

Sequence Models - 2

Spring 2021

COS 484/584

- **Topics:** Lectures up to March 8 (RNNs, Neural LMs)
- Logistics of the exam will be announced on Canvas tomorrow
- Last year's midterm will be made available
 - Not all topics are relevant for this year, but you will get a sense for format and types of questions
- Midterm review: COS 484 precept this week (March 5)

Midterm

- 1. Set of states $S = \{1, 2, ..., K\}$ and set of observations O
- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$ (OR $\theta_{s_t \rightarrow s_{t+1}}$)
- 4. Emission probabilities $P(o_t | s_t)$ (OR $\phi_{s_t \rightarrow o_t}$)

Recap: Hidden Markov Models

Strong assumptions

Maximum Entropy Markov Models

Generative vs Discriminative

• HMM is a generative model

• Can we model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly?

Generative

Text classification

Naive Bayes: P(c)P(d | c)

Sequence prediction

HMM:

 $P(s_1,\ldots,s_n)P(o_1,\ldots,o_n \mid s_1,\ldots,s_n)$

Discriminative

Logistic Regression: $P(c \mid d)$

MEMM: $P(s_1, ..., s_n | o_1, ..., o_n)$

(No factorization)

• Compute the posterior directly:

•
$$\hat{S} = \arg \max_{S} P(S \mid O) \approx \arg \max_{S} \hat{S}$$

• Use features: $P(s_i | o_i, s_{i-1}) \propto \exp(w \cdot f(s_i, o_i, s_{i-1}))$

Maximum Entropy Markov Model

 $O = \langle o_1, o_2, \dots, o_n \rangle$

 $\prod_{i} P(s_i | o_i, s_{i-1}) \longleftarrow$ Features ~ weights

No factorization into transition, emission

(Bigram MEMM)

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} \prod_{i} P(s_i \mid o_n, o_{i-1}, \dots, o_1, s_{i-1}, \dots, s_1)$$

$$P(s_i | s_{i-1}, \dots, s_1, O) \propto \exp(w \cdot f(s_i, s_{i-1}, \dots, s_1, O))$$

MEMM

• In general, we can use all observations and all previous states:

Why couldn't we do this with HMMs?

$$\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle \langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle, \langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle,$$

Feature templates

Features in an MEMM

 $t_i = VB$ and $w_{i-2} = Janet$ $t_i = VB$ and $w_{i-1} = will$ $t_i = VB$ and $w_i = back$ $t_i = VB$ and $w_{i+1} = the$ t_i = VB and w_{i+2} = bill $t_i = VB$ and $t_{i-1} = MD$ t_i = VB and t_{i-1} = MD and t_{i-2} = NNP $t_i = VB$ and $w_i = back$ and $w_{i+1} = the$

t = tags (states) w = words (observations)

Features

DT JJ Incorrect

DT NN Correct

The old

Which of these feature templates would help most to tag 'old' correctly? A) $\langle t_i, w_i \rangle$ B) $\langle t_i, w_i, w_{i-1} \rangle$ C) $\langle t_i, w_i, w_{i-1}, w_{i+1} \rangle$ D) $\langle t_i, w_i, w_{i-1}, w_{i+1}, w_{i+2} \rangle$

Features in an MEMM

- NN DT NN
- VB DT NN
- the man boat

t = tagsw = words

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg\max_{S} P(S \mid O)$$

(assume features only on previous time step and current obs)

• Greedy decoding:

 $\operatorname{rgmax}_{S} \Pi_{i} P(s_{i} \mid o_{i}, s_{i-1})$

s = argmax P(s|The)

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg$$

• Greedy decoding:

 $g \max_{G} \prod_{i} P(s_i \mid o_i, s_{i-1})$ S

 $S_2 = \alpha Agmax P(S|cat, DT)$

= NN

$$\hat{S} = \arg\max_{S} P(S \mid O) = \arg$$

• Greedy decoding:

