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Last class

• Supervised classification: 

• Document to classify, d 

• Set of classes,  

• Naive Bayes: 

C = {c1, c2, . . . , ck}
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• Powerful supervised model

• Baseline approach for many NLP tasks

• Connections with neural networks

• Binary (two classes) or multinomial (>2 classes)
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• Naive Bayes:
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Using Logistic Regression

• Inputs: 

1. Classification instance in a feature representation

2. Classification function to compute  using  ̂y P( ̂y |x)

3. Loss function (for learning)

4. Optimization algorithm 

• Train phase: Learn the parameters of the model to minimize loss function

• Test phase: Apply parameters to predict class given a new input x
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• Input observation:  

• Feature vector:  

• Feature j of ith input  : 

x(i)

[x1, x2, . . . , xd]

x(i)
j
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Bag of words

x(i) [x1, x2, . . . , xd]
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2. Classification function

• Given: Input feature vector [x1, x2, . . . , xd]

• Output:  and                       

(binary classification)

P(y = 1 |x) P(y = 0 |x)

• Require a function, F : IRd → [0,1]

• Sigmoid: 

y

z

y =
1

1 + e−z
=

ez

1 + ez



Weights and Biases



Weights and Biases

• Which features are important and how much?



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

• Given an instance, x:      or z =
d

∑
i=1

wixi + b z = w ⋅ x + b



Weights and Biases

• Which features are important and how much?

• Learn a vector of weights and a bias

• Weights: Vector of real numbers, w = [w1, w2, . . . , wd]

• Bias: Scalar intercept, b

• Given an instance, x:      or z =
d

∑
i=1

wixi + b z = w ⋅ x + b

• Therefore, y =
ew⋅x+b

1 + ew⋅x+b
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What is the bias?

(Credits: Richard Socher)

w ⋅ x + b

y =
ew⋅x+b

1 + ew⋅x+b
=

ew⋅x

1 + ew⋅x+b
eb
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Putting it together

• Given x, compute  z = w ⋅ x + b

• Compute probabilities: P(y = 1 |x) =
1

1 + e−z

                              P(y = 1) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)
=

e−(w⋅x+b)

1 + e−(w⋅x+b)

• Decision boundary:                      ̂y = {1 if P(y = 1 |x) > 0.5
0 otherwise
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Feature design

• Most important rule: Data is 

key!

• Linguistic intuition (e.g. part 

of speech tags, parse trees)

• Complex combinations

• Feature templates

• Sparse representations, hash 

only seen features into index

• Ex. Trigram(logistic regression 

classifier) = Feature #78

• Advanced: Representation 

learning (we will see this later!)
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Logistic Regression: what’s good and what’s not

• More freedom in designing features

• No strong independence assumptions like Naive Bayes

• More robust to correlated features (“San Francisco” vs “Boston”) 

—LR is likely to work better than NB

• Can even have the same feature twice! (why?)

• May not work well on small datasets (compared to Naive Bayes)

• Interpreting learned weights can be challenging
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3. Learning

• We have our classification function - how to assign 

weights and bias?

• Goal: predicted label  as close as possible to actual label ̂y y

• Distance metric/Loss function between  and  : ̂y y L( ̂y, y)

• Optimization algorithm for updating weights
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Loss function

• Assume ̂y = σ(w ⋅ x + b)

• . But what form?L( ̂y, y) =  Measure of difference between  ̂y and y

• Maximum likelihood estimation (conditional):

• Choose  and  such that  is maximized for true 

labels  paired with input 

w b log P(y |x)
y x

• Similar to language models!

•  given a corpusmax log P(wt |wt−n, . . . , wt−1)
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Cross Entropy loss for a single instance

• Assume a single data point  and two classes(x, y)

• Classifier probability:  P(y |x) = ̂y y(1 − ̂y)1−y

• Log probability:  

                                           

log P(y |x) = log[ ̂yy(1 − ̂y)1−y]
= y log ̂y + (1 − y)log(1 − ̂y)

• Loss: −log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y]

• y = 1 ⟹ − log ̂y, and y = 0 ⟹ − log(1 − ̂y)
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Cross Entropy loss

• Assume n data points  (x(i), y(i))

• Classifier probability:  Πn
i=1P(y |x) = Πn

i=1 ̂yy(1 − ̂y)1−y

• Loss:  

 

                   

           

−log
n

∏
i=1

P(y |x) = −
n

∑
i=1

log P(y |x)

LCE = −
n

∑
i=1

[y log ̂y + (1 − y)log(1 − ̂y)]
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Example: Computing CE Loss

• Assume weights  and bias  

• If y = 1 (positive sentiment),  

• If y = 0 (negative sentiment), 

w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

LCE = − log(0.69) = 0.37

LCE = − log(0.31) = 1.17
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Properties of CE Loss

• LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

• Ranges from 0 (perfect predictions) to ∞

• Lower the value, better the classifier

• Cross-entropy between the true distribution  and 

predicted distribution 

P(y |x)
P( ̂y |x)
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4. Optimization

• We have our classification function and loss function - how do we find the best  and ?w b

                                                      θ = [w; b]

                                         ̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)

• Gradient descent: 

• Find direction of steepest slope  

• Move in the opposite direction



Gradient descent (1-D)

θt+1 = θt − η
d
dθ

f(x; θ)



Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. has only 

one global minimum) 

• No local minima to get stuck in 

• Deep neural networks are not so easy 

• Non-convex
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Learning Rate

• Updates: θt+1 = θt − η
d
dθ

f(x; θ)

• Magnitude of movement along gradient

• Higher/faster learning rate = larger 

updates to parameters
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• In LR: weight  is a vectorw

• Express slope as a partial derivative of loss 

w.r.t each weight:

Gradient descent with vector weights

• Updates: θ(t+1) = θt − η∇L( f(x; θ), y)
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Gradient for logistic regression

• LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

• Gradient, 
dLCE(w, b)

dwj
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

•
dLCE(w, b)

db
=

n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]
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• Online optimization 
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[
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∑
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∑
i=1

log P(y(i) |x(i)) − α
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Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1

• If , thenz = [0,1,2,3,4]

• softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

• For multinomial LR, 

                        P(y = c |x) =
ewc ⋅ x+bc

∑k
j=1 ewj ⋅ x+bj



Features in multinomial LR

• Features need to include both input (x) and class (c) 

• Implicit in binary case
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Learning

• Generalize binary loss to multinomial CE loss:                         

LCE( ̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

• Gradient:

                   

dLCE

dwc
= − (1{y = c} − P(y = c |x))x

= − 1{y = c} −
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

x

Binary CE Loss: 
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]



Give us feedback! 
 

https://forms.gle/XJXbFLsJCfSNsjCUA




