
Sequence Models - 2

Spring 2021

COS 484/584



Midterm

• Topics: Lectures up to March 8 (RNNs, Neural LMs) 

• Logistics of the exam will be announced on Canvas tomorrow 

• Last year’s midterm will be made available 

• Not all topics are relevant for this year, but you will get a sense for 

format and types of questions 

• Midterm review: COS 484 precept this week (March 5)



Recap: Hidden Markov Models

s1 s2 s3 s4Tags

Words

1. Set of states S = {1, 2, ..., K} and set of observations O 

2. Initial state probability distribution  

3. Transition probabilities   (OR  ) 

4. Emission probabilities   (OR  )

π(s1)

P(st+1 |st) θst → st+1

P(ot |st) ϕst → ot

o1 o2 o3 o4

Strong assumptions



Maximum Entropy Markov Models



Generative vs Discriminative

• HMM is a generative model 

• Can we model  directly?P(s1, . . . , sn |o1, . . . , on)

(No factorization)

Generative Discriminative

Naive Bayes: P(c)P(d |c) Logistic Regression: P(c |d)Text classification

HMM: 
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM: P(s1, . . . , sn |o1, . . . , on)
Sequence prediction



Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly: 

•  

• Use features: 

̂S = arg max
S

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si |oi, si−1) ∝ exp(w ⋅ f(si, oi, si−1))

No factorization into 
transition, emission

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩



MEMM

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states: 

  ̂S = arg max
S

P(S |O) = arg max
S ∏

i

P(si |on, oi−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)

Why couldn’t we do this with HMMs?



Features in an MEMM

Feature templates

Features

t = tags (states) 
w = words (observations)



Features in an MEMM

DT    NN     VB      DT     NN

The   old    man    the    boat

t = tags 
w = words

Which of these feature templates would 
help most to tag ‘old’ correctly? 
A)  
B)   
C)  
D) 

⟨ti, wi⟩
⟨ti, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT    JJ     NN     DT     NN

Correct

Incorrect



MEMMs: Decoding

      

• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

(assume features only on previous time step and current obs)



MEMMs: Decoding

     

• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on



MEMMs: Decoding

     

• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on



MEMMs: Decoding

 

• Greedy decoding 

• Viterbi decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n (or equivalent 
log form)

(Best sequence ending in )sj



MEMMs: Decoding

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

What do you think of the computational complexity of Viterbi  
decoding for bigram MEMMs compared to decoding for bigram HMMs? 
A) More operations in MEMM 
B) More operations in HMM 
C) Equal 
D) Depends on number of features in MEMM



MEMM: Learning

• Gradient descent: similar to logistic regression! 

• Given: pairs of  

Loss for one sequence,  

• Compute gradients with respect to weights  and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = − ∑
i

log P(si |s1, . . . , si−1, O)

w

P(si |s1, . . . , si−1, O) =
exp(w ⋅ f(s1, . . . , si−1, si, O))

∑s′ 
exp(w ⋅ f(s1, . . . , si−1, s′ , O))



Label bias

HMM

The/? old/? man/? the/? boat/?

s1 s2 s3 s4

o1 o2 o3 o4

P(JJ |DT) P(old |JJ) P(NN |JJ) P(man |NN) P(DT |NN)

P(NN |DT) P(old |NN) P(VB |NN) P(man |VB) P(DT |VB)

DT JJ NN DT

The old man the

MEMM

Low entropy transitions between labels may override the effect of observations



Solution?             
Conditional Random Fields  

(advanced)



Expectation Maximization



Expectation Maximization

• Unsupervised learning method 

• Can train a model without any labeled data 

• Treat unknowns as “hidden” or “latent” variables 

• Maximize (expected) likelihood of observed data



EM: Some intuition

• Let’s say I have 3 coins in my pocket,  

• Coin 0 has probability  of heads 
Coin 1 has probability  of heads 
Coin 2 has probability  of heads 

• For each trial: 

• First I toss Coin 0 
If coin 0 turns up heads, I toss coin 1 three times 
If coin 0 turns up tails, I toss coin 2 three times 
 
I don’t tell you the results of the coin 0 toss, or whether coin 
1 or coin 2 was tossed, but I tell you how many heads/tails are 
seen after each trial 

• You see the following sequence:  

λ
p1
p2

⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩

What would you estimate as 
the values for  ? 
A) 1/2, 1, 0 
B) 3/5, 1, 0 
C) 1/2, 1/2, 1/2

λ, p1, p2



Maximum Likelihood Estimate

• Data points  

• Parameter vector  

• Parameter space , i.e.  

• We have a distribution  for any , such that 

 

• Assume data points are drawn independently and identically distributed from a distribution 

 

• This  is the MLE

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ

Ω θ ∈ Ω

P(x |θ) θ ∈ Ω

∑
x∈𝒳

P(x |θ) = 1 and P(x |θ) ≥ 0 ∀x

P(x |θ*) for some θ* ∈ Ω

θ*



Log Likelihood

• Data points  

• Parameter vector  and a parameter space  

• Probability distribution  for any  

• Data Likelihood  =  

• Log-likelihood, 

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ Ω

P(x |θ) θ ∈ Ω

(θ) P(x1, x2, . . . , xn |θ) =
n

∏
i=1

P(xi |θ)

L(θ) =
n

∑
i=1

log P(xi |θ)

(Each  is a data point)xi



Example 1: Coin Tossing

• . Our data points  are a sequence of 

heads and tails, e.g. 

• HTHTHHHHTTT 

• Parameter vector  is a single parameter, i.e probability of coin 

coming up heads 

• Parameter space  

• Distribution 

𝒳 = {H, T} x1, x2, . . . , xn

θ

Ω = [0,1]

P(x |θ) = { θ if x = H
1 − θ if x = T

What distribution is this? 
A) Binomial 
B) Bernoulli 
C) Multinomial 
D) Gaussian



Example 2: Markov chains

•  is the set of all possible state (e.g tag) sequences created by the underlying generative process. Our 

sample is  sequences  such that each , consists of a sequence of states  

•  is the vector of all transition  parameters. Without loss of generality, assume a dummy start 

state  and initial transition    (how many parameters?) 

• Let   (i.e. all transitions from state ) 

• Then, parameter space  is the set of  where S is set of all states (tags), such that: 

                                                  (why?)

𝒳
n X1, . . . , Xn Xi ∈ 𝒳 s1, s2, s3, . . .

θT (si → sj)

ϕ ϕ → s1

T(α) ⊂ T be all the transitions of the form α → β α

Ω θ ∈ [0,1]|S+1||S|

for all α ∈ S, ∑
t∈T(α)

θt = 1

s1 s2 s3 s4



Example 2: Markov chains

• Now, if  is the vector of all transition parameters 

• Then, we have for a sequence : 

               

where  is the number of times transition  is seen in 

sequence  

 

 

θT

X
P(X |θ) = ∏

t∈T

θCount(X,t)
t

Count(X, t) t
X

⟹ log P(X |θ) = ∑
t∈T

Count(X, t) log θt



MLE for Markov chains

• We have 

 

 

where  is the number of times transition  is seen 

in sequence  

• And,  

log P(X |θ) = ∑
t∈T

Count(X, t) log θt

Count(X, t) t
X

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt



MLE for Markov chains

•  

• Solve  

 

  with appropriate probability constraints 

• This gives:  

where  is of the form  

• Intuitively, the denominator is simply counting all occurrences of state  at the start of 

a transition.

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

θMLE = arg max
θ∈Ω

L(θ)

⟹  find θ  s. t. 
∂L(θ)

∂θ
= 0

θt =
∑i Count(Xi, t)

∑i ∑t′ ∈T(α) Count(Xi, t′ )

t α → β for some β

α



Models with hidden variables

• Now say we have two sets  and , and a joint distribution  

• If we had fully observable data,  pairs, