potential solution: Complement Naive Bayes (Rennie et al., 2003)

$$\hat{P}(w; | C_j) = \sum_{c \neq c_j} (\text{out}(w_{i,c})) \qquad \text{occurs in classes}$$

$$\frac{\sum_{c \neq c_j} \sum_{w} (\text{out}(w_{i,c}))}{\sum_{c \neq c_j} \sum_{w} (\text{out}(w_{i,c}))}$$

Weight magnitude errors

Classes with larger weights are preferred

- Classes with larger weights are preferred
- 10 documents with class=MA and "Boston" occurring once each

- Classes with larger weights are preferred
- 10 documents with class=MA and "Boston" occurring once each
- 10 documents with class=CA and "San Francisco" occurring once each

- Classes with larger weights are preferred
- 10 documents with class=MA and "Boston" occurring once each
- 10 documents with class=CA and "San Francisco" occurring once each
- New document: "Boston Boston Boston San Francisco San Francisco"

- Classes with larger weights are preferred
- 10 documents with class=MA and "Boston" occurring once each
- 10 documents with class=CA and "San Francisco" occurring once each
- New document: "Boston Boston Boston San Francisco San Francisco"

Weight magnitude errors

- Classes with larger weights are preferred
- 10 documents with class=MA and "Boston" occurring once each
- 10 documents with class=CA and "San Francisco" occurring once each
- New document: "Boston Boston Boston San Francisco San Francisco"

P(class = CA | document) ? P(class = MA | document)

• Domain knowledge is crucial to selecting good features

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities
- Since log(xy) = log(x) + log(y)Better to sum logs of probabilities instead of multiplying probabilities

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities
- Since log(xy) = log(x) + log(y)
 Better to sum logs of probabilities instead of multiplying probabilities
- Class with highest un-normalized log probability score is still most probable

$$C_{NB} = \arg \max_{c_j \in C} \log P(c_j) + \sum_{i \in positions} \log P(x_i | c_j)$$

- Domain knowledge is crucial to selecting good features
- Handle class imbalance by re-weighting classes
- Use log scale operations instead of multiplying probabilities
- Since log(xy) = log(x) + log(y)
 Better to sum logs of probabilities instead of multiplying probabilities
- Class with highest un-normalized log probability score is still most probable

$$C_{NB} = \arg \max_{c_j \in C} \log P(c_j) + \sum_{i \in positions} \log P(x_i | c_j)$$

Model is now just max of sum of weights