
L4: Logistic regression

Spring 2021

COS 484/584

Last class

• Supervised classification:

• Document to classify, d

• Set of classes,

• Naive Bayes:

C = {c1, c2, . . . , ck}

Logistic Regression

Logistic Regression

• Powerful supervised model

Logistic Regression

• Powerful supervised model

• Baseline approach for many NLP tasks

Logistic Regression

• Powerful supervised model

• Baseline approach for many NLP tasks

• Connections with neural networks

Logistic Regression

• Powerful supervised model

• Baseline approach for many NLP tasks

• Connections with neural networks

• Binary (two classes) or multinomial (>2 classes)

Discriminative Model

Discriminative Model

• Logistic Regression is a discriminative model

Discriminative Model

• Logistic Regression is a discriminative model

• Naive Bayes: generative model

Discriminative Model

• Logistic Regression:

• Naive Bayes:

Using Logistic Regression

Using Logistic Regression

• Inputs:

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

2. Classification function to compute using ̂y P(̂y |x)

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

2. Classification function to compute using ̂y P(̂y |x)

3. Loss function (for learning)

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

2. Classification function to compute using ̂y P(̂y |x)

3. Loss function (for learning)

4. Optimization algorithm

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

2. Classification function to compute using ̂y P(̂y |x)

3. Loss function (for learning)

4. Optimization algorithm

• Train phase: Learn the parameters of the model to minimize loss function

Using Logistic Regression

• Inputs:

1. Classification instance in a feature representation

2. Classification function to compute using ̂y P(̂y |x)

3. Loss function (for learning)

4. Optimization algorithm

• Train phase: Learn the parameters of the model to minimize loss function

• Test phase: Apply parameters to predict class given a new input x

1. Feature representation

• Input observation:

• Feature vector:

• Feature j of ith input :

x(i)

[x1, x2, . . . , xd]

x(i)
j

1. Feature representation

• Input observation:

• Feature vector:

• Feature j of ith input :

x(i)

[x1, x2, . . . , xd]

x(i)
j

The%Bag%of%Words%Representation

15

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

it

it

it
it

it

it

I

I

I

I

I

love

recommend

movie

the
the

the

the

to

to

to

and

andand

seen

seen

yet

would

with

who

whimsical

whilewhenever

times

sweet

several

scenes

satirical

romantic
of

manages

humor

have

happy

fun

friend

fairy

dialogue

but

conventions

are
anyone

adventure

always

again

about

I love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. I would
recommend it to just about
anyone. I've seen it several
times, and I'm always happy
to see it again whenever I
have a friend who hasn't
seen it yet!

it
I
the
to
and
seen
yet
would
whimsical
times
sweet
satirical
adventure
genre
fairy
humor
have
great
…

6
5
4
3
3
2
1
1
1
1
1
1
1
1
1
1
1
1
…

Bag of words

x(i) [x1, x2, . . . , xd]

2. Classification function

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output: and

(binary classification)

P(y = 1 |x) P(y = 0 |x)

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output: and

(binary classification)

P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output: and

(binary classification)

P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid:

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output: and

(binary classification)

P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid:

y =
1

1 + e−z
=

ez

1 + ez

2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output: and

(binary classification)

P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid:

y

z

y =
1

1 + e−z
=

ez

1 + ez

Weights and Biases

Weights and Biases

• Which features are important and how much?

Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

• Given an instance, x: or z =
d

∑
i=1

wixi + b z = w ⋅ x + b

Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

• Given an instance, x: or z =
d

∑
i=1

wixi + b z = w ⋅ x + b

• Therefore, y =
ew⋅x+b

1 + ew⋅x+b

What is the bias?

(Credits: Richard Socher)

What is the bias?

(Credits: Richard Socher)

What is the bias?

(Credits: Richard Socher)

What is the bias?

(Credits: Richard Socher)

w ⋅ x + b

What is the bias?

(Credits: Richard Socher)

w ⋅ x + b

y =
ew⋅x+b

1 + ew⋅x+b
=

ew⋅x

1 + ew⋅x+b
eb

Putting it together

Putting it together

• Given x, compute z = w ⋅ x + b

Putting it together

• Given x, compute z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

Putting it together

• Given x, compute z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

 P(y = 1) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)

Putting it together

• Given x, compute z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

 P(y = 1) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)
=

e−(w⋅x+b)

1 + e−(w⋅x+b)

Putting it together

• Given x, compute z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

 P(y = 1) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)
=

e−(w⋅x+b)

1 + e−(w⋅x+b)

• Decision boundary: ̂y = {1 if P(y = 1 |x) > 0.5
0 otherwise

Example: Sentiment classification

Example: Sentiment classification

Example: Sentiment classification

• Assume weights and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

Example: Sentiment classification

• Assume weights and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

Feature design

Feature design

• Most important rule: Data is

key!

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

• Feature templates

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

• Feature templates

• Sparse representations, hash

only seen features into index

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

• Feature templates

• Sparse representations, hash

only seen features into index

• Ex. Trigram(logistic regression

classifier) = Feature #78

Feature design

• Most important rule: Data is

key!

• Linguistic intuition (e.g. part

of speech tags, parse trees)

• Complex combinations

• Feature templates

• Sparse representations, hash

only seen features into index

• Ex. Trigram(logistic regression

classifier) = Feature #78

• Advanced: Representation

learning (we will see this later!)

Logistic Regression: what’s good and what’s not

Logistic Regression: what’s good and what’s not

• More freedom in designing features

Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

• Can even have the same feature twice! (why?)

Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

• Can even have the same feature twice! (why?)

• May not work well on small datasets (compared to Naive Bayes)

Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB

• Can even have the same feature twice! (why?)

• May not work well on small datasets (compared to Naive Bayes)

• Interpreting learned weights can be challenging

3. Learning

3. Learning

• We have our classification function - how to assign

weights and bias?

3. Learning

• We have our classification function - how to assign

weights and bias?

• Goal: predicted label as close as possible to actual label ̂y y

3. Learning

• We have our classification function - how to assign

weights and bias?

• Goal: predicted label as close as possible to actual label ̂y y

• Distance metric/Loss function between and : ̂y y L(̂y, y)

3. Learning

• We have our classification function - how to assign

weights and bias?

• Goal: predicted label as close as possible to actual label ̂y y

• Distance metric/Loss function between and : ̂y y L(̂y, y)

• Optimization algorithm for updating weights

Loss function

Loss function

• Assume ̂y = σ(w ⋅ x + b)

Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L(̂y, y) = Measure of difference between ̂y and y

Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L(̂y, y) = Measure of difference between ̂y and y

• Maximum likelihood estimation (conditional):

Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L(̂y, y) = Measure of difference between ̂y and y

• Maximum likelihood estimation (conditional):

• Choose and such that is maximized for true

labels paired with input

w b log P(y |x)
y x

Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L(̂y, y) = Measure of difference between ̂y and y

• Maximum likelihood estimation (conditional):

• Choose and such that is maximized for true

labels paired with input

w b log P(y |x)
y x

• Similar to language models!

Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L(̂y, y) = Measure of difference between ̂y and y

• Maximum likelihood estimation (conditional):

• Choose and such that is maximized for true

labels paired with input

w b log P(y |x)
y x

• Similar to language models!

• given a corpusmax log P(wt |wt−n, . . . , wt−1)

Cross Entropy loss for a single instance

Cross Entropy loss for a single instance

• Assume a single data point and two classes(x, y)

Cross Entropy loss for a single instance

• Assume a single data point and two classes(x, y)

• Classifier probability: P(y |x) = ̂y y(1 − ̂y)1−y

Cross Entropy loss for a single instance

• Assume a single data point and two classes(x, y)

• Classifier probability: P(y |x) = ̂y y(1 − ̂y)1−y

• Log probability:

log P(y |x) = log[̂yy(1 − ̂y)1−y]
= y log ̂y + (1 − y)log(1 − ̂y)

Cross Entropy loss for a single instance

• Assume a single data point and two classes(x, y)

• Classifier probability: P(y |x) = ̂y y(1 − ̂y)1−y

• Log probability:

log P(y |x) = log[̂yy(1 − ̂y)1−y]
= y log ̂y + (1 − y)log(1 − ̂y)

• Loss: −log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y]

Cross Entropy loss for a single instance

• Assume a single data point and two classes(x, y)

• Classifier probability: P(y |x) = ̂y y(1 − ̂y)1−y

• Log probability:

log P(y |x) = log[̂yy(1 − ̂y)1−y]
= y log ̂y + (1 − y)log(1 − ̂y)

• Loss: −log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y]

• y = 1 ⟹ − log ̂y, and y = 0 ⟹ − log(1 − ̂y)

Cross Entropy loss

Cross Entropy loss

• Assume n data points (x(i), y(i))

Cross Entropy loss

• Assume n data points (x(i), y(i))

• Classifier probability: Πn
i=1P(y |x) = Πn

i=1 ̂yy(1 − ̂y)1−y

Cross Entropy loss

• Assume n data points (x(i), y(i))

• Classifier probability: Πn
i=1P(y |x) = Πn

i=1 ̂yy(1 − ̂y)1−y

• Loss:

−log
n

∏
i=1

P(y |x) = −
n

∑
i=1

log P(y |x)

LCE = −
n

∑
i=1

[y log ̂y + (1 − y)log(1 − ̂y)]

Example: Computing CE Loss

Example: Computing CE Loss

• Assume weights and bias

• If y = 1 (positive sentiment),

• If y = 0 (negative sentiment),

w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

LCE = − log(0.69) = 0.37

LCE = − log(0.31) = 1.17

Properties of CE Loss

Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

• Lower the value, better the classifier

Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

• Lower the value, better the classifier

• Cross-entropy between the true distribution and

predicted distribution

P(y |x)
P(̂y |x)

4. Optimization

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

 θ = [w; b]

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

 θ = [w; b]

 ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

 θ = [w; b]

 ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent:

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

 θ = [w; b]

 ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent:

• Find direction of steepest slope

4. Optimization

• We have our classification function and loss function - how do we find the best and ?w b

 θ = [w; b]

 ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent:

• Find direction of steepest slope

• Move in the opposite direction

Gradient descent (1-D)

θt+1 = θt − η
d
dθ

f(x; θ)

Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. has only

one global minimum)

• No local minima to get stuck in

• Deep neural networks are not so easy

• Non-convex

Learning Rate

Learning Rate

• Updates: θt+1 = θt − η
d
dθ

f(x; θ)

Learning Rate

• Updates: θt+1 = θt − η
d
dθ

f(x; θ)

Learning Rate

• Updates: θt+1 = θt − η
d
dθ

f(x; θ)

• Magnitude of movement along gradient

Learning Rate

• Updates: θt+1 = θt − η
d
dθ

f(x; θ)

• Magnitude of movement along gradient

• Higher/faster learning rate = larger

updates to parameters

Gradient descent with vector weights

• In LR: weight is a vectorw

Gradient descent with vector weights

• In LR: weight is a vectorw

• Express slope as a partial derivative of loss

w.r.t each weight:

Gradient descent with vector weights

• In LR: weight is a vectorw

• Express slope as a partial derivative of loss

w.r.t each weight:

Gradient descent with vector weights

• In LR: weight is a vectorw

• Express slope as a partial derivative of loss

w.r.t each weight:

Gradient descent with vector weights

• Updates: θ(t+1) = θt − η∇L(f(x; θ), y)

Gradient for logistic regression

Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient,
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient,
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient,
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient,
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

•
dLCE(w, b)

db
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]

Stochastic Gradient Descent

• Online optimization

• Compute loss and

minimize after each

training example

Stochastic Gradient Descent

• Online optimization

• Compute loss and

minimize after each

training example

Stochastic Gradient Descent

• Online optimization

• Compute loss and

minimize after each

training example

Regularization

Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting

Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting

• Regularization helps prevent overfitting

 ̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − αR(θ)]

Regularization

• Training objective: ̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

• This might fit the training set too well! (including noisy features)

• Poor generalization to the unseen test set — Overfitting

• Regularization helps prevent overfitting

 ̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − αR(θ)]

L2 regularization

L2 regularization

• R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

L2 regularization

• R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

• Euclidean distance of weight vector from originθ

L2 regularization

• R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

• Euclidean distance of weight vector from originθ

• L2 regularized objective:

L2 regularization

• R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

• Euclidean distance of weight vector from originθ

• L2 regularized objective:

 ̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

θ2
j]

L1 Regularization

L1 Regularization

• R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

L1 Regularization

• R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

• Manhattan distance of weight vector from originθ

L1 Regularization

• R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

• Manhattan distance of weight vector from originθ

• L1 regularized objective:

L1 Regularization

• R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

• Manhattan distance of weight vector from originθ

• L1 regularized objective:

 ̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

|θj |]

L2 vs L1 regularization

L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation

L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation

• L1 is complex since the derivative of is

not continuous at 0

|θ |

L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation

• L1 is complex since the derivative of is

not continuous at 0

|θ |

• L2 leads to many small weights (due to term)θ2

L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation

• L1 is complex since the derivative of is

not continuous at 0

|θ |

• L2 leads to many small weights (due to term)θ2

• L1 prefers sparse weight vectors with many

weights set to 0 (i.e. far fewer features used)

L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation

• L1 is complex since the derivative of is

not continuous at 0

|θ |

• L2 leads to many small weights (due to term)θ2

• L1 prefers sparse weight vectors with many

weights set to 0 (i.e. far fewer features used)

Multinomial Logistic Regression

Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

• Need to model P(y = c |x) ∀c ∈ C

Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

• Need to model P(y = c |x) ∀c ∈ C

• Generalize sigmoid function to softmax

Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

• Need to model P(y = c |x) ∀c ∈ C

• Generalize sigmoid function to softmax

 softmax(zi) =
ezi

∑k
j=1 ezj

1 ≤ i ≤ k

Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)

• Need to model P(y = c |x) ∀c ∈ C

• Generalize sigmoid function to softmax

 softmax(zi) =
ezi

∑k
j=1 ezj

1 ≤ i ≤ k

Softmax

Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , thenz = [0,1,2,3,4]

Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , thenz = [0,1,2,3,4]

• softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , thenz = [0,1,2,3,4]

• softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR,

Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , thenz = [0,1,2,3,4]

• softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR,

 P(y = c |x) =
ewc ⋅ x+bc

∑k
j=1 ewj ⋅ x+bj

Features in multinomial LR

• Features need to include both input (x) and class (c)

• Implicit in binary case

Learning

Learning

• Generalize binary loss to multinomial CE loss:

LCE(̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

Learning

• Generalize binary loss to multinomial CE loss:

LCE(̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

Binary CE Loss:
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

Learning

• Generalize binary loss to multinomial CE loss:

LCE(̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

Binary CE Loss:
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

Learning

• Generalize binary loss to multinomial CE loss:

LCE(̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

• Gradient:

Binary CE Loss:
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

Learning

• Generalize binary loss to multinomial CE loss:

LCE(̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

• Gradient:

dLCE

dwc
= − (1{y = c} − P(y = c |x))x

= − 1{y = c} −
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

x

Binary CE Loss:
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

Give us feedback!

https://forms.gle/XJXbFLsJCfSNsjCUA