 $g\max_{S} \prod_{i} P(s_i \mid o_i, s_{i-1})$ S

$$\hat{S} = \arg\max_{S} P(S \mid O)$$

Greedy decoding

• Viterbi decoding:

k \bigwedge DP Lattice (Best sequence ending in s_i)

 $= \arg\max_{S} \prod_{i} P(s_i \mid o_i, s_{i-1})$

 $M[i,j] = \max_{i} M[i-1,k] P(s_{j} | o_{i}, s_{k}) \quad 1 \le k \le K \quad 1 \le i \le n$ # states # timesteps

(or equivalent log form)

What do you think of the computational complexity of Viterbi decoding for bigram MEMMs compared to decoding for bigram HMMs?

- A) More operations in MEMM
- B) More operations in HMM
- C) Equal

D) Depends on number of features in MEMM

$$M[i,j] = \max_{k} M[i-1,k] F$$

$$M[i,j] = \max_{k} M[i-1,k]$$

MEMM: Learning

- **Gradient descent:** similar to logistic regression!
 - $P(s_i | s_1, \ldots, s_{i-1}, O)$
- Given: pairs of (S, O) wher
 - Loss for one sequence, L

$$= \frac{\exp(w \cdot f(s_1, \dots, s_{i-1}, s_i, O))}{\sum_{s'} \exp(w \cdot f(s_1, \dots, s_{i-1}, s', O))}$$

re each
$$S = \langle s_1, s_2, \ldots, s_n \rangle$$

$$= -\sum_{i} \log P(s_{i} | s_{1}, \dots, s_{i-1}, O)$$

• Compute gradients with respect to weights w and update

Label bias

HMM

$$P(JJ \mid DT) P(\text{old} \mid JJ) P(N)$$

$$P(NN \mid DT) P(\text{old} \mid NN) P(N)$$

Low entropy transitions between labels may override the effect of observations

The/? old/? man/? the/? boat/?

Stanford Parser

Please enter a sentence to be parsed:

Your query

The old man the boat

Tagging

The/DT old/JJ man/NN the/DT boat/NN

	/
Contonco	Deree
	Parse
	i uioc

Solution? **Conditional Random Fields** (advanced)

Expectation Maximization

Expectation Maximization

- Unsupervised learning method
- Can train a model without any labeled data
- Treat unknowns as "hidden" or "latent" variables
- Maximize (expected) likelihood of observed data

EM: Some intuition

- Let's say I have 3 coins in my pocket,
 - Coin 0 has probability λ of heads Coin 1 has probability p_1 of heads Coin 2 has probability p_2 of heads
- For each trial:
 - First I toss Coin 0 If coin 0 turns up **heads**, I toss coin 1 three times If coin 0 turns up **tails**, I toss coin 2 three times
 - I don't tell you the results of the coin 0 toss, or whether coin **1 or coin 2 was tossed**, but I tell you how many heads/tails are seen after each trial
- You see the following sequence: $\langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle, \langle T, T, T \rangle, \langle H, H, H \rangle$

What would you estimate as the values for λ, p_1, p_2 ? A) 1/2, 1, 0 B) 3/5, 1, 0 C) 1/2, 1/2, 1/2

Maximum Likelihood Estimate

- Data points x_1, x_2, \ldots, x_n from (finite or countable) set \mathcal{X}
- Parameter vector θ
- Parameter space Ω , i.e. $\theta \in \Omega$
- We have a distribution $P(x | \theta)$ for any $\theta \in \Omega$, such that

 $x \in \mathcal{X}$

- $P(x \mid \theta^*)$ for some $\theta^* \in \Omega$
 - This θ^* is the MLE

 $\sum P(x \mid \theta) = 1 \text{ and } P(x \mid \theta) \ge 0 \quad \forall x$

• Assume data points are drawn independently and identically distributed from a distribution

Log Likelihood

- Data points x_1, x_2, \ldots, x_n from (finite or countable) set \mathcal{X}
- Parameter vector heta and a parameter space Ω
- Probability distribution $P(x | \theta)$ for any $\theta \in \Omega$
- Data Likelihood(θ) = $P(x_1,$

• Log-likelihood, $L(\theta) = \sum_{i=1}^{n} \log P(x_i | \theta)$ i=1

$$x_2, \dots, x_n | \theta) = \prod_{i=1}^n P(x_i | \theta)$$
 (Each x_i is a data |

Example I: Coin Tossing

- heads and tails, e.g.
 - НТНТННННТТТ
- coming up heads
- Parameter space $\Omega = [0,1]$
- Distribution $P(x | \theta) = \begin{cases} \theta \text{ if } x = H \\ 1 \theta \text{ if } x = T \end{cases}$

• $\mathscr{X} = \{H, T\}$. Our data points x_1, x_2, \ldots, x_n are a sequence of

• Parameter vector θ is a single parameter, i.e probability of coin

What distribution is this? A) Binomial

B) Bernoulli

C) Multinomial

D) Gaussian

Example 2: Markov chains

- state ϕ and initial transition $\phi \rightarrow s_1$ (how many parameters?)
- Let $T(\alpha) \subset T$ be all the transitions of the form $\alpha \to \beta$ (i.e. all transitions from state α)
- for all $\alpha \in S$, $\sum \theta_t = 1$ $t \in T(\alpha)$

• ${\mathscr X}$ is the set of all possible state (e.g tag) sequences created by the underlying generative process. Our sample is n sequences X_1, \ldots, X_n such that each $X_i \in \mathcal{X}$, consists of a sequence of states s_1, s_2, s_3, \ldots

• θ_T is the vector of all transition $(s_i \rightarrow s_j)$ parameters. Without loss of generality, assume a dummy start

• Then, parameter space Ω is the set of $\theta \in [0,1]^{|S+1||S|}$ where S is set of all states (tags), such that: (why?)

• Now, if θ_T is the vector of all transition parameters

• Then, we have for a sequence X: $P(X \mid \theta) = \prod_{t \in \mathcal{O}} \theta_t^{Count(X,t)}$ $t \in T$

sequence X

$$\implies \log P(X \mid \theta) = \sum_{t \in T} Cout$$

Example 2: Markov chains

- where Count(X, t) is the number of times transition t is seen in

 $nt(X, t) \log \theta_t$

MLE for Markov chains

• We have $\log P(X|\theta) = \sum Count(X,t) \log \theta_t$ $t \in T$

in sequence X

 And, $L(\theta) = \sum \log P(X_i | \theta) = \sum \sum Count(X_i, t) \log \theta_t$ $i \qquad i \quad t \in T$

where Count(X, t) is the number of times transition t is seen

MLE for Markov chains

•
$$L(\theta) = \sum_{i} \log P(X_i | \theta) = \sum_{i} \sum_{t \in T} Cour$$

• Solve $\theta_{MLE} = \underset{\theta \in \Omega}{\arg \max L(\theta)}$

$$\implies \text{find } \theta \quad \text{s. t. } \frac{\partial L(\theta)}{\partial \theta} = 0 \text{ with ap}$$

• This gives:
$$\theta_t = \frac{\sum_i Count(X_i, t)}{\sum_i \sum_{t' \in T(\alpha)} Count(X_i, t)}$$

where *t* is of the form $\alpha \rightarrow \beta$ for some β

a transition.

 $nt(X_i, t) \log \theta_t$

opropriate probability constraints

t')

• Intuitively, the denominator is simply counting all occurrences of state α at the start of

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(x, y | \theta)$
- If we had **fully observable data**, (x_i, y_i) pairs, then log likelihood can be estimated as: $L(\theta) = \sum \log P(x_i, y_i | \theta)$
- If we have **partially observable data**, *x_i* examples only, then $L(\theta) = \sum \log P(x_i | \theta)$ $= \sum \log \sum P(x_i, y | \theta)$

y∈¥

Models with hidden variables

(y is hidden)

Unsupervised Learning

Expectation Maximization

then

 $L(\theta) =$

for finding

Maximization

• If we have **partially observable data**, x_i examples only,

$$\sum_{i} \log \sum_{y \in \mathcal{Y}} P(x_i, y \mid \theta)$$

The EM (Expectation Maximization) algorithm is a method

- In the three coins example, $\mathcal{Y} = \{H, T\}$ (possible outcomes of coin 0) $\mathcal{X} = \{HHH, TTT, HTT, THH, HHT, TTH, HTH, THT\}$ $\theta = \{\lambda, p_1, p_2\}$
- and $P(x, y | \theta) = P(y | \theta) P(x | y, \theta)$ where

and

$$P(x | y, \theta) = \begin{cases} p_1^h \\ p_2^h \end{cases}$$

The three coins example

(all possible observations of length 3)

 $P(y | \theta) = \begin{cases} \lambda \text{ if } y = H \\ 1 - \lambda \text{ if } y = T \end{cases}$

 $(1 - p_1)^t$ if y = H $(1 - p_2)^t$ if y = T

• Calculating various probabilities: $P(x = THT, y = H | \theta) = \lambda p_1 (1 - p_1)^2$ $P(x = THT, y = T | \theta) = (1 - \lambda)p_2(1 - p_2)^2$

$$P(x = THT | \theta) = P(x = THT, y = \lambda p_1 (1 - p_1)^2 + \lambda p_1 (1 - p$$

$$P(y = H | x = THT, \theta) = \frac{P(x = T)}{P(x)}$$

The three coins example

 $= H | \theta) + P(x = THT, y = T | \theta)$ $(1 - \lambda)p_2(1 - p_2)^2$

 $THT, y = H[\theta]$ $= THT | \theta$) $\lambda p_1 (1 - p_1)^2$ $\lambda p_1 (1-p_1)^2 + (1-\lambda) p_2 (1-p_2)^2$

- Fully observed data might look like:
- In this case, maximum likelihood estimates are:

 $(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$

 $\lambda = \frac{3}{5}$ $p_1 = \frac{9}{9}$ p_{γ} 0

• Partially observed data might look like:

 $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• How do we find the MLE parameters?

The three coins example

EM!

• Partially observed data might look like:

 $\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$

• Assume we guess the current parameters to be some λ, p_1, p_2 . Then:

$$P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H)}$$
$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda)p}$$
$$P(y = H | x = \langle TTT \rangle) = \frac{P(\langle TTT \rangle, H) + \lambda(1 - \lambda)p}{P(\langle TTT \rangle, H) + \lambda(1 - \lambda)p}$$
$$= \frac{\lambda(1 - \mu)^3 + \mu(1 - \lambda)p}{\lambda(1 - \mu)^3 + \mu(1 - \lambda)p}$$

The three coins example

 $HH\rangle, H)$ $+ P(\langle HHH \rangle, T)$

 p_2^3 $\langle T \rangle, H \rangle$ $(p_1)^3 - \lambda)(1 - p_2)^3$

• If the current parameters are λ, p_1, p_2 $P(y = H | x = \langle HHH \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle HHH \rangle, H) + P(\langle HHH \rangle, T)}$ $=\frac{\lambda p_1^3}{\lambda p_1^3 + (1-\lambda)p_2^3}$ $P(y = H | x = \langle TTT \rangle) = \frac{P(\langle HHH \rangle, H)}{P(\langle TTT \rangle, H) + P(\langle TTT \rangle, T)}$ $= \frac{\lambda(1-p_1)^3}{\lambda(1-p_1)^3 + (1-\lambda)(1-p_2)^3}$ • If $\lambda = 0.3$, $p_1 = 0.3$, $p_2 = 0.6$

P If
$$\lambda = 0.3$$
, $p_1 = 0.3$, $p_2 = 0.6$:
 $P(y = H | x = 0.0)$
 $P(y = H | x = 0.0)$

The three coins example

 $\langle HHH \rangle = 0.0508$ $\langle TTT \rangle$) = 0.6967

- observed data might look like:
 - $(\langle \text{HHH} \rangle, H) = P(y = \text{H} | \text{HHH}) = 0.0508$
 - ((HHH), T) = P(y = T | HHH) = 0.9492

 - $((\text{HHH}), H) \quad P(y = \text{H} | \text{HHH}) = 0.0508$
 - $((\text{HHH}), T) \quad P(y = T | \text{HHH}) = 0.9492$
 - $((TTT), H) \quad P(y = H | TTT) = 0.6967$
 - ((TTT), T) = P(y = T | TTT) = 0.3033

 - $((\text{HHH}), T) \qquad P(y = T | \text{HHH}) = 0.9492$

Treat this as a pseudo-annotated dataset (with appropriate weights) and use MLE!

The three coins example

After filling in hidden variables for each example, partially

- $((TTT), H) \quad P(y = H | TTT) = 0.6967$
- ((TTT), T) = P(y = T | TTT) = 0.3033

((HHH), H) = P(y = H | HHH) = 0.0508

each pair sums to 1

$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = T TTT) = 0.3033
$(\langle HHH \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = T TTT) = 0.3033
$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle HHH \rangle, T)$	$P(y = T \mid HHH) = 0.9492$

• New estimates:

$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	$P(y = T \mid TTT) = 0.3033$
$(\langle HHH \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	P(y = T TTT) = 0.3033
$(\langle \text{HHH} \rangle, H)$	$P(y = H \mid HHH) = 0.0508$
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$

• New estimates:

$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle TTT \rangle, T)$	$P(y = T \mid TTT) = 0.3033$
$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$
$(\langle TTT \rangle, H)$	P(y = H TTT) = 0.6967
$(\langle \mathrm{TTT} \rangle, T)$	P(y = T TTT) = 0.3033
$(\langle \text{HHH} \rangle, H)$	P(y = H HHH) = 0.0508
$(\langle \text{HHH} \rangle, T)$	$P(y = T \mid HHH) = 0.9492$

• New estimates:

- Begin with parameters: $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using $P(y = H | x = \langle HHH \rangle) = 0.0508$ $P(y = H | x = \langle TTT \rangle) = 0.6967$
- This gives us a pseudo-annotated dataset with **fractional** counts
- Re-estimate parameters to be $\lambda = 0.3092, p_1 = 0.0987, p_2 = 0.8244$

Summary

EM iterations

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\bar{p}_3	\tilde{p}_4
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

which always shows tails, and is picking between them with equal probability ($\lambda = 0.5$).

 x_2 and x_4 , whereas coin 2 generated x_1 and x_3

The coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. The solution that EM reaches is intuitively correct: the coin tosser has two coins, one which always shows heads, and another

Posterior probabilities \bar{p}_i show that we are certain that coin 1 (tail-biased) generate

EM iterations

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4	\tilde{p}_5
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$

 λ is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tailbiased coin

EM iterations

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.3000	0.6000	0.1579	0.6967	0.0508	0.6967
1	0.4005	0.0974	0.6300	0.0375	0.9065	0.0025	0.9065
2	0.4632	0.0148	0.7635	0.0014	0.9842	0.0000	0.9842
3	0.4924	0.0005	0.8205	0.0000	0.9941	0.0000	0.9941
4	0.4970	0.0000	0.8284	0.0000	0.9949	0.0000	0.9949

EM selects a tails-only coin, and a coin which is heavily heads-biased (tail-biased) is far more likely.

Coin example for $x = \{\langle HHT \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

 $(p_2 = 0.8284)$. It's certain that x_1 and x_3 were generated by coin 2 since they contain heads. x_2 and x_4 could have been generated by either coin but coin 1

Initialization matters

Iteration	λ	p_1	p_2	$ ilde p_1$	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

In this case, EM is stuck at a **saddle point**.

Iteration	λ	p_1	p_2	\tilde{p}_1	\tilde{p}_2	\tilde{p}_3	\tilde{p}_4
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

Coin example for $x = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle \}$.

If we initialize p_1 and p_2 even a small amount away from the saddle point $p_1 = p_2$, EM diverges and eventually reaches the global maximum