
Sequence Models - 1

Spring 2021

COS 484/584

Why model sequences?

Part of Speech tagging

Why model sequences?

Named Entity recognition

Why model sequences?

Information
Extraction

Overview

• Hidden markov models (HMM)

• Viterbi algorithm

What are part of speech tags?

• Word classes or syntactic categories

• Reveal useful information about a

word (and its neighbors!)

3. The/DT old/NN man/VB the/DT boat/NN

1. The/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

Parts of Speech

• Different words have different functions

• Can be roughly divided into two classes

• Closed class: fixed membership, function words

• e.g. prepositions (in, on, of), determiners (the, a)

• Open class: New words get added frequently

• e.g. nouns (Twitter, Facebook), verbs (google),

adjectives, adverbs

Parts of Speech

• How many part of speech tags do you

think English has?

A. < 10

B. 10 - 30

C. >30

Penn Tree Bank tagset

(Marcus et al., 1993)

45 tags

Other corpora: Brown, WSJ, Switchboard

Part of Speech Tagging

• Tag each word with its part of speech

• Disambiguation task: each word might have different senses/

functions

• The/DT man/NN bought/VBD a/DT boat/NN

• The/DT old/NN man/VB the/DT boat/NN

Same word, different tags

Part of Speech Tagging

• Tag each word with its part of speech

• Disambiguation task: each word might have different senses/

functions

• The/DT man/NN bought/VBD a/DT boat/NN

• The/DT old/NN man/VB the/DT boat/NN

Same word, different tags

Some words have many
functions!

A simple baseline

• Many words might be easy to disambiguate

• Most frequent class: Assign each token (word) to the class it occurred

most in the training set. (e.g. man/NN)

• Accurately tags 92.34% of word tokens on Wall Street Journal (WSJ)!

• State of the art ~ 97%

• Average English sentence ~ 14 words

• Sentence level accuracies: 0.9214 = 31% vs 0.9714 = 65%

• POS tagging not solved yet!

How accurate do you think this baseline would be at tagging words?
A) <50%
B) 50-75%
C) 75-90%
D) >90%

Some observations

• The function (or POS) of a word depends on its context

• The/DT old/NN man/VB the/DT boat/NN

• The/DT old/JJ man/NN bought/VBD the/DT boat/NN

• Certain POS combinations are extremely unlikely

• <JJ, DT> (“good the”) or <DT, IN> (“the in”)

• Better to make decisions on entire sentences instead of individual words

(Sequence modeling!)

Hidden Markov Models

Markov chains

• Model probabilities of sequences of variables

• Each state can take one of K values (can assume {1, 2, ..., K} for simplicity)

• Markov assumption:

Where have we seen this before? Language models!

P(st |s<t) ≈ P(st |st−1)

s1 s2 s3 s4

Markov chains

The/DT cat/NN sat/VBD on/IN the/DT mat/NN

s1 s2 s3 s4

Markov chains

The/?? cat/?? sat/?? on/?? the/?? mat/??

• We don’t normally see sequences of POS tags in text

s1 s2 s3 s4

Hidden Markov Model (HMM)

The/?? cat/?? sat/?? on/?? the/?? mat/??

• We don’t normally see sequences of POS tags in text

• But we do observe the words!

• HMM allows us to jointly reason over both hidden and observed events.

• Assume that each position has a tag that generates a word

s1 s2 s3 s4

the cat sat on

Tags

Words

Components of an HMM

s1 s2 s3 s4Tags

Words

1. Set of states S = {1, 2, ..., K} and set of observations O

2. Initial state probability distribution

3. Transition probabilities (OR)

4. Emission probabilities (OR)

π(s1)

P(st+1 |st) θst → st+1

P(ot |st) ϕst → ot

o1 o2 o3 o4

Assumptions

s1 s2 s3 s4Tags

Words

1. Markov assumption:

2. Output independence:

P(st+1 |s1, . . . , st) ≈ P(st+1 |st)

P(ot |s1, . . . , st) ≈ P(ot |st)

o1 o2 o3 o4

Which do you think is a stronger
assumption?
A) Markov assumption
B) Output independence

Depends on language!
1) assumes POS tag sequences
do not have very strong priors/
long-range dependencies
2) assumes neighboring tags
don’t affect current word

Sequence likelihood

Tags

Words

s1 s2 s3 s4

o1 o2 o3 o4

Sequence likelihood

Tags

Words

s1 s2 s3 s4

o1 o2 o3 o4

Sequence likelihood

Tags

Words

s1 s2 s3 s4

o1 o2 o3 o4

Transition Emission

Example: Sequence likelihood

Tags

Words

s1 s2 s3 s4

o1 o2 o3 o4

DT NN

0.8 0.2

DT 0.2 0.8

NN 0.3 0.7

the cat

DT 0.9 0.1

NN 0.5 0.5

∅

What is the joint probability
?

A)
B)
C)

P(the cat, DT NN)

(0.8 * 0.8) * (0.9 * 0.5)
(0.2 * 0.8) * (0.9 * 0.5)
(0.3 * 0.7) * (0.5 * 0.5)

Dummy start state
st+1

st

ot

Ans: A

Learning

• Maximum likelihood

estimate:

 P(si |sj) =
Count(sj, si)
Count(sj)

P(o |s) =
Count(s, o)
Count(s)

Learning Example

• Maximum likelihood

estimate:

 P(si |sj) =
Count(sj, si)
Count(sj)

P(o |s) =
Count(s, o)
Count(s)

3. the/DT old/NN man/VB the/DT boats/NNS

1. the/DT cat/NN sat/VBD on/IN the/DT mat/NN

2. Princeton/NNP is/VBZ in/IN New/NNP Jersey/NNP

P(NN |DT) =
3
4

P(cat |NN) =
1
3

Decoding with HMMs

? ? ? ?

o1 o2 o3 o4

Task: Find the most probable sequence of states given the observations ⟨s1, s2, . . . , sn⟩ ⟨o1, o2, . . . , on⟩

Decoding with HMMs

Task: Find the most probable sequence of states given the observations ⟨s1, s2, . . . , sn⟩ ⟨o1, o2, . . . , on⟩

? ? ? ?

o1 o2 o3 o4

Decoding with HMMs

? ? ? ?

o1 o2 o3 o4

Task: Find the most probable sequence of states given the observations ⟨s1, s2, . . . , sn⟩ ⟨o1, o2, . . . , on⟩

How can we maximize this?
Search over all state sequences?

Greedy decoding

DT ? ? ?

The o2 o3 o4

Decode/reveal one state at a timeDecoded tag

Greedy decoding

DT NN ? ?

The cat o3 o4

Greedy decoding

• Not guaranteed to produce the overall optimal sequence

• Local decisions

DT NN VBD IN

The cat sat on

Viterbi decoding

• Use dynamic programming!

• Maintain some extra data structures

• Probability lattice, and backtracking matrix,

•

•

• stores most probable sequence of states ending with state j at time i

• is the tag at time i-1 in the most probable sequence ending with tag j at time i

M[T, K] B[T, K]

T : Number of time steps

K : Number of states

M[i, j]

B[i, j]

Viterbi decoding

DT

NN

VBD

IN

the

M[1,DT] = π(DT) P(the |DT)

M[1,NN] = π(NN) P(the |NN)

M[1,VBD] = π(VBD) P(the |VBD)

M[1,IN] = π(IN) P(the | IN)

Forward

4 possible POS tags Initialize the table

Viterbi decoding

DT

NN

VBD

IN

catthe

DT

NN

VBD

IN

M[2,DT] = max
k

M[1,k] P(DT |k) P(cat |DT)

M[2,NN] = max
k

M[1,k] P(NN |k) P(cat |NN)

M[2,VBD] = max
k

M[1,k] P(VBD |k) P(cat |VBD)

M[2,IN] = max
k

M[1,k] P(IN |k) P(cat | IN)

Forward

Consider all possible
previous tags

Viterbi decoding

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pickmax
k

M[n, k] and backtrack using BBackward:

What is the time complexity
of this algorithm?

A)
B)
C)
D)

O(n)
O(nK)
O(nK2)
O(n2K)

n = number of timesteps
K = number of states

O(nK2)

Beam Search

If K (number of possible hidden states) is too large, Viterbi is too expensive!

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

Beam Search

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

Observation: Many paths have very low likelihood!

• If K (number of states) is too large, Viterbi is too expensive!

0.0001 0.0001 0.0001

0.001

0.3 0.1

0.00001 0.01 0.01

Beam Search

• If K (number of states) is too large, Viterbi is too expensive!

• Keep a fixed number of hypotheses at each point

• Beam width, β

Beam Search

• Keep a fixed number of hypotheses at each point

DT

NN

VBD

IN

The

β = 2

score = − 0.1

score = − 9.8

score = − 0.7

score = − 10.1

log probabilities

Beam Search

• Keep a fixed number of hypotheses at each point

The cat

DT

NN

VBD

IN

Step 1: Expand all partial sequences in current beam

DT

NN

VBD

IN

β = 2

score = − 16.5
score = − 6.5

score = − 3.0
score = − 22.1

Accumulated scoresscore = − 0.5
score = − 13.5

score = − 32.0
score = − 20.3

Beam Search

• Keep a fixed number of hypotheses at each point

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

Step 2: Prune set back to top sequences (sort and select)β

Accumulated scores

… and Repeat!

score = − 16.5
score = − 6.5

score = − 3.0
score = − 22.1

score = − 0.5
score = − 13.5

score = − 32.0
score = − 20.3

Beam Search

• Keep a fixed number of hypotheses at each point

The cat

DT

NN

VBD

IN

DT

NN

VBD

IN

β = 2

sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

Pickmax
k

M[n, k] from within beam and backtrack

What is the time complexity
of this algorithm?

n = number of timesteps
K = number of states
 = beam widthβ

Beam Search

• If K (number of states) is too large, Viterbi is too expensive!

• Keep a fixed number of hypotheses at each point

• Beam width,

• Trade-off (some) accuracy for computational savings

β

Beyond bigrams (Advanced)

• Real-world HMM taggers have more relaxed assumptions

• Trigram HMM: P(st+1 |s1, s2, . . . , st) ≈ P(st+1 |st−1, st)

DT NN VBD IN

The cat sat on

Pros? Cons?

Give us feedback!

https://forms.gle/D5Fw1tqmWNrNYEzKA

