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Last class

e Supervised classification:
e Document to classity, d
e Setof classes, C = {c¢{,0y,...,C}

e Naive Bayes:

g - m\aMM PCQ> ?CA\C’>

C
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Logistic Regression

« Boundary
« False samples

« True samples

Powertul supervised model

Baseline approach for many NLP tasks

Connections with neural networks

Binary (two classes) or multinomial (>2 classes)
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Discriminative Model

é — axam&x PCC\ cl)

e |[ogistic Regression:

e Naive Bayes: 8: GG rA0 ?<C> & Cﬁl -
C
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Using Logistic Regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)

4. Optimization algorithm

* Train phase: Learn the parameters of the model to minimize loss function

* Test phase: Apply parameters to predict class given a new input x



|. Feature representation

e Input observation: x¥
* Feature vector: [x},X,,...,x,]

e Feature | of " input :)S'(i)



|. Feature representation

it 6
m | °
(0 | love this movie! It's sweet, 1 | the ‘
' . 4\ but with satirical humor. The Hfairy always | it 0

. - } always lover
Input observation: x o e Lo i and 3
and ggen are seen 2
adventure scenes are fun... friend : anyone yet 1

o "Kappy dialogue
It manages to be whimsical P, IR would 1
and romantic while laughing 2 Vir\],vgreet of satirical whimsical 1
at the conventions of the - Whi? |yt to movie. it - times 1
* Feature vector: [x},X,,...,x,] fairy tale genre. | would several " yar e | sweet 1
recommend it to just about ihe 208IN it the |mor satirical 1
, . €  seen would adventure 1
anyone. |'ve seen it several to scenes | the manages genre ’
times, gnd I'm always happy fun | the 4 €5 411 fairy ’
. to see it again whenever | and ot . numor ’
f . . (l) have a friend who hasn't whenever have while | have 1
e Feature | of I Input : x. . conventions

] seen it yet! with great 1

Bag of words
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Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias
Weights: Vector of real numbers, w = [w,w,, ..., w/]

Bias: Scalar intercept, b

d
Given an instance, x: 7 = Z wx,+b orz=w-x+0b
i=1

ew-x+b

1 + ew-x+b

Therefore, y =



What is the bias?

¢ | et's say we have a feature that Iis always set to 1
regardless of what the input text is.

(Credits: Richard Socher)



What is the bias?

¢ | et's say we have a feature that Iis always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

(Credits: Richard Socher)



Il

What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

okay... what Is the best set of
weights for it”?

(Credits: Richard Socher)



Il

What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature?

okay... what Is the best set of

X + b | |
v weights for it?

(Credits: Richard Socher)



What is the bias?

¢ | et’'s say we have a feature that Is always set to 1
regardless of what the input text is.

e [his is clearly not an informative feature. However,
let’s say It was the only one | had...

first, how many weights do |
need to learn for this feature? eVt oW

okay... what Is the best set of

X + b | |
v weights for it”

(Credits: Richard Socher)
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Putting it together

e Given x, compute z=w - -x+b

o Compute probabilities: P(y = 1|x) =
1l +e*

Py=1)=oc(w-x+b) = s

Py=0)=1—-0o(w-x+Db)
1 e—(w-x+b)

—3 | —
1 + e—(w-x+b) 1 + e—(w-x+b)

o Decision boundary:

- {1 if P(y =1]x)> 0.5

0 otherwise



Example: Sentiment classification

- X3 =1 TTem-—o___
It's @There are virtually @Surprises , and the writing isGecond-rate.

So why was it so@my@ For one thing , the cast is
Anotheouch 1s the music (D.was overcome with the urge to get off
the CO\UCII and start,dancing . It sucked@m ,\a\nd 1t'll do the same 1o to_ou) .

N '/ \ ’/

) x1=3 x5=0 x6=4. 15 X4_3
Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
o { 1 if “no” € doc |
0 otherwise
x4  count(lst and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise

x¢  log(word count of doc) In(64) =4.15




Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise

x¢  log(word count of doc) In(64) =4.15



Example: Sentiment classification

Var  Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
’ 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢  log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1



Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢  log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

p(+[x) = P(Y = 1]x)

o(w-x+Db)
= 0([2.5,-5.0,—1.2,0.5,2.0,0.7] - [3,2,1,3,0,4.15] +0.1)
= 0(.805)
= 0.69
p(—=x)=PY =0|x) = l—oc(w-x+b)
= 0.31
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Feature design

* Most important rule: Data is e Feature templates

key!

* Sparse representations, hash

Linguistic intuition (e.g. part only seen features into index

of speech tags, parse trees)
e Ex. Trigram(logistic regression
e Complex combinations

classifier) = Feature #78

if “Case(w;) = Lower” * Advanced: Representation

otherwise . . .
learning (we will see this later!)

N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

N /7
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Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB
e Can even have the same feature twice! (why?)
* May not work well on small datasets (compared to Naive Bayes)

* Interpreting learned weights can be challenging
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3. Learning

e We have our classification function - how to assign

weights and bias?

e Goal: predicted label y as close as possible to actual label y

e Distance metric/Loss function between y and y : L(y, y)

e Optimization algorithm for updating weights
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Loss function

e Assume y =o(w - x + b)
e [L(y,y) = Measure of difference between y and y. But what tform?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true

labels y paired with input x

e Similar to language models!

e maxlog P(w,|w,_.,...,w,_;) given a corpus
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Cross Entropy loss for a single instance

Assume a single data point (x, y) and two classes
Classifier probability: P(y|x) = $ 7(1 — $)! >

Log probability: log P(y|x) = log[3”(1 — $)!7]
= ylogy + (1 — y)log(l —y)

Loss: —log P(y|x) = — [ylogy + (1 — y)log(1l — y]

e y=]1 = —logy, and y=0 = —log(l —y)
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Cross Entropy loss

e Assume n data points (x(i),y(i))

o Classifier probability: I P(y|x) = IT"_,3*(1 — $)' ™

, Loss: —logHP(y | x) = — Z log P(y | x)
i=1 i=1

Leg=— ) [ylog9+ (1 — y)log(l - $)]
=1
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Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { I if “no” € doc |
’ 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢  log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1

e |fy =1 (positive sentiment), L = —10g(0.69) = 0.37

e |fy =0 (negative sentiment), L = —10g(0.31) = 1.17
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Properties of CE Loss

Il

Leg=— ) [y?log$? + (1 — yD)log(l — )]
=1

Ranges from O (pertect predictions) to oo

Lower the value, better the classifier

Cross-entropy between the true distribution P(y|x) and
predicted distribution P(y | x)
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4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n ] < N
6 = arg min — Z LCE(y(’), xW: 0)
o N

e (Gradient descent:

e Find direction of steepest slope

* Move in the opposite direction



Gradient descent (1-D)

Cost

Learning step

Minimum

Random W W
initial value

d
9t+1 — 9" — p— X;@
ndgf( )



Gradient descent for LR

e Cross entropy loss for logistic regression is convex (i.e. has only

one global minimum)
* No local minima to get stuck in

* Deep neural networks are not so easy

Local Maxima

LocallMaxima
¢ NOn_COnveX Local Maxima

Local Minima

Local Minima
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Learning Rate

d
o Updates: 0+ =o' —%f (x; 0) fiw) fiw)

e Magnitude of movement along gradient

w' w w' W
Too small: converge Too big: overshoot and
very slowly even diverge



Learning Rate

d
. Uodat :9”1:6”—@— X0
pdates d@f( )

e Magnitude of movement along gradient

e Higher/faster learning rate = larger

updates to parameters

fiw)

w' w
Too small: converge
very slowly

fiw)

w' W
Too big: overshoot and
even diverge



Gradient descent with vector weights

Cost(w,b)




Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)




Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:




Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:

3o L(f(x;6),)
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Gradient descent with vector weights

e |n LR: weight w is a vector

Cost(w,b)

e Express slope as a partial derivative of |

w.r.t each weight:

3o L(f(x;6),)
°L(f(x:6).y)

dwn

VGL(f(x; 9),)’)) —

ai;n L(f(x’ 9) 7y)J

e Updates: 0tD = 0" — n VL(f(x; 0),y)
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o Lep=-— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

n

dL--(w, b . o
, Qradient, ce(r: ) = Z [o(w - xY + b) — y(z)]xj(z)

aw:
J i=1
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Gradient for logistic regression

o Lop=— Z [y P Tog o(w - x4+ b) + (1 — yDlog(1 — o(w - x + b))]
i=1

, Qradient, Lerw. ) = Z[g(w x(’)+b) y(’)]x(’)
dw; -
pq{% bmw\wa
o Q?MQ&&J\O"\ /
dL(w, b) ‘\“P“JV
ceW: — \ () ()
. — D [o(w - x4 b) -y {kw

=1



Stochastic Gradient Descent

* Online optimization

e Compute loss and
minimize after each

training example

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L 1s the loss function

# f 1s a function parameterized by 6

# X 18 the set of training inputs x(l) x(2) e x(”)

# y is the set of training outputs (labels) y() 32 yn)
00

repeat til done # see caption
For each training tuple (x (), yli )) (in random order)

1. Optional (for reportlng) # How are we doing on this tuple?

Compute y p) = f ( 0) # What is our estimated output y?

Compute the loss L(y( ) y( )) # How far off is )7(i)) from the true output y(!)?
2. g VoL(f(x\);0),y )) # How should we move 6 to maximize loss?
3.0<-60 —ng # Go the other way 1nstead

return 6
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function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L 1s the loss function

# f 1s a function parameterized by 6

# X 18 the set of training inputs x(l) x(2) e x(”)

# y is the set of training outputs (labels) y() 32 yn)
00

repeat til done # see caption
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Stochastic Gradient Descent

* Online optimization

e Compute loss and
minimize after each

training example
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Regularization

n
Training objective: 0 = arg max Z log P(y(i) \x(i))
0
i=1

This might fit the training set too well! (including noisy teatures)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overtitting

0 = arg max [Z log P(yW | xW) — aR(H)]
0
i=1



Regularization

Training objective: 0 = arg maX Z log P(y(l) \x(’))
=1

This might fit the training set too well! (including noisy teatures)

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overtitting

0 = arg max Z log P(y |x(’)) — aR(é’)]
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e Euclidean distance of weight vector @ from origin

e |2 reqularized objective:

n d
é’ = arg max [Z lOg P(y(i) ‘x(i)) — Z ‘9]2]
0
=1 j=1
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L1 Regularization
d
. RO=11011,=) 16
j=1

e Manhattan distance of weight vector @ from origin

e |1 reqularized objective:

" d
f = arg max [Z log P(y|xW) — 052 \‘9]"]
0
i=1 J=1
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* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

 Generalize sigmoid function to softmax
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Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

 Generalize sigmoid function to softmax

el
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1 <i<k
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Softmax

e Similar to sigmoid, softmax squashes values towards O or 1
o |17=10,1,2,3.4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

w. - x+b

C

P(y =cl|x) =

l.‘ Wi x+b;
j=1



Features in multinomial LR

* Features need to include both input (x) and class (c)

* |Implicit in binary case

Var Definition Wt
AOD | oeruise 3
A {0 oterwive . 2
ACD {0 oerwise 12
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e Generalize binary loss to multinomial CE loss:

k
Lep(3.y) == ) 1y = cJlog P(y = c|»)

c=1
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e Generalize binary loss to multinomial CE loss: Binary CE Loss:
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e Generalize binary loss to multinomial CE loss: Binary CE Loss:

k
Lep(3,y) = — Z Iy = c}log P(y = c| x) —log P(y|x) = = [lyJog$ + (1 — y)log(1l — )]

c=1

k W x+b,

eC
=—21{y=c}10g p

Wi X+Db;
c=1 ijl € ’




Learning

e Generalize binezry loss to multinomial CE loss: Binary CE Loss:
Lep(y,y) = — Z I{y = c}log P(y = c|x) —log P(y|x) = — [ylog$ + (1 — y)log(1l — )]
- _ ; 1{y = c}llog 25;1 R

e Gradient:



Learning

e Generalize binary loss to multinomial CE loss: Binary CE Loss:
k
Lep(y,y) = — Z I{y = ctog P(y = c|x) —log P(y|x) = — [ylog $ + (1 — y)log(1 — )]
c=1
i ewc-x+bc
= — 1{y = c}flog p
o Zj:1 ewj-x+bj
e Gradient:
dL
— =—(l{y=c} = Py =cl0
dw.
ewc-x+bc
= — 1{y — C} P ewj.x+bj X

j=1



Give us feedback!

https://forms.gle/XJXbFLsJCtSNsjCUA






