=

COS 484/584

L4: Logistic regression

Spring 2021

Last class

e Supervised classification:
e Document to classity, d
e Setof classes, C = {c¢{,0y,...,C}

e Naive Bayes:

g - m\aMM PCQ> ?CA\C’>

C

Logistic Regression

« Boundary
« False samples

« True samples

Logistic Regression

e Powerful supervised model

« Boundary
« False samples

« True samples

(-

-

(-

W0

Logistic Regression

e Powerful supervised model

e Baseline approach for many NLP tasks

« Boundary
« False samples

 True samples

Logistic Regression

e Powerful supervised model

e Baseline approach for many NLP tasks

« Boundary
« False samples

« True samples

e Connections with neural networks

Logistic Regression

« Boundary
« False samples

« True samples

Powertul supervised model

Baseline approach for many NLP tasks

Connections with neural networks

Binary (two classes) or multinomial (>2 classes)

Discriminative Model

Discriminative Model

* |[ogistic Regression is a discriminative model

Discriminative Model

* |[ogistic Regression is a discriminative model

 Naive Bayes: generative model

Discriminative Model

é — axam&x PCC\ cl)

e |[ogistic Regression:

e Naive Bayes: 8: GG rA0 ?<C> & Cﬁl -
C

Using Logistic Regression

Using Logistic Regression

* |[nputs:

Using Logistic Regression

* |[nputs:

1. Classification instance in a feature representation

Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation

2. Classification function to compute y using P(y | x)

Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)

3. Loss function (for learning)

Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)

4. Optimization algorithm

Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)

4. Optimization algorithm

* Train phase: Learn the parameters of the model to minimize loss function

Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)

4. Optimization algorithm

* Train phase: Learn the parameters of the model to minimize loss function

* Test phase: Apply parameters to predict class given a new input x

|. Feature representation

e Input observation: x¥
* Feature vector: [x},X,,...,x,]

e Feature | of " input :)S'(i)

|. Feature representation

it 6
m | °
(0 | love this movie! It's sweet, 1 | the ‘
' . 4\ but with satirical humor. The Hfairy always | it 0

. - } always lover
Input observation: x o e Lo i and 3
and ggen are seen 2
adventure scenes are fun... friend : anyone yet 1

o "Kappy dialogue
It manages to be whimsical P, IR would 1
and romantic while laughing 2 Vir\],vgreet of satirical whimsical 1
at the conventions of the - Whi? |yt to movie. it - times 1
* Feature vector: [x},X,,...,x,] fairy tale genre. | would several " yar e | sweet 1
recommend it to just about ihe 208IN it the |mor satirical 1
, . € seen would adventure 1
anyone. |'ve seen it several to scenes | the manages genre ’
times, gnd I'm always happy fun | the 4 €5 411 fairy ’
. to see it again whenever | and ot . numor ’
f . . (l) have a friend who hasn't whenever have while | have 1
e Feature | of I Input : x. . conventions

] seen it yet! with great 1

Bag of words

2. Classification function

2. Classification function

e Given: Input feature vector [x;,X,, ..., X,]

2. Classification function

e Given: Input feature vector [x;,X,, ..., X,]

e Output: P(y =1|x)and P(y =0]x)

(binary classitication)

2. Classification function

e Given: Input feature vector [x;,X,, ..., X,]

e Output: P(y =1|x)and P(y =0]x)

(binary classitication)

e Require a function, F : RY - [0,1]

2. Classification function

Given: Input feature vector [x}, X5, ..., x|

Output: P(y = 1|x) and P(y = 0] x)

(binary classitication)
Require a function, F : RY - [0,1]

Sigmoid:

2. Classification function

Given: Input feature vector [x}, X5, ..., x|

Output: P(y = 1|x) and P(y = 0] x)

(binary classitication)
Require a function, F : RY - [0,1]

Sigmoid: i

2. Classification function

Given: Input feature vector [x}, X5, ..., x|

Output: P(y = 1|x) and P(y = 0] x)

(binary classitication)
Require a function, F : RY - [0,1]

Sigmoid: i

Weights and Biases

Weights and Biases

 Which features are important and how much?

Weights and Biases

 Which features are important and how much?

® |earn a vector of weights and a bias

Weights and Biases

 Which features are important and how much?

® |earn a vector of weights and a bias

e \Weights: Vector of real numbers, w = [w,w,,...,w/]

Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias
Weights: Vector of real numbers, w = [w,w,, ..., w/]

Bias: Scalar intercept, b

Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias
Weights: Vector of real numbers, w = [w,w,, ..., w/]

Bias: Scalar intercept, b

d
Given an instance, x: 7 = Z wx,+b orz=w-x+0b
i=1

Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias
Weights: Vector of real numbers, w = [w,w,, ..., w/]

Bias: Scalar intercept, b

d
Given an instance, x: 7 = Z wx,+b orz=w-x+0b
i=1

ew-x+b

1 + ew-x+b

Therefore, y =

What is the bias?

¢ | et's say we have a feature that Iis always set to 1
regardless of what the input text is.

(Credits: Richard Socher)

What is the bias?

¢ | et's say we have a feature that Iis always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

(Credits: Richard Socher)

Il

What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

okay... what Is the best set of
weights for it”?

(Credits: Richard Socher)

Il

What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

okay... what Is the best set of

X + b | |
v weights for it?

(Credits: Richard Socher)

What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature? eVt oW

okay... what Is the best set of

X + b | |
v weights for it”

(Credits: Richard Socher)

Putting it together

Putting it together

e Given x, compute z=w - -x+b

Putting it together

e Given x, compute z=w - -x+b

o Compute probabilities: P(y = 1|x) =
1l +e*

Putting it together

e Given x, compute z=w - -x+b

o Compute probabilities: P(y = 1|x) =
1l +e*

Py=1)=ow-x+b) = s

Putting it together

e Given x, compute z=w - -x+b

o Compute probabilities: P(y = 1|x) =
1l +e*

Py=1)=ow-x+0b) =

1 + e—w-x+b)

Py=0)=1—-0o(w-x+Db)
1 e—(w-x+b)

—3 | —
1 + e—(w-x+b) 1 + e—(w-x+b)

Putting it together

e Given x, compute z=w - -x+b

o Compute probabilities: P(y = 1|x) =
1l +e*

Py=1)=oc(w-x+b) = s

Py=0)=1—-0o(w-x+Db)
1 e—(w-x+b)

—3 | —
1 + e—(w-x+b) 1 + e—(w-x+b)

o Decision boundary:

- {1 if P(y =1]x)> 0.5

0 otherwise

Example: Sentiment classification

- X3 =1 TTem-—o___
It's @There are virtually @Surprises , and the writing isGecond-rate.

So why was it so@my@ For one thing , the cast is
Anotheouch 1s the music (D.was overcome with the urge to get off
the CO\UCII and start,dancing . It sucked@m ,\a\nd 1t'll do the same 1o to_ou) .

N '/ \ ’/

) x1=3 x5=0 x6=4. 15 X4_3
Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
o { 1 if “no” € doc |
0 otherwise
x4 count(lst and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
’ 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

p(+[x) = P(Y = 1]x)

o(w-x+Db)
= 0([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.15] +0.1)
= 0(.805)
= 0.69
p(—=x)=PY =0|x) = l—oc(w-x+b)
= 0.31

Feature design

Feature design

* Most important rule: Data is

key!

Feature design

* Most important rule: Data is

key!

e Linguistic intuition (e.g. part

of speech tags, parse trees)

Feature design

Most important rule: Data is

key!

Linguistic intuition (e.g. part

of speech tags, parse trees)

Complex combinations

Feature design

Most important rule: Data is

key!

Linguistic intuition (e.g. part

of speech tags, parse trees)

Complex combinations

if “Case(w;) = Lower”

X1 = X :
1 otherwise

N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

N 7

Feature design

Most important rule: Data is e Feature templates

key!

Linguistic intuition (e.g. part

of speech tags, parse trees)

Complex combinations

if “Case(w;) = Lower”

X1 = < :
l otherwise

\N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

\N /7

Feature design

Most important rule: Data is e Feature templates

key!

* Sparse representations, hash

Linguistic intuition (e.g. part only seen features into index

of speech tags, parse trees)

Complex combinations

if “Case(w;) = Lower”

X1 = < :
1 otherwise

\N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

N /7

Feature design

* Most important rule: Data is e Feature templates

key!

* Sparse representations, hash

Linguistic intuition (e.g. part only seen features into index

of speech tags, parse trees)
e Ex. Trigram(logistic regression
e Complex combinations

classifier) = Feature #78

if “Case(w;) = Lower”

X1 = < :
1 otherwise

\N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

N /7

Feature design

* Most important rule: Data is e Feature templates

key!

* Sparse representations, hash

Linguistic intuition (e.g. part only seen features into index

of speech tags, parse trees)
e Ex. Trigram(logistic regression
e Complex combinations

classifier) = Feature #78

if “Case(w;) = Lower” * Advanced: Representation

otherwise . . .
learning (we will see this later!)

N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

N /7

Logistic Regression: what’s good and what’s not

Logistic Regression: what’s good and what’s not

e More freedom in designing features

Logistic Regression: what’s good and what’s not

e More freedom in designing features

* No strong independence assumptions like Naive Bayes

Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated teatures (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated teatures (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

e Can even have the same feature twice! (why?)

Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB
e Can even have the same feature twice! (why?)

* May not work well on small datasets (compared to Naive Bayes)

Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB
e Can even have the same feature twice! (why?)
* May not work well on small datasets (compared to Naive Bayes)

* Interpreting learned weights can be challenging

3. Learning

3. Learning

e We have our classification function - how to assign

weights and bias?

3. Learning

e We have our classification function - how to assign

weights and bias?

e Goal: predicted label y as close as possible to actual label y

3. Learning

e We have our classification function - how to assign

weights and bias?

e Goal: predicted label y as close as possible to actual label y

e Distance metric/Loss function between y and y : L(y, y)

3. Learning

e We have our classification function - how to assign

weights and bias?

e Goal: predicted label y as close as possible to actual label y

e Distance metric/Loss function between y and y : L(y, y)

e Optimization algorithm for updating weights

Loss function

Loss function

e Assume y =o(w - x + b)

Loss function

e Assume y =o(w - x + b)

e [L(y,y) = Measure of difference between y and y. But what tform?

Loss function

e Assume y =o(w - x + b)
e [L(y,y) = Measure of difference between y and y. But what tform?

e Maximum likelihood estimation (conditional):

Loss function

e Assume y =o(w - x + b)
e [L(y,y) = Measure of difference between y and y. But what tform?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true

labels y paired with input x

Loss function

e Assume y =o(w - x + b)
e [L(y,y) = Measure of difference between y and y. But what tform?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true

labels y paired with input x

e Similar to language models!

Loss function

e Assume y =o(w - x + b)
e [L(y,y) = Measure of difference between y and y. But what tform?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true

labels y paired with input x

e Similar to language models!

e maxlog P(w,|w,_.,...,w,_;) given a corpus

Cross Entropy loss for a single instance

Cross Entropy loss for a single instance

e Assume a single data point (x,y) and two classes

Cross Entropy loss for a single instance

e Assume a single data point (x,y) and two classes

e Classifier probability: P(y|x) = $ (1 — $)™

Cross Entropy loss for a single instance

e Assume a single data point (x,y) and two classes
e Classifier probability: P(y|x) = $ (1 — $)™

e Log probability: log P(y|x) = log[37(1 — $)' 7]
=ylogy + (1 — y)log(l —y)

Cross Entropy loss for a single instance

Assume a single data point (x, y) and two classes
Classifier probability: P(y|x) = $ 7(1 — $)! >

Log probability: log P(y|x) = log[3”(1 — $)!7]
= ylogy + (1 — y)log(l —y)

Loss: —log P(y|x) = — [ylogy + (1 — y)log(1l — y]

Cross Entropy loss for a single instance

Assume a single data point (x, y) and two classes
Classifier probability: P(y|x) = $ 7(1 — $)! >

Log probability: log P(y|x) = log[3”(1 — $)!7]
= ylogy + (1 — y)log(l —y)

Loss: —log P(y|x) = — [ylogy + (1 — y)log(1l — y]

e y=]1 = —logy, and y=0 = —log(l —y)

Cross Entropy loss

Cross Entropy loss

e Assume n data points (x(i),y(i))

Cross Entropy loss

e Assume n data points (x(i),y(i))

o Classifier probability: I P(y|x) = IT"_,3*(1 — $)' ™

Cross Entropy loss

e Assume n data points (x(i),y(i))

o Classifier probability: I P(y|x) = IT"_,3*(1 — $)' ™

, Loss: —logHP(y | x) = — Z log P(y | x)
i=1 i=1

Leg=—) [ylog9+ (1 — y)log(l - $)]
=1

Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise

x¢ log(word count of doc) In(64) =4.15

Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp count(negative lexicon) € doc) 2
- { I if “no” € doc |
’ 0 otherwise
x4 count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢ log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

e |fy =1 (positive sentiment), L = —10g(0.69) = 0.37

e |fy =0 (negative sentiment), L = —10g(0.31) = 1.17

Properties of CE Loss

Il

Properties of CE Loss

Il

o Lep=— 2 [y log§? + (1 = yMlog(1 — 3]
=1

Il

Properties of CE Loss

o Leg=—) [y?1log3? + (1 — ylog(1 — 5?)]
=1

e Ranges from O (pertect predictions) to oo

Properties of CE Loss

Il

o Lep=— 2 [y log§? + (1 = yMlog(1 — 3]
=1

e Ranges from O (pertect predictions) to oo

e | ower the value, better the classifier

Properties of CE Loss

Il

Leg=—) [y?log$? + (1 — yD)log(l —)]
=1

Ranges from O (pertect predictions) to oo

Lower the value, better the classifier

Cross-entropy between the true distribution P(y|x) and
predicted distribution P(y | x)

4. Optimization

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n] < N
6 = arg min — Z LCE(y(’), xW: 0)
B e

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n] < N
6 = arg min — Z LCE(y(’), xW: 0)
B e

e (Gradient descent:

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n] < N
6 = arg min — Z LCE(y(’), xW: 0)
B e

e (Gradient descent:

e Find direction of steepest slope

4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n] < N
6 = arg min — Z LCE(y(’), xW: 0)
o N

e (Gradient descent:

e Find direction of steepest slope

* Move in the opposite direction

Gradient descent (1-D)

Cost

Learning step

Minimum

Random W W
initial value

d
9t+1 — 9" — p— X;@
ndgf()

Gradient descent for LR

e Cross entropy loss for logistic regression is convex (i.e. has only

one global minimum)
* No local minima to get stuck in

* Deep neural networks are not so easy

Local Maxima

LocallMaxima
¢ NOn_COnveX Local Maxima

Local Minima

Local Minima

Learning Rate

w' W w' W
Too small: converge Too big: overshoot and
very slowly even diverge

Learning Rate

o Updates: 01 = 9" — nif(x 0)
. dg) fiw) fiw)

w* W w' w
Too small: converge Too big: overshoot and
very slowly even diverge

Learning Rate

d
¢ UpdateS: HH_I =0 _%f(xa 9) fiw) fiw)

w' W w' W
Too small: converge Too big: overshoot and
very slowly even diverge

Learning Rate

d
o Updates: 0+ =o' —%f (x; 0) fiw) fiw)

e Magnitude of movement along gradient

w' w w' W
Too small: converge Too big: overshoot and
very slowly even diverge

Learning Rate

d
. Uodat :9”1:6”—@— X0
pdates d@f()

e Magnitude of movement along gradient

e Higher/faster learning rate = larger

updates to parameters

fiw)

w' w
Too small: converge
very slowly

fiw)

w' W
Too big: overshoot and
even diverge

Gradient descent with vector weights

Cost(w,b)

Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:

Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:

3o L(f(x;6),)
S2-L(f(x:0),y)

dwn

VoL(f(x;0),y)) =

ai;n L(f(x’ 9) 7y)J

Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:

3o L(f(x;6),)
°L(f(x:6).y)

dwn

VGL(f(x; 9),)’)) —

ai;n L(f(x’ 9) 7y)J

e Updates: 0tD = 0" — n VL(f(x; 0),y)

Gradient for logistic regression

Gradient for logistic regression

o Lep=-— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

Gradient for logistic regression

o Lep=-— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

n

dL--(w, b . o
, Qradient, ce(r:) = Z [o(w - xY + b) — y(z)]xj(z)

aw:
J i=1

Gradient for logistic regression

o Lop=— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

dL b -
e, D) = Z [o(w - x'V + b) — y(’)]x(l)

, Qradient,

Gradient for logistic regression

o Lop=— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

dL b -
e, D) = Z [o(w - x'V + b) — y(’)]x(l)

, Qradient,

Gradient for logistic regression

o Lop=— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

, Qradient, Lerw.) = Z[g(w x(’)+b) y(’)]x(’)
dw; -
pq{% bmw\wa
o Q?MQ&&J\O"\ /
dL(w, b) ‘\“P“JV
ceW: — \ () ()
. — D [o(w - x4 b) -y {kw

=1

Stochastic Gradient Descent

* Online optimization

e Compute loss and
minimize after each

training example

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function

f 1s a function parameterized by 6

X 18 the set of training inputs x(l) x(2) e x(”)

y is the set of training outputs (labels) y() 32 yn)
00

repeat til done # see caption
For each training tuple (x (), yli)) (in random order)

1. Optional (for reportlng) # How are we doing on this tuple?

Compute y p) = f (0) # What is our estimated output y?

Compute the loss L(y() y()) # How far off is)7(i)) from the true output y(!)?
2. g VoL(f(x\);0),y)) # How should we move 6 to maximize loss?
3.0<-60 —ng # Go the other way 1nstead

return 6

Stochastic Gradient Descent

* Online optimization

e Compute loss and

minimize after each

training example

RN
jv\ Q}G\V\ (R

Lo SS

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
where: L 1s the loss function

f 1s a function parameterized by 6

X 18 the set of training inputs x(l) x(2) e x(”)

y is the set of training outputs (labels) y() 32 yn)
00

repeat til done # see caption
For each training tuple (x ().)) (in random order)

I. Optional (for reportlng) # How are we doing on this tuple?
Compute y p) = f (0) # What is our estimated output y?
> Compute the loss L(() y()) # How far off is $(!)) from the true output y(9?
2. g VoL(f(x\); 9),y(’)) # How should we move 6 to maximize loss?
3.0—-60 —ng # Go the other way instead

return 6

Stochastic Gradient Descent

* Online optimization

e Compute loss and
minimize after each

training example

Gradient Descent ~—

Regularization

Regularization

n
, lraining objective: 6 = arg max Z log P(yW | x)
0
i=1

Regularization

n
, lraining objective: 6 = arg max Z log P(yW | x)
0
i=1

* This might fit the training set too well! (including noisy features)

Regularization

n
, lraining objective: 6 = arg max Z log P(yW | x)
0
i=1

* This might fit the training set too well! (including noisy features)

 Poor generalization to the unseen test set — Overfitting

Regularization

n
Training objective: 0 = arg max Z log P(y(i) \x(i))
0
i=1

This might fit the training set too well! (including noisy teatures)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overtitting

0 = arg max [Z log P(yW | xW) — aR(H)]
0
i=1

Regularization

Training objective: 0 = arg maX Z log P(y(l) \x(’))
=1

This might fit the training set too well! (including noisy teatures)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overtitting

0 = arg max Z log P(y |x(’)) — aR(é’)]
=1

\/ Doralt g}&

i)

() Q(Z\\\+5

L2 regularization

L2 regularization

d
. ROY=110]1=) 07
j=1

L2 regularization
, d
— _ 2
. RO=110]1>=) 0
j=1

e Euclidean distance of weight vector @ from origin

L2 regularization
, d
— _ 2
. RO=110]1>=) 0
j=1

e Euclidean distance of weight vector @ from origin

e |2 reqularized objective:

L2 regularization
, d
— _ 2
. RO=110]1>=) 0
j=1

e Euclidean distance of weight vector @ from origin

e |2 reqularized objective:

n d
é’ = arg max [Z lOg P(y(i) ‘x(i)) — Z ‘9]2]
0
=1 j=1

L1 Regularization

L1 Regularization

d
. RO=11011,=) 16
j=1

L1 Regularization
d
. RO=11011,=) 16
j=1

e Manhattan distance of weight vector @ from origin

L1 Regularization
d
. RO=11011,=) 16
j=1

e Manhattan distance of weight vector @ from origin

e |1 reqularized objective:

L1 Regularization
d
. RO=11011,=) 16
j=1

e Manhattan distance of weight vector @ from origin

e |1 reqularized objective:

" d
f = arg max [Z log P(y|xW) — 052 \‘9]"]
0
i=1 J=1

L2 vs LI regularization

A

L1 regularization

AT

L

L2 regularization

L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

A T2

\|" \

L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

e |1is complex since the derivative of |0] is

not continuous at O

L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

e |1is complex since the derivative of |0] is

not continuous at O

e L2 leads to many small weights (due to % term)

L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

AT

e |1is complex since the derivative of |0] is

not continuous at O ol

e L2 leads to many small weights (due to % term)

e |1 prefers sparse weight vectors with many

weights set to O (i.e. far fewer features used)

L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

e |1is complex since the derivative of |0] is

not continuous at O

e L2 leads to many small weights (due to % term)

e |1 prefers sparse weight vectors with many

weights set to O (i.e. far fewer features used)

Multinomial Logistic Regression

Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

e Needtomodel P(y=c|x) VceC

Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

 Generalize sigmoid function to softmax

Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

 Generalize sigmoid function to softmax

softmax(z;) = 1 <i<Lk

Zlf_l ey

]_

Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

 Generalize sigmoid function to softmax

el

Zlle e

J

1 <i<k

& N o B\W\O\\ ;SG\JF\,Oﬂ

softmax(z;) =

Softmax

Softmax

e Similar to sigmoid, softmax squashes values towards O or 1

Softmax

e Similar to sigmoid, softmax squashes values towards O or 1

o |17=10,1,2,3.4], then

Softmax

e Similar to sigmoid, softmax squashes values towards O or 1
o |17=10,1,2,3.4], then

e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

Softmax

e Similar to sigmoid, softmax squashes values towards O or 1
o |17=10,1,2,3.4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

Softmax

e Similar to sigmoid, softmax squashes values towards O or 1
o |17=10,1,2,3.4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

w. - x+b

C

P(y =cl|x) =

l.‘ Wi x+b;
j=1

Features in multinomial LR

* Features need to include both input (x) and class (c)

* |Implicit in binary case

Var Definition Wt
AOD | oeruise 3
A {0 oterwive . 2
ACD {0 oerwise 12

Learning

Learning

e Generalize binary loss to multinomial CE loss:

k
Lep(3.y) ==) 1y = cJlog P(y = c|»)

c=1

k
=—21{y=c}10g p
c=1 =1

W Xx+b,

ewj-x+bj

Learning

e Generalize binary loss to multinomial CE loss: Binary CE Loss:

k
Lep(3,y) = — Z Iy = c}log P(y = c| x) —log P(y|x) = — [ylogy + (1 — y)log(1 —)]

c=1

k ewc-x+bc

Wi X+Db;
c=1]:1 e J J

Learning

e Generalize binary loss to multinomial CE loss: Binary CE Loss:

k
Lep(3,y) = — Z Iy = c}log P(y = c| x) —log P(y|x) = = [lyJog$ + (1 — y)log(1l —)]

c=1

k W x+b,

eC
=—21{y=c}10g p

Wi X+Db;
c=1 ijl € ’

Learning

e Generalize binezry loss to multinomial CE loss: Binary CE Loss:
Lep(y,y) = — Z I{y = c}log P(y = c|x) —log P(y|x) = — [ylog$ + (1 — y)log(1l —)]
- _ ; 1{y = c}llog 25;1 R

e Gradient:

Learning

e Generalize binary loss to multinomial CE loss: Binary CE Loss:
k
Lep(y,y) = — Z I{y = ctog P(y = c|x) —log P(y|x) = — [ylog $ + (1 — y)log(1 —)]
c=1
i ewc-x+bc
= — 1{y = c}flog p
o Zj:1 ewj-x+bj
e Gradient:
dL
— =—(l{y=c} = Py =cl0
dw.
ewc-x+bc
= — 1{y — C} P ewj.x+bj X

j=1

Give us feedback!

https://forms.gle/XJXbFLsJCtSNsjCUA

