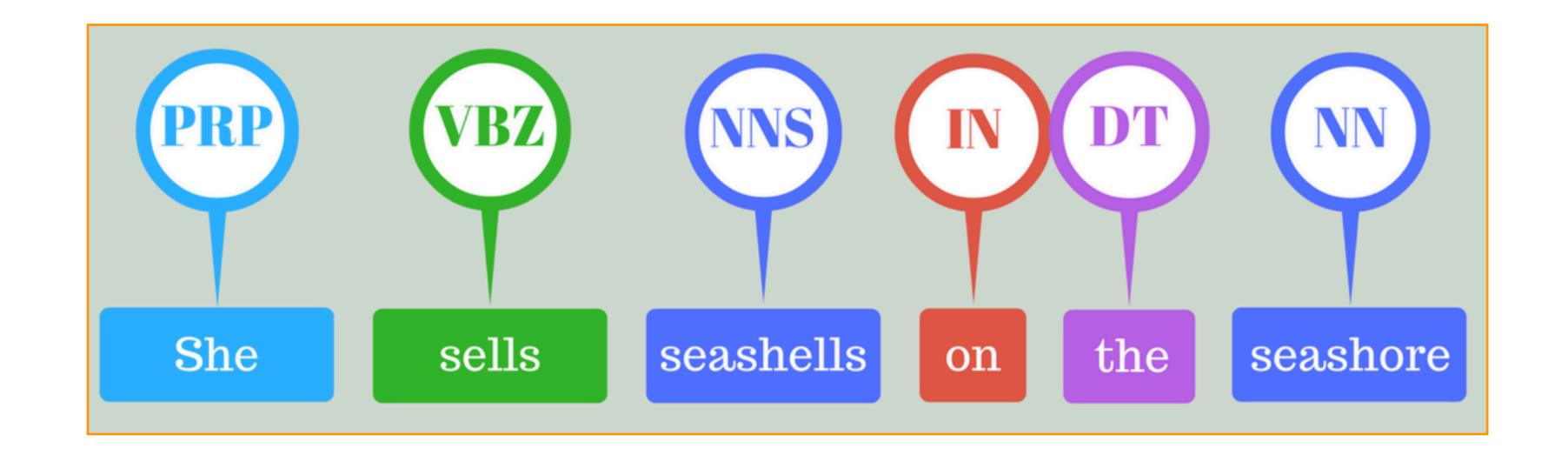


COS 484/584

Sequence Models - I

Spring 2021

Why model sequences?

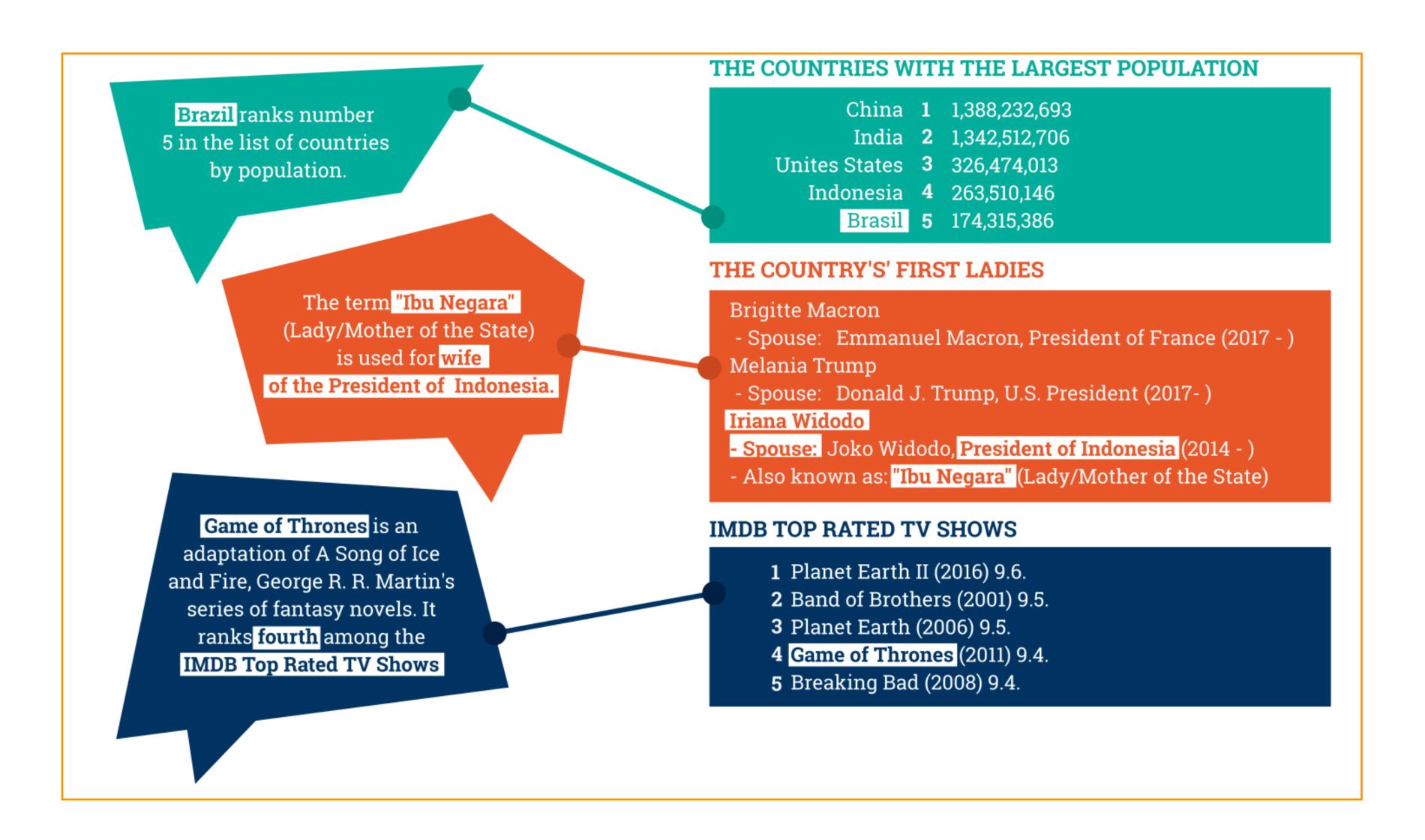


Part of Speech tagging

Why model sequences?

Named Entity recognition

Why model sequences?



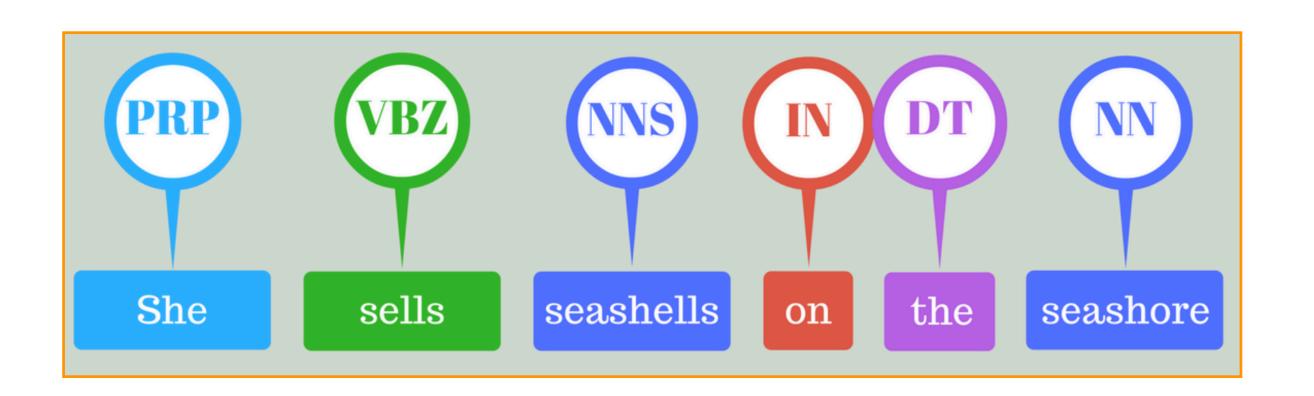
Information Extraction

Overview

Hidden markov models (HMM)

Viterbi algorithm

What are part of speech tags?



- Word classes or syntactic categories
 - Reveal useful information about a word (and its neighbors!)

- 1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. The/DT old/NN man/VB the/DT boat/NN

Parts of Speech

- Different words have different functions
- Can be roughly divided into two classes
- Closed class: fixed membership, function words
 - e.g. prepositions (in, on, of), determiners (the, a)
- Open class: New words get added frequently
 - e.g. nouns (Twitter, Facebook), verbs (google), adjectives, adverbs

Parts of Speech

 How many part of speech tags do you think English has?

Penn Tree Bank tagset

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coordinating	and, but, or	PDT	predeterminer	all, both	VBP	verb non-3sg	eat
	conjunction						present	
CD	cardinal number	one, two	POS	possessive ending	's	VBZ	verb 3sg pres	eats
DT	determiner	a, the	PRP	personal pronoun	I, you, he	WDT	wh-determ.	which, that
EX	existential 'there'	there	PRP\$	possess. pronoun	your, one's	WP	wh-pronoun	what, who
FW	foreign word	mea culpa	RB	adverb	quickly	WP\$	wh-possess.	whose
IN	preposition/	of, in, by	RBR	comparative	faster	WRB	wh-adverb	how, where
	subordin-conj			adverb				
JJ	adjective	yellow	RBS	superlatv. adverb	fastest	\$	dollar sign	\$
JJR	comparative adj	bigger	RP	particle	up, off	#	pound sign	#
JJS	superlative adj	wildest	SYM	symbol	+,%, &	"	left quote	or "
LS	list item marker	1, 2, One	TO	"to"	to	,,	right quote	' or "
MD	modal	can, should	UH	interjection	ah, oops	(left paren	[, (, {, <
NN	sing or mass noun	llama	VB	verb base form	eat)	right paren],), }, >
NNS	noun, plural	llamas	VBD	verb past tense	ate	,	comma	,
NNP	proper noun, sing.	IBM	VBG	verb gerund	eating		sent-end punc	.!?
NNPS	proper noun, plu.	Carolinas	VBN	verb past part.	eaten	:	sent-mid punc	:;

Penn Treebank part-of-speech tags (including punctuation).

45 tags

(Marcus et al., 1993)

Other corpora: Brown, WSJ, Switchboard

Part of Speech Tagging

- Tag each word with its part of speech
- Disambiguation task: each word might have different senses/ functions
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VB the/DT boat/NN

Same word, different tags

Types:		WSJ		Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Figure 8.2 Tag ambiguity for word types in Brown and WSJ, using Treebank-3 (45-tag) tagging. Punctuation were treated as words, and words were kept in their original case.

Part of Speech Tagging

- Tag each word with its part of speech
- Disambiguation task: each word might have different senses/ functions
 - The/DT man/NN bought/VBD a/DT boat/NN
 - The/DT old/NN man/VB the/DT boat/NN

Same word, different tags

earnings growth took a back/JJ seat a small building in the back/NN a clear majority of senators back/VBP the bill Dave began to back/VB toward the door enable the country to buy back/RP about debt I was twenty-one back/RB then

Some words have many functions!

A simple baseline

- Many words might be easy to disambiguate
- Most frequent class: Assign each token (word) to the class it occurred most in the training set. (e.g. man/NN)
- Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!
- How accurate do you think this baseline would be at tagging words? A) <50%
- B) A Parage English sentence ~ 14 words
- C) 75-90%
- D)• > 200% whence level accuracies: $0.92^{14} = 31\%$ vs $0.97^{14} = 65\%$
- POS tagging not solved yet!

Some observations

- The function (or POS) of a word depends on its context
 - The/DT old/NN man/VB the/DT boat/NN
 - The/DT old/JJ man/NN bought/VBD the/DT boat/NN
- Certain POS combinations are extremely unlikely
 - <JJ, DT> ("good the") or <DT, IN> ("the in")
- Better to make decisions on entire sentences instead of individual words (Sequence modeling!)

Hidden Markov Models

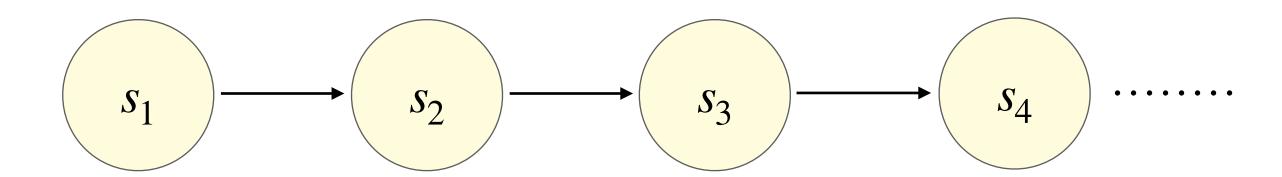
Markov chains



- Model probabilities of sequences of variables
- Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)
- Markov assumption: $P(s_t | s_{< t}) \approx P(s_t | s_{t-1})$

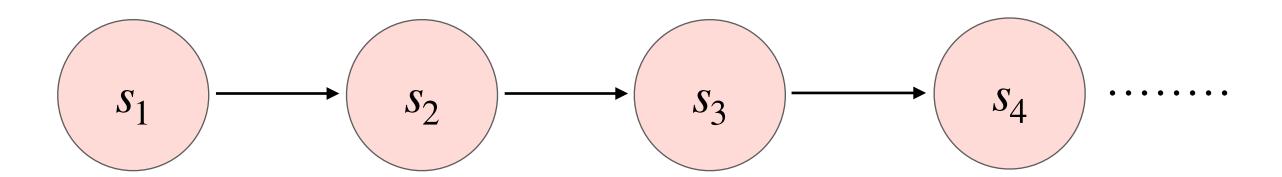
Where have we seen this before? Language models!

Markov chains



The/DT cat/NN sat/VBD on/IN the/DT mat/NN

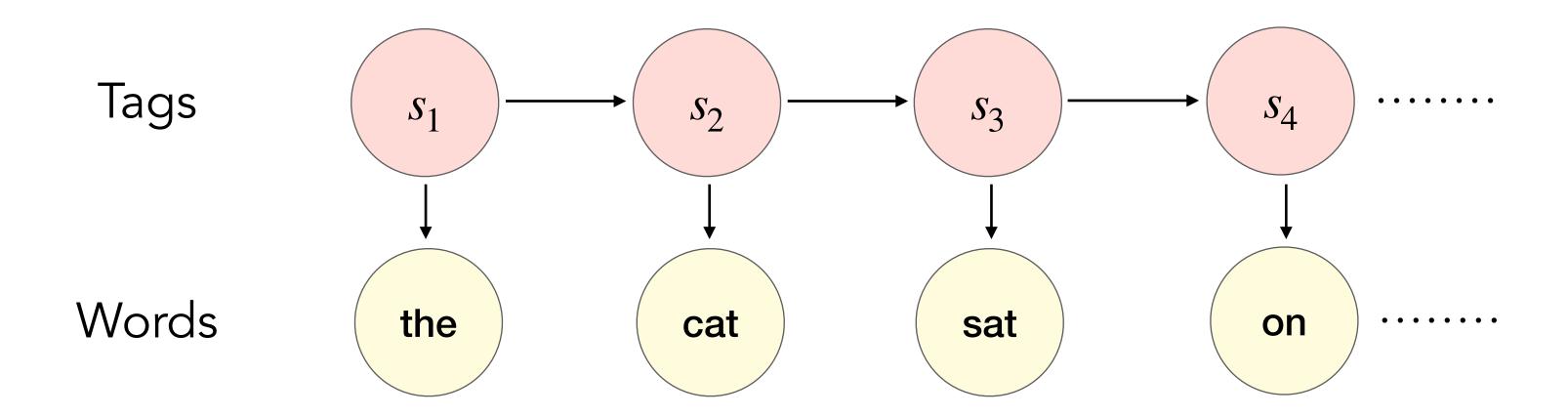
Markov chains



The/?? cat/?? sat/?? on/?? the/?? mat/??

We don't normally see sequences of POS tags in text

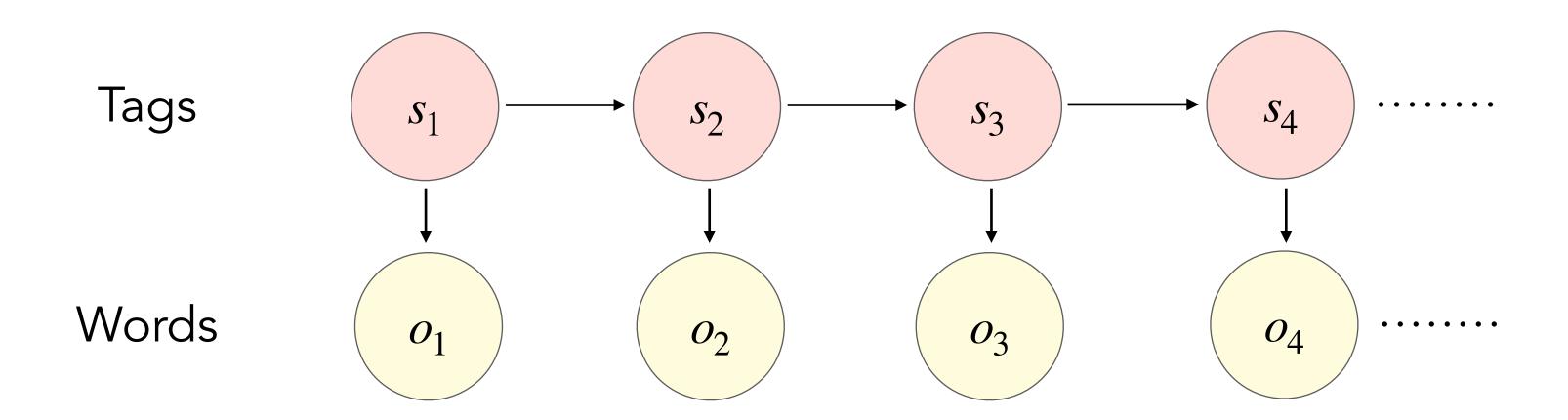
Hidden Markov Model (HMM)



The/?? cat/?? sat/?? on/?? the/?? mat/??

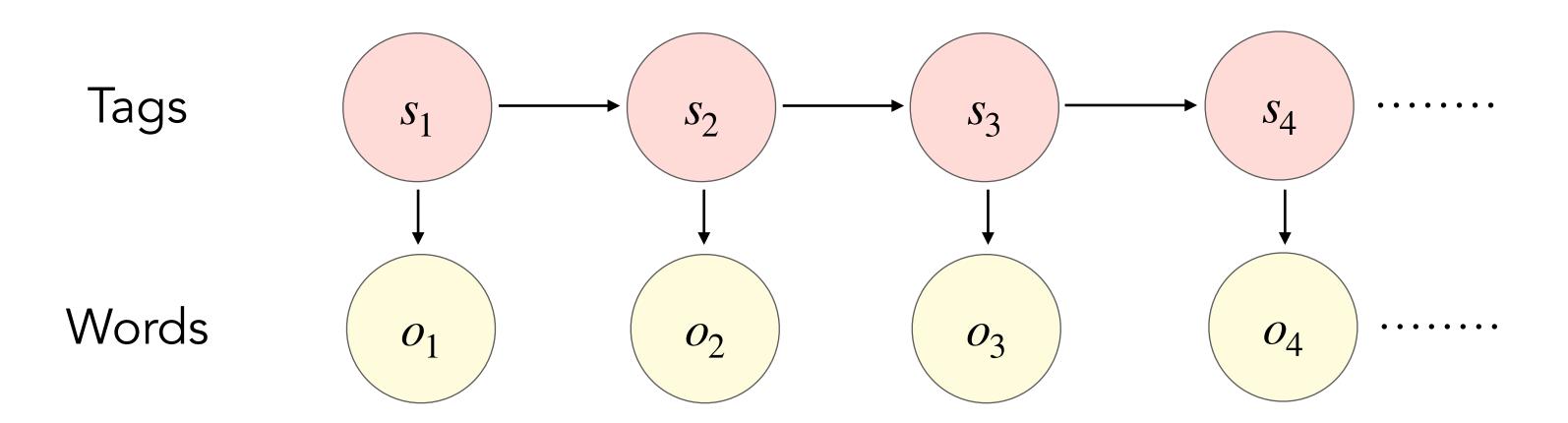
- We don't normally see sequences of POS tags in text
- But we do observe the words!
- HMM allows us to jointly reason over both hidden and observed events.
 - Assume that each position has a tag that generates a word

Components of an HMM



- 1. Set of states $S = \{1, 2, ..., K\}$ and set of observations O
- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$ (OR $\theta_{s_t \to s_{t+1}}$)
- 4. Emission probabilities $P(o_t | s_t)$ (OR $\phi_{s_t \to o_t}$)

Assumptions



1. Markov assumption:

$$P(s_{t+1} | s_1, \dots, s_t) \approx P(s_{t+1} | s_t)$$

2. Output independence:

$$P(o_t | s_1, \dots, s_t) \approx P(o_t | s_t)$$

Depends on language!

1) Which do you think is a stronger

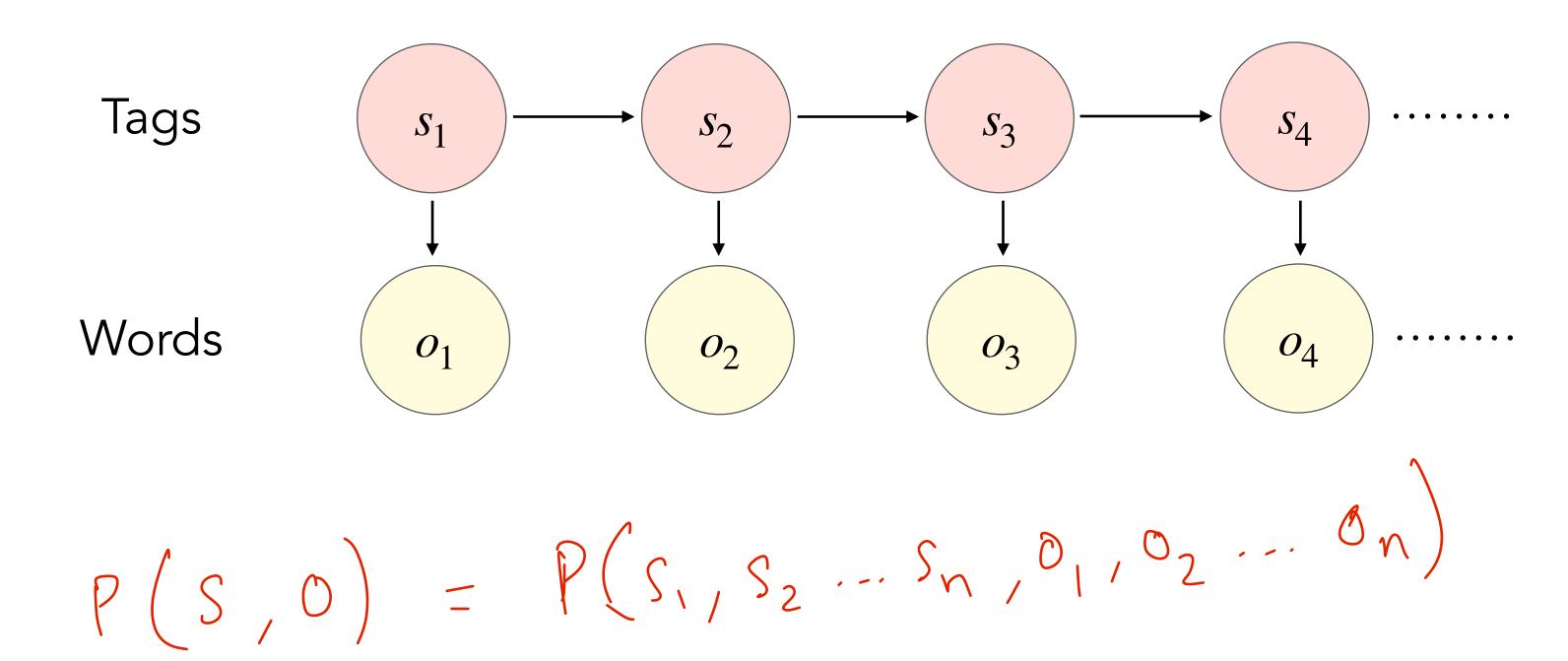
1) assumes POS tag sequences

do not have very strong priors/
long-range dependencies

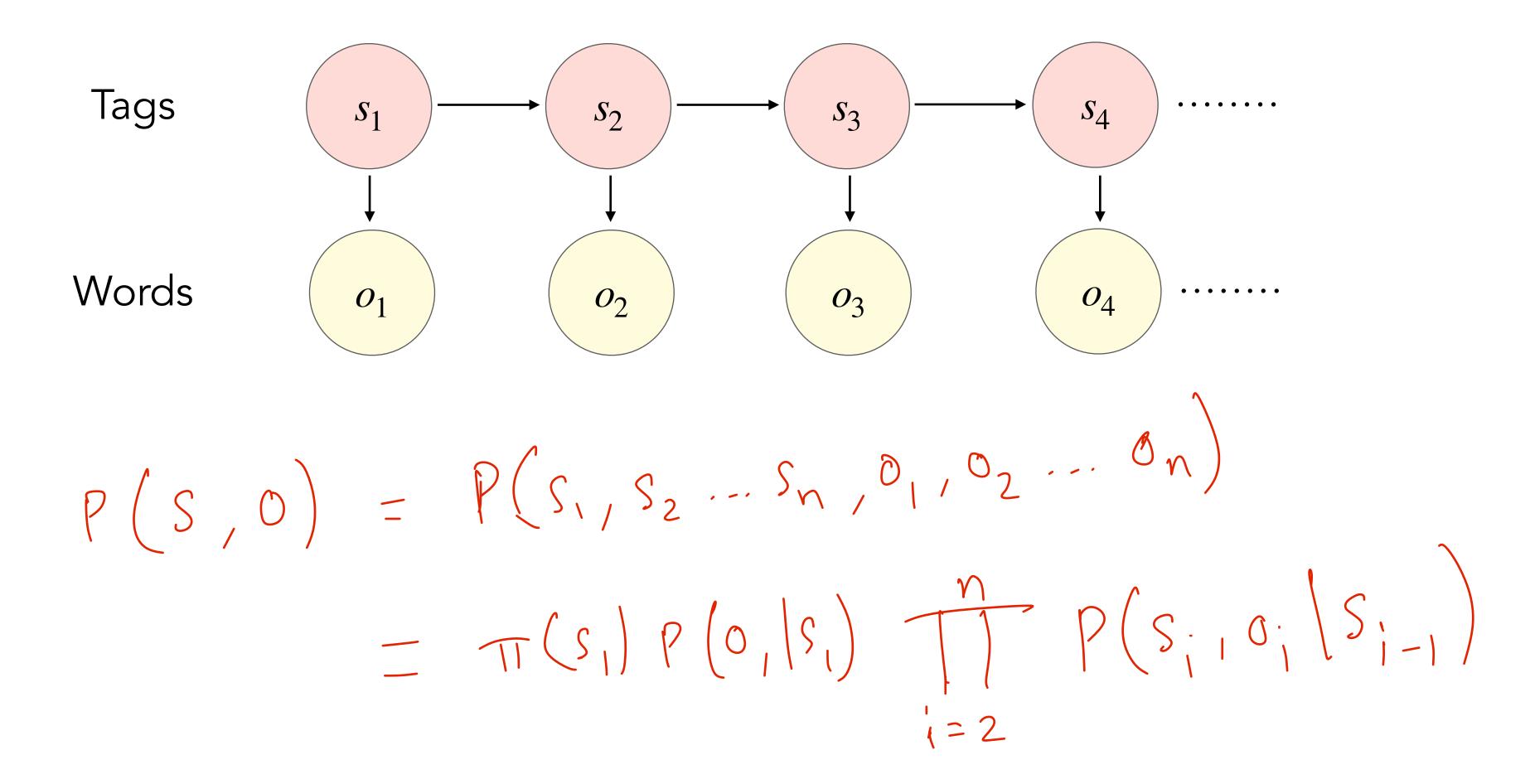
2) assumes neighboring tags

don't affect current word

Sequence likelihood



Sequence likelihood



Sequence likelihood

Tags
$$s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \longrightarrow$$

Words $o_1 \longrightarrow o_2 \longrightarrow o_3 \longrightarrow o_4 \longrightarrow$

$$P(S, 0) = P(S_1, S_2 \longrightarrow S_1, O_1, O_2 \longrightarrow O_1)$$

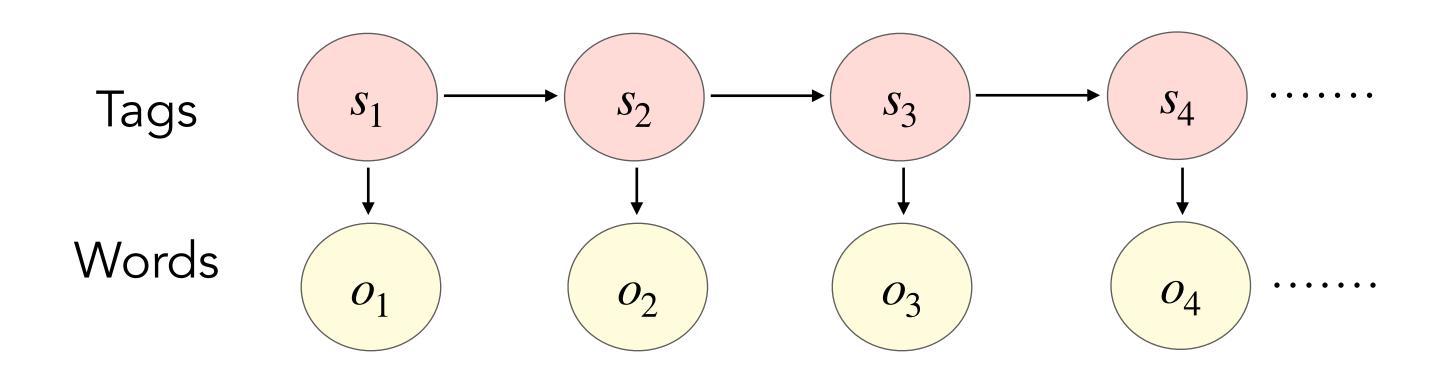
$$= \pi(S_1) P(O_1|S_1) \xrightarrow{m} P(S_1|S_{1-1}) P(O_1|S_1)$$

$$= \pi(S_1) P(O_1|S_1) \xrightarrow{m} P(S_1|S_{1-1}) P(O_1|S_1)$$

$$= \pi(S_1) P(O_1|S_1) \xrightarrow{m} P(S_1|S_{1-1}) P(O_1|S_1)$$

$$= \pi(S_1) P(O_1|S_1) \xrightarrow{m} P(S_1|S_{1-1}) P(O_1|S_1)$$
Transition Emission

Example: Sequence likelihood



What is the joint probability P(the cat, DT NN)?

Dummy start state

		S_{t+1}	
		DT	NN
	Ø	0.8	0.2
S_t	DT	0.2	0.8
	NN	0.3	0.7

o_t				
	the	cat		
DT	0.9	0.1		
NN	0.5	0.5		

A)
$$(0.8*0.8)*(0.9*0.5)$$

B)
$$(0.2*0.8)*(0.9*0.5)$$

C)
$$(0.3*0.7)*(0.5*0.5)$$

Ans: A

Learning

Training set:

1 Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS old/JJ ,/ join/VB the/DT board/NN as/IN a/DT nonexecutive/JJ di Nov./NNP 29/CD ./.

2 Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsev N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/3 Rudolph/NNP Agnew/NNP ,/, 55/CD years/NNS old/JJ chairman/NN of/IN Consolidated/NNP Gold/NNP Fields/N, ,/, was/VBD named/VBN a/DT nonexecutive/JJ director/this/DT British/JJ industrial/JJ conglomerate/NN ./.

. . .

38,219 It/PRP is/VBZ also/RB pulling/VBG 20/CD peopl of/IN Puerto/NNP Rico/NNP ,/, who/WP were/VBD help Huricane/NNP Hugo/NNP victims/NNS ,/, and/CC sendin them/PRP to/TO San/NNP Francisco/NNP instead/RB ./

Maximum likelihood estimate:

$$P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$$

$$P(o \mid s) = \frac{Count(s, o)}{Count(s)}$$

Learning Example

- 1. the/DT cat/NN sat/VBD on/IN the/DT mat/NN
- 2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP
- 3. the/DT old/NN man/VB the/DT boats/NNS

$$P(NN \mid DT) = \frac{3}{4}$$

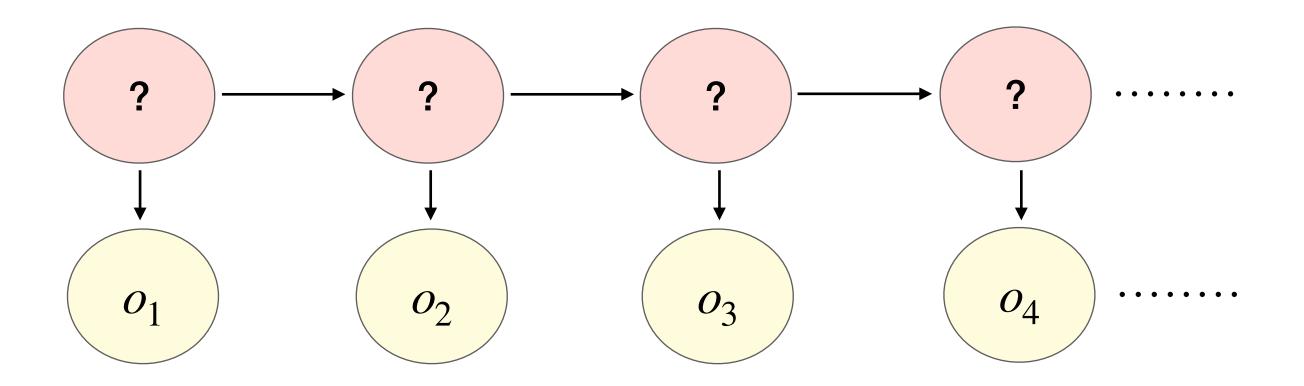
$$P(cat \mid NN) = \frac{1}{3}$$

Maximum likelihood estimate:

$$P(s_i | s_j) = \frac{Count(s_j, s_i)}{Count(s_j)}$$

$$P(o \mid s) = \frac{Count(s, o)}{Count(s)}$$

Decoding with HMMs

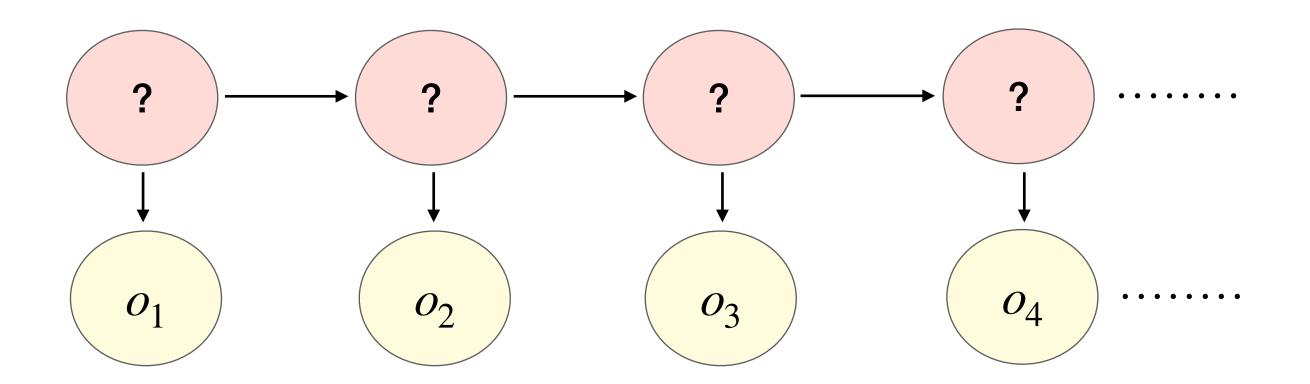


Task: Find the most probable sequence of states $\langle s_1, s_2, \dots, s_n \rangle$ given the observations $\langle o_1, o_2, \dots, o_n \rangle$

$$S = angmax P(S|O) = angmax P(S) P(O|S)$$

$$S = angmax P(S|O) = Bayes$$

Decoding with HMMs



Task: Find the most probable sequence of states $\langle s_1, s_2, \ldots, s_n \rangle$ given the observations $\langle o_1, o_2, \ldots, o_n \rangle$

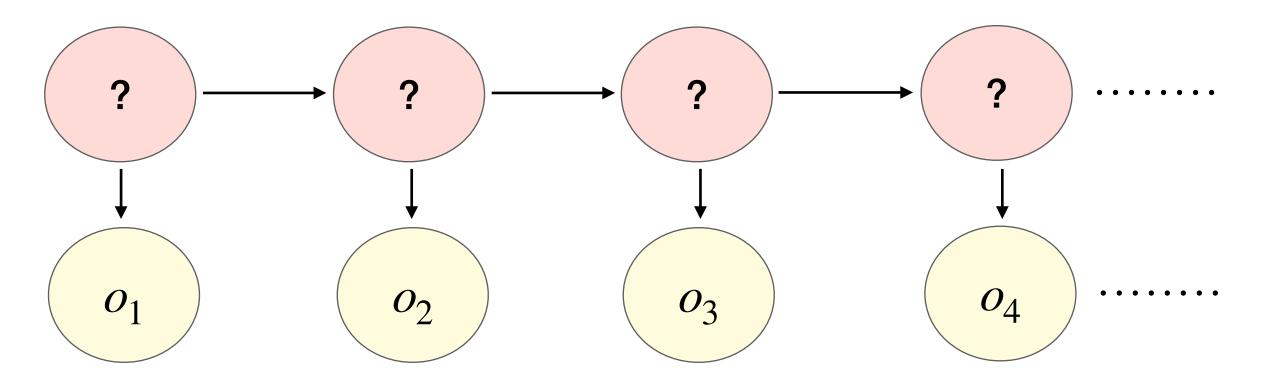
$$S = algmax P(S|O) = algmax P(S) P(O|S)$$

$$= algmax P(S) P(O|S)$$

$$= algmax P(S) P(O|S)$$

$$S$$

Decoding with HMMs



Task: Find the most probable sequence of states $\langle s_1, s_2, \ldots, s_n \rangle$ given the observations $\langle o_1, o_2, \ldots, o_n \rangle$

$$S = alg max p(s) p(o|s)$$

$$= alg mex T p(s|s|-1) p(o|s)$$

$$= ze this?$$
Equences?

$$= alg max p(s) p(o|s)$$

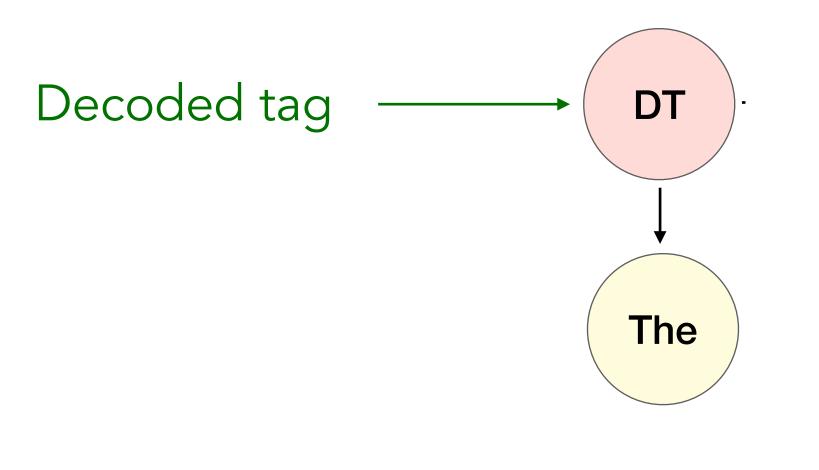
$$= alg mex T p(s|s|-1) p(o|s)$$

$$= alg mex T p(s|s|-1) p(o|s)$$

$$= alg mex T p(s|s|-1) p(o|s)$$

How can we maximize this? Search over all state sequences?

Greedy decoding



Decode/reveal one state at a time

argmax
$$T(S,=S) P(The|S)$$

$$S = DT'$$

$$\frac{S}{S} = \underset{S}{\text{algmax}} P(S) P(O|S)$$

$$= \underset{S}{\text{algmax}} P(S) P(O|S)$$

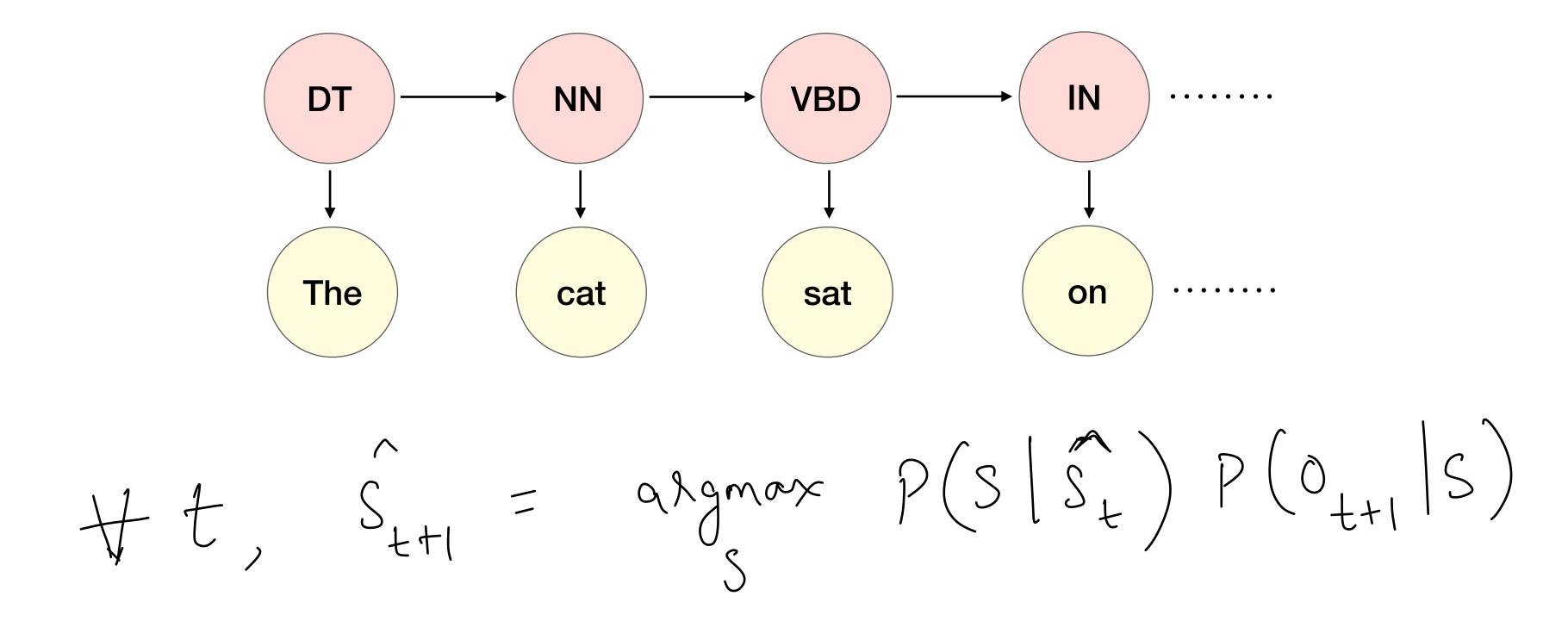
$$= \underset{S}{\text{algmax}} P(S|S_{i-1}) P(O_{i}|S_{i})$$

$$= \underset{S}{\text{Transition}} Emission$$

Greedy decoding

The cat
$$P(s_2=s|DT)P(cat|s)$$
 $S = algmax P(s) P(o|s)$
 $S = algmax P(s) P(o|s)$
 $S = algmax P(s|S_{i-1}) P(o_i|S_i)$
 $S = algmax P(s_1|S_{i-1}) P(o_i|S_i)$
 $S = algmax P(s_2=s|DT) P(cat|s)$
 $S = algmax P(s_1|S_{i-1}) P(o_i|S_i)$
 $S = algmax P(s_1|S_{i-1}) P(o_i|S_i)$
 $S = algmax P(s_2=s|DT) P(cat|s)$

Greedy decoding

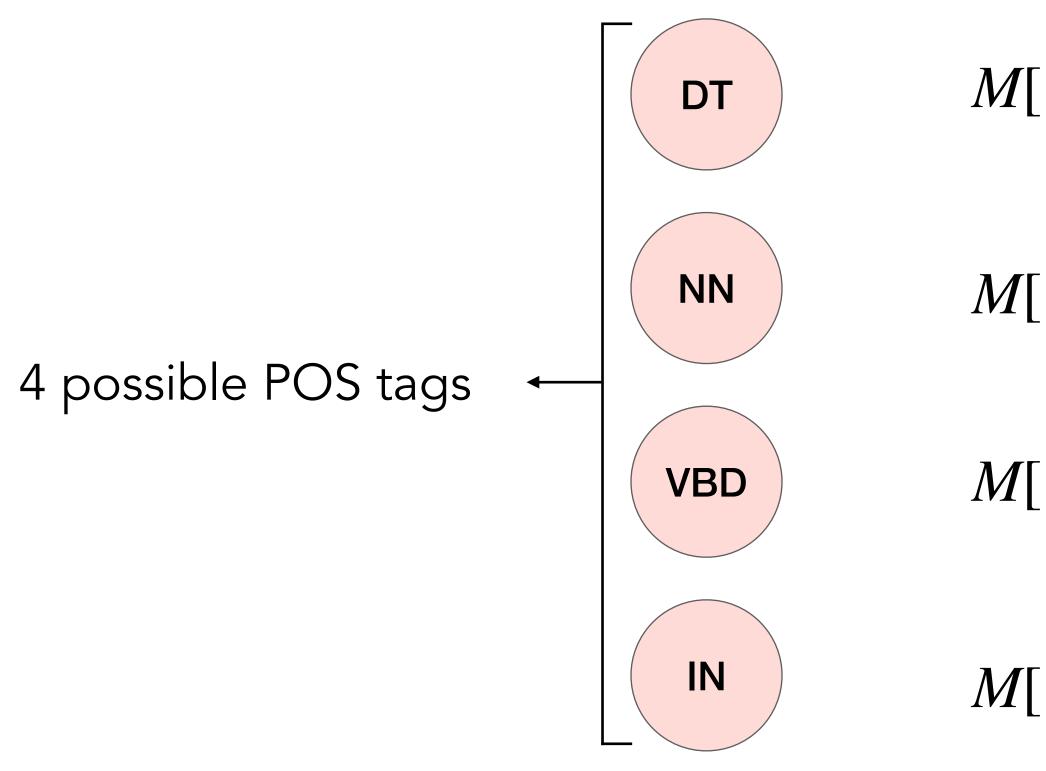


- Not guaranteed to produce the overall optimal sequence
 - Local decisions

Viterbi decoding

- Use dynamic programming!
- Maintain some extra data structures
- Probability lattice, M[T, K] and backtracking matrix, B[T, K]
 - T: Number of time steps
 - *K* : Number of states
- M[i,j] stores most probable sequence of states ending with state j at time i
- B[i,j] is the tag at time i-1 in the most probable sequence ending with tag j at time i

Viterbi decoding



$$M[1,DT] = \pi(DT) P(\text{the} | DT)$$

$$M[1,NN] = \pi(NN) P(\text{the} | NN)$$

$$M[1,VBD] = \pi(VBD) P(\text{the} | VBD)$$

Initialize the table

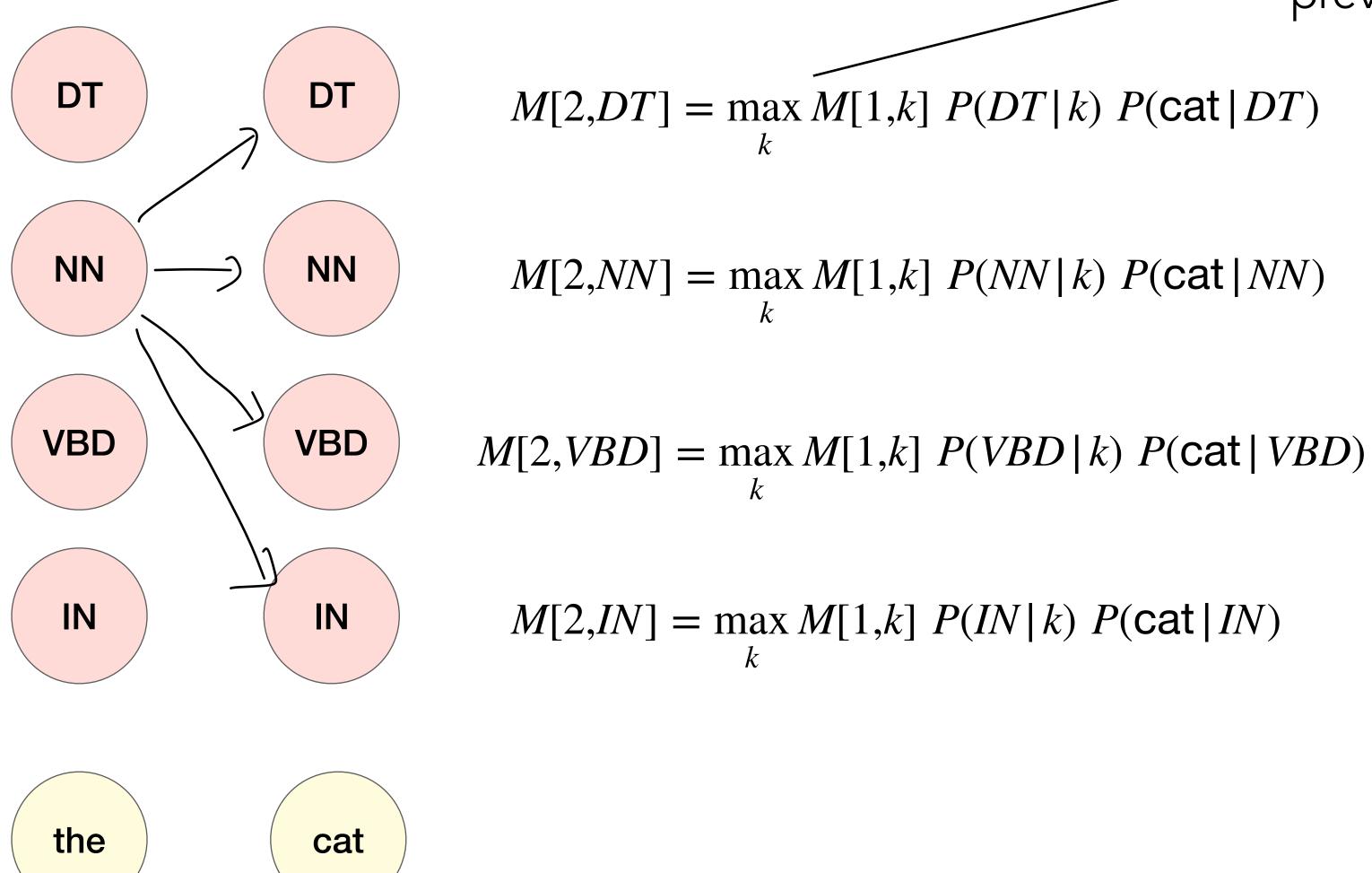
$$M[1,IN] = \pi(IN) P(\text{the} | IN)$$

the

Forward

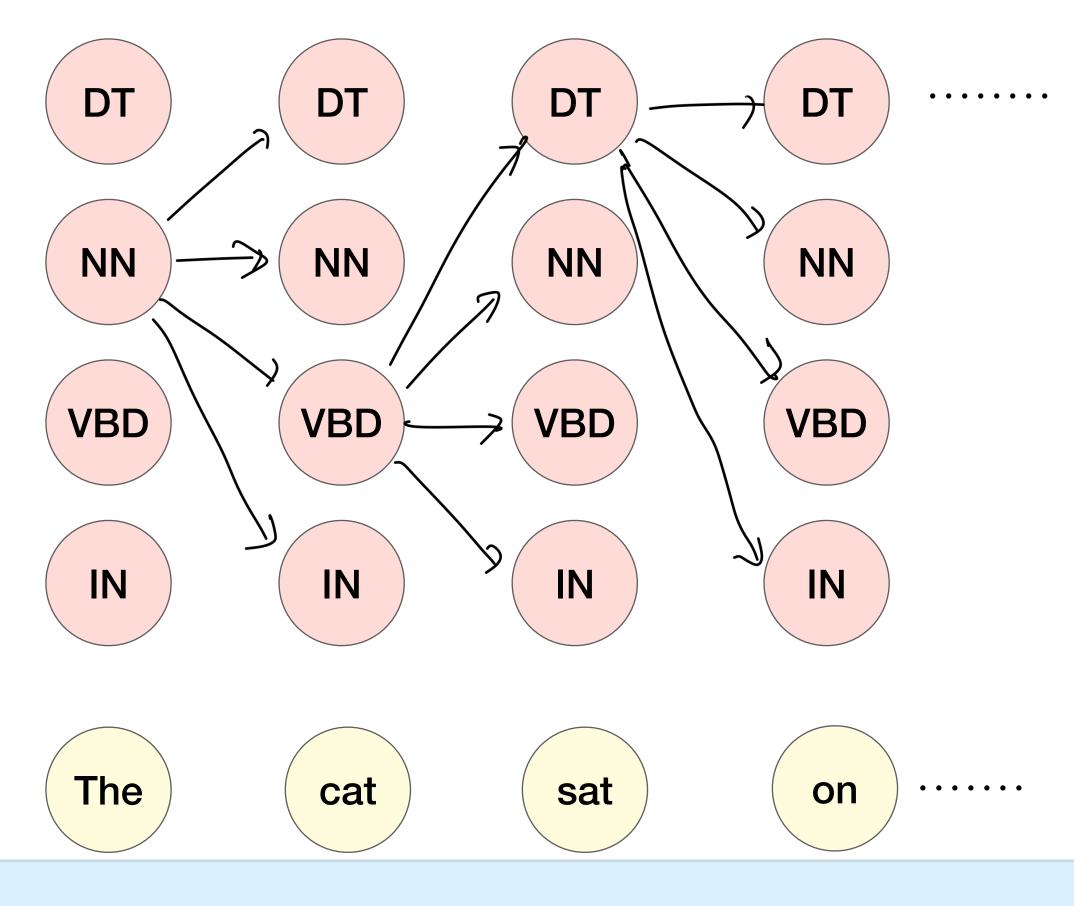
Viterbi decoding

Consider all possible previous tags



Forward

Viterbi decoding



What is the time complexity of this algorithm?

 $O(nK^2)$

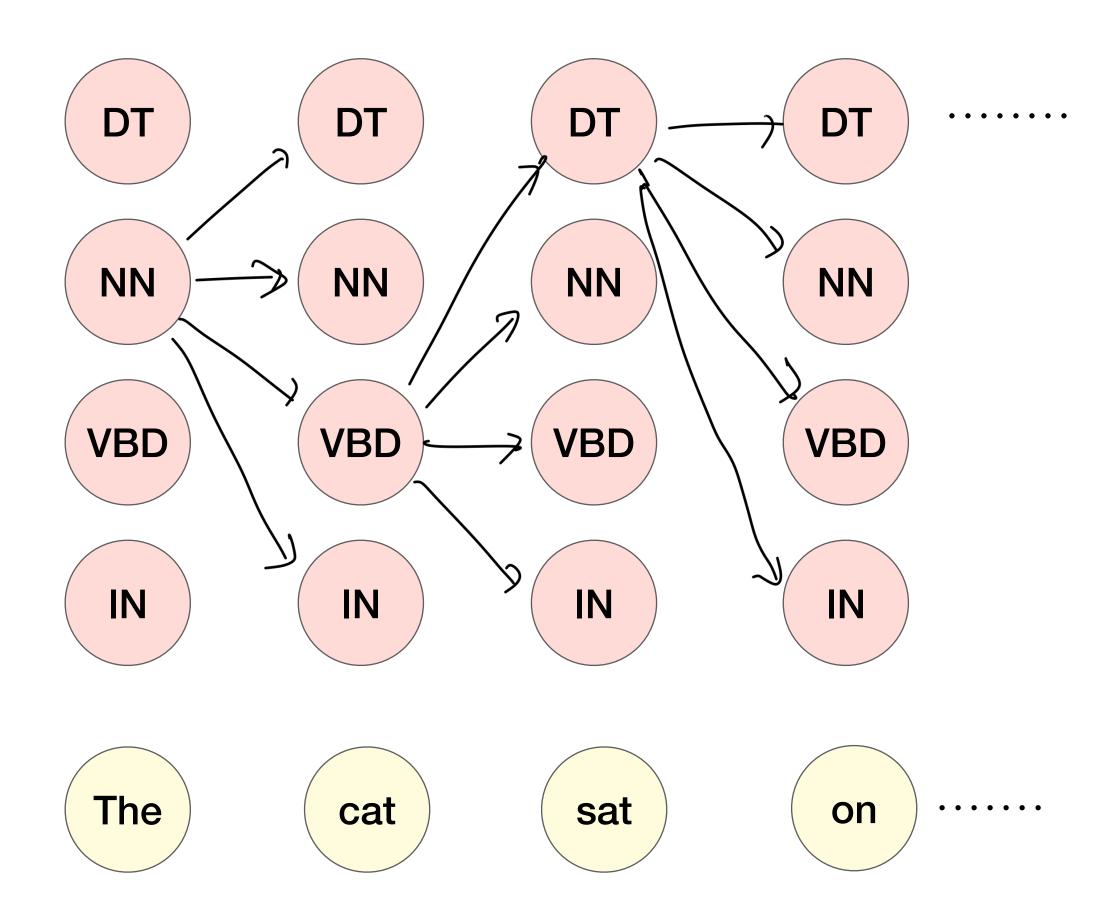
- A) O(n)
- B) O(nK)
- C) $O(nK^2)$
- D) $O(n^2K)$

n = number of timestepsK = number of states

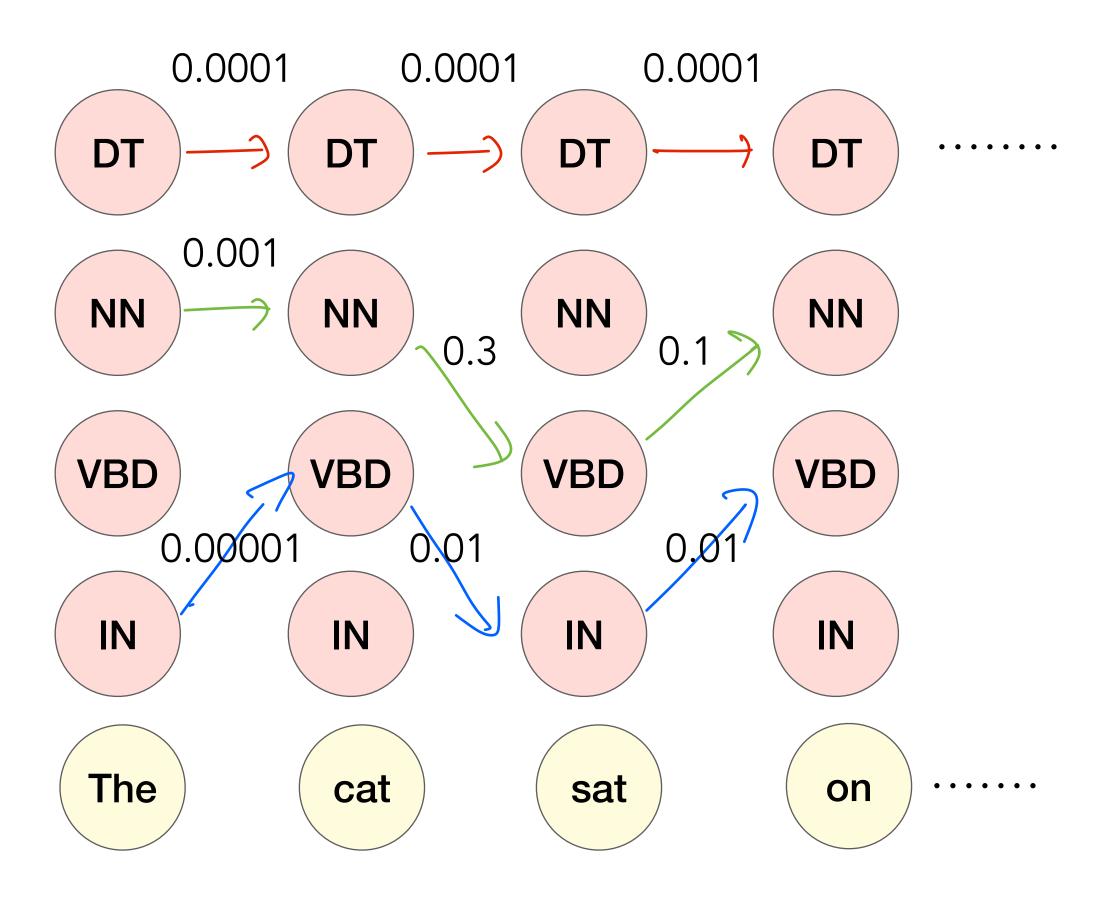
 $M[i,j] = \max_{k} M[i-1,k] P(s_{j}|s_{k}) P(o_{i}|s_{j}) \quad 1 \le k \le K \quad 1 \le i \le n$

Backward: Pick $\max_{k} M[n, k]$ and backtrack using B

If K (number of possible hidden states) is too large, Viterbi is too expensive!



• If K (number of states) is too large, Viterbi is too expensive!



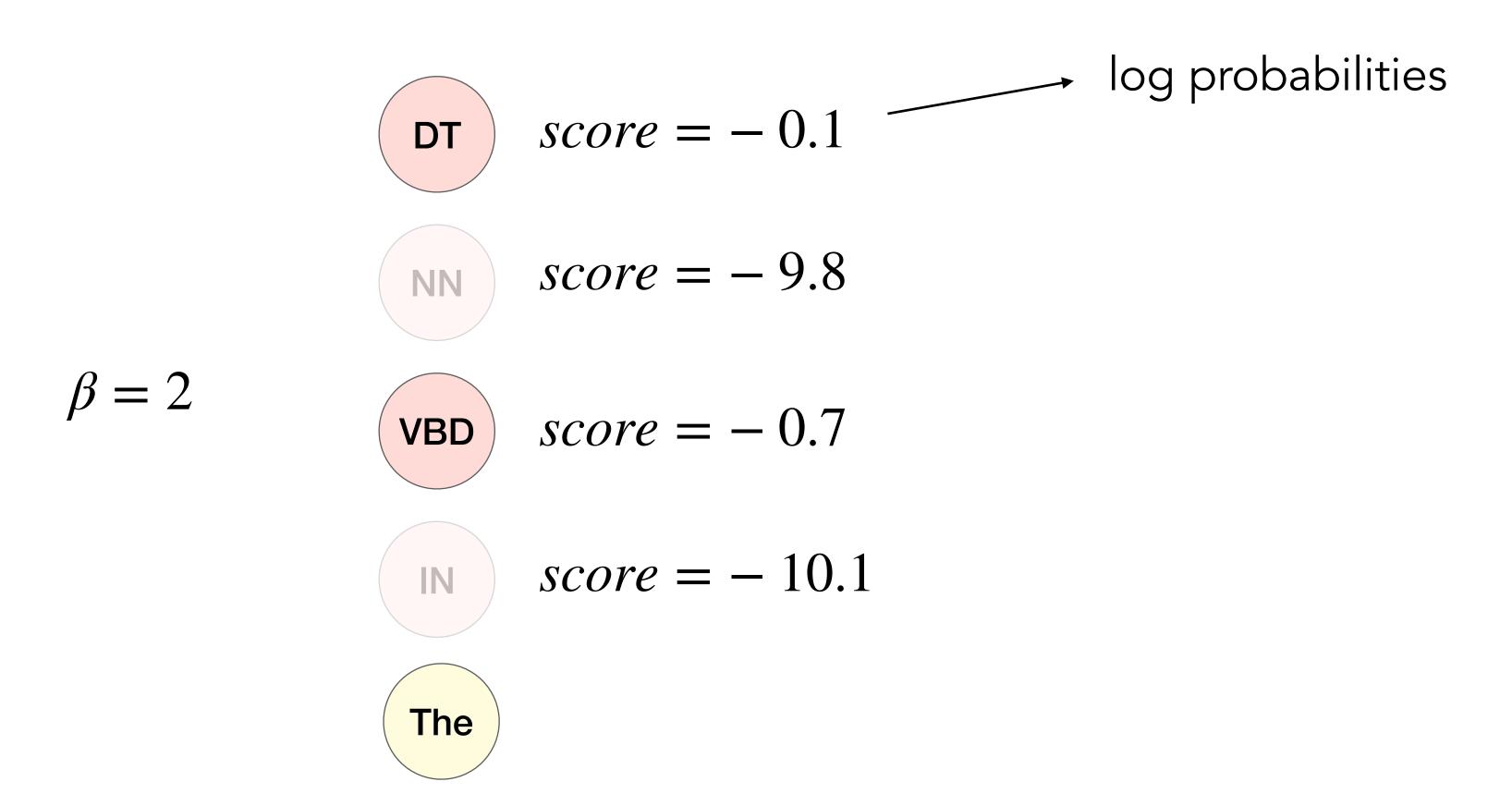
Observation: Many paths have very low likelihood!

• If K (number of states) is too large, Viterbi is too expensive!

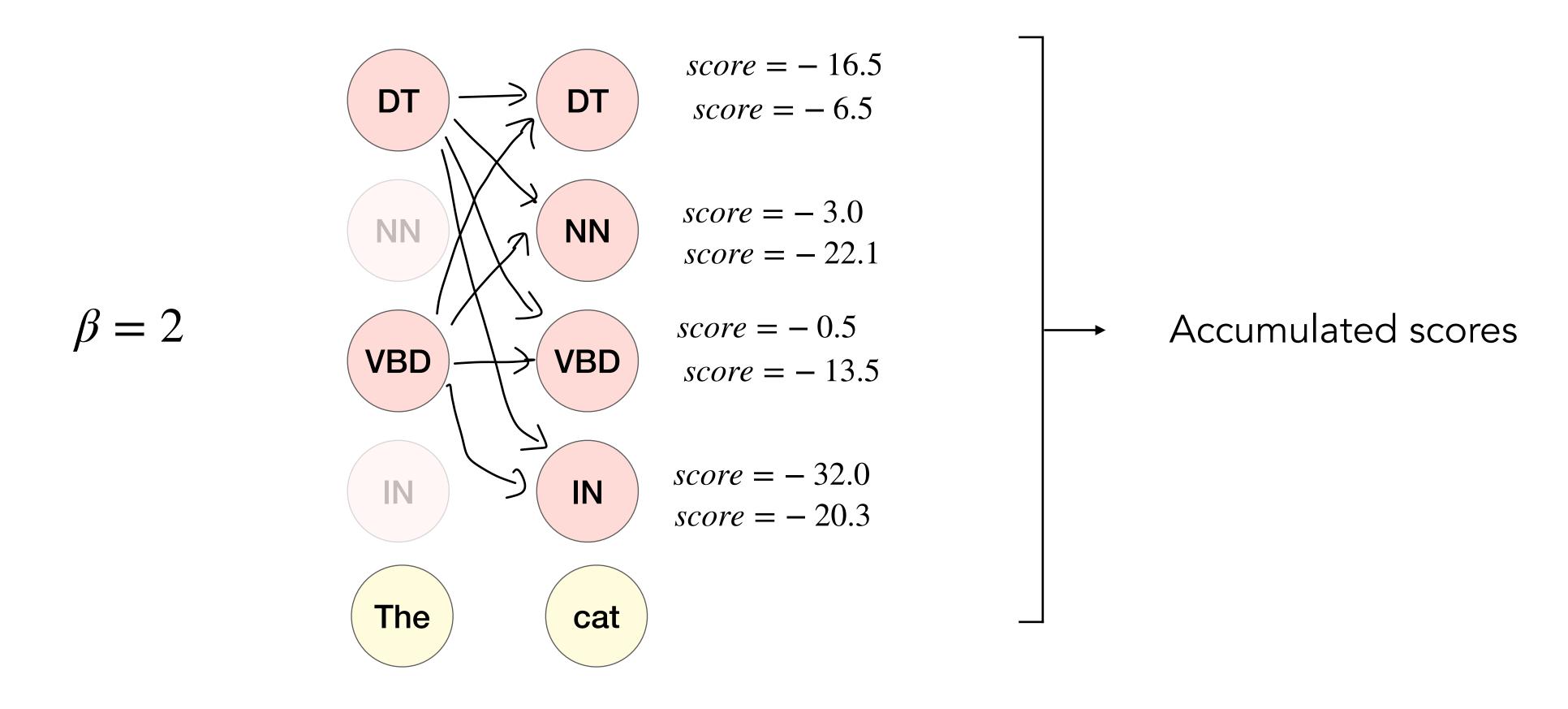
Keep a fixed number of hypotheses at each point

• Beam width, β

• Keep a fixed number of hypotheses at each point

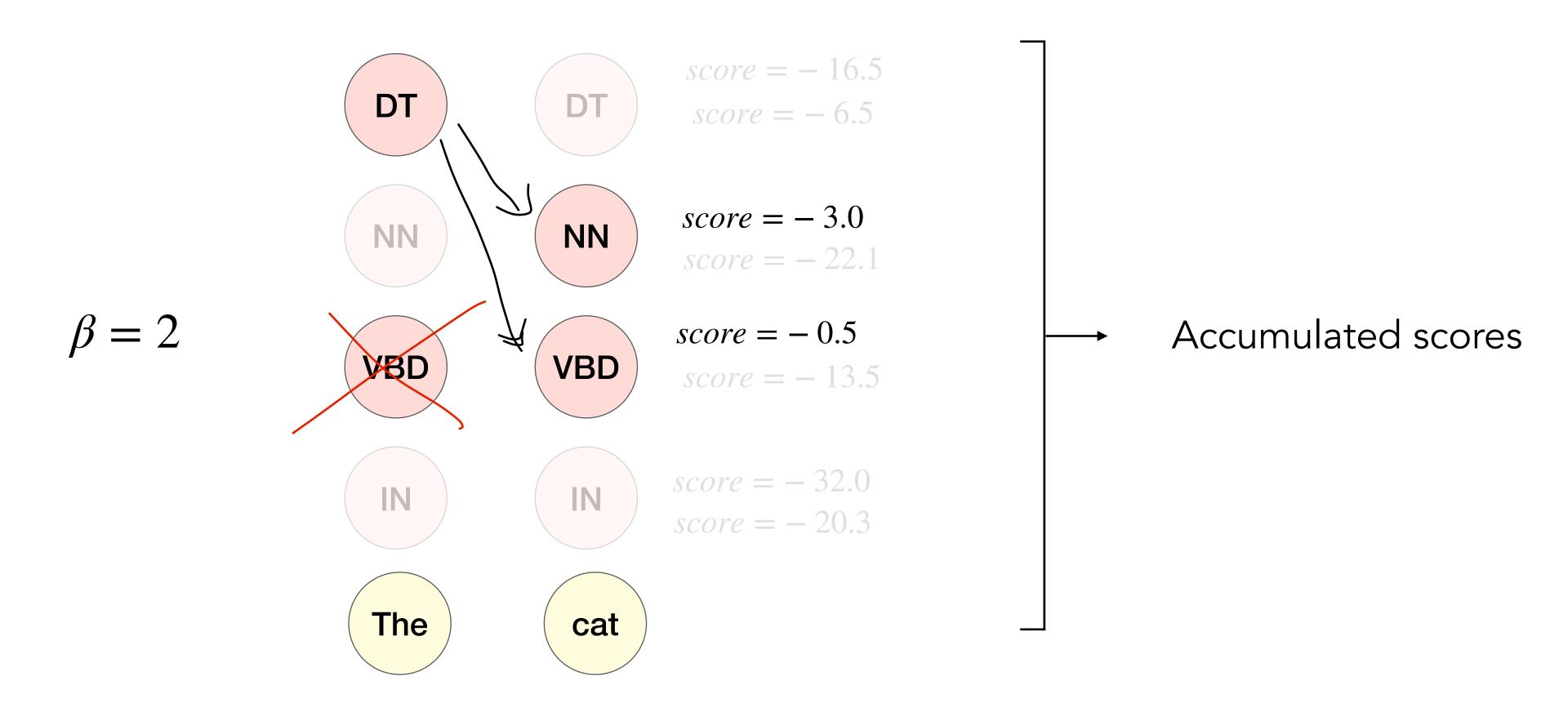


Keep a fixed number of hypotheses at each point



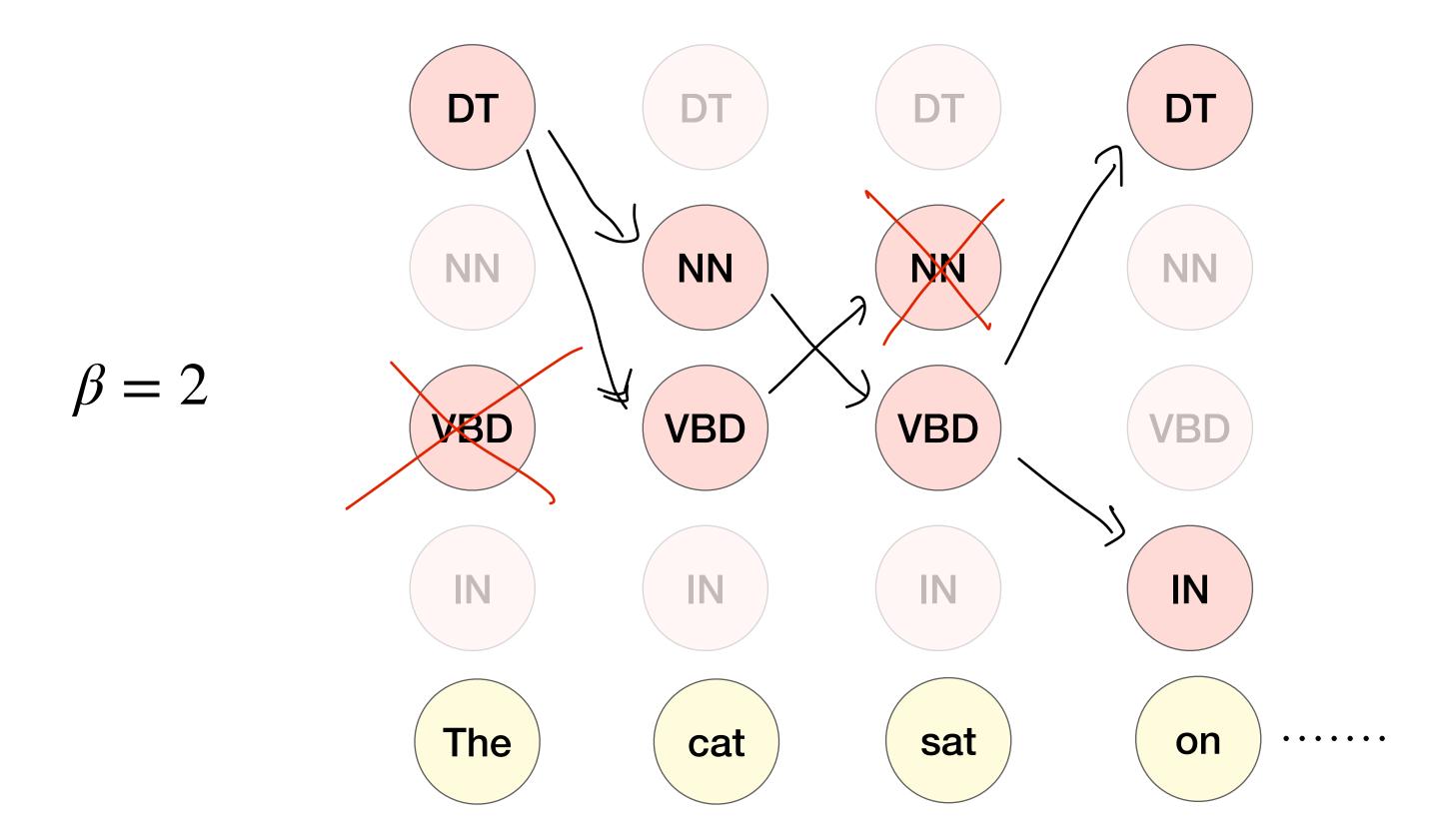
Step 1: Expand all partial sequences in current beam

Keep a fixed number of hypotheses at each point



Step 2: Prune set back to top β sequences (sort and select)

Keep a fixed number of hypotheses at each point



What is the time complexity of this algorithm?

n = number of timesteps

K = number of states

 β = beam width

Pick $\max_{k} M[n, k]$ from within beam and backtrack

• If K (number of states) is too large, Viterbi is too expensive!

Keep a fixed number of hypotheses at each point

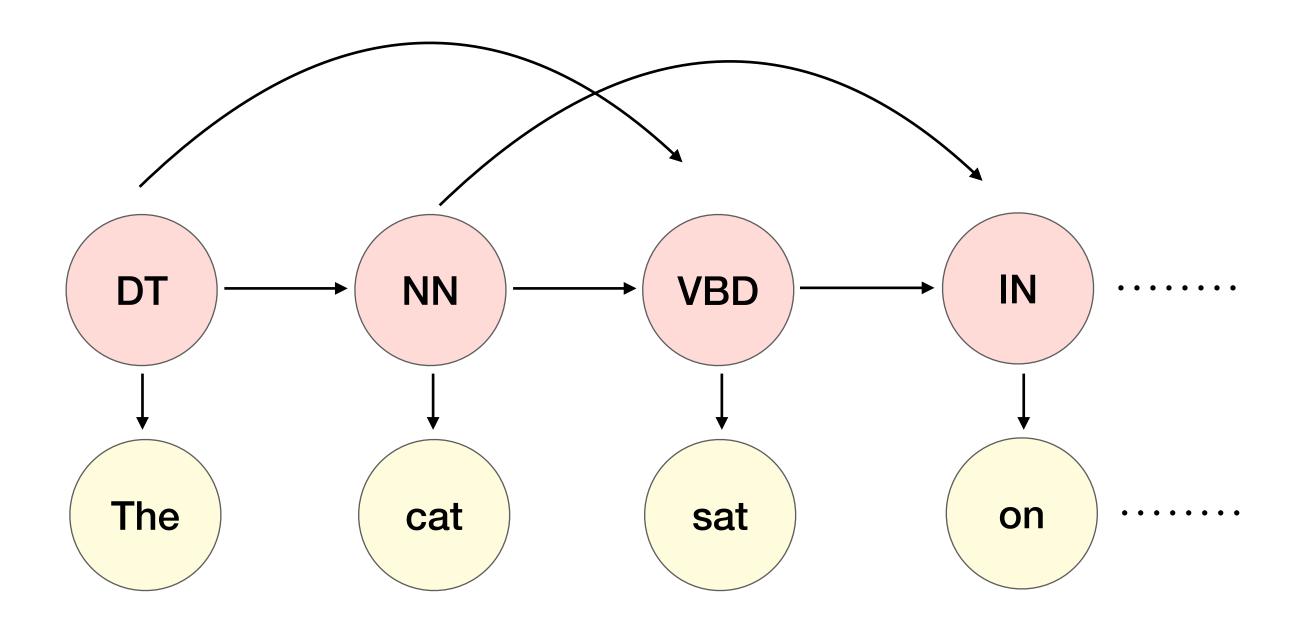
• Beam width, β

Trade-off (some) accuracy for computational savings

Beyond bigrams (Advanced)

Real-world HMM taggers have more relaxed assumptions

• Trigram HMM: $P(s_{t+1} | s_1, s_2, ..., s_t) \approx P(s_{t+1} | s_{t-1}, s_t)$



Pros? Cons?

Give us feedback!

https://forms.gle/D5Fw1tqmWNrNYEzKA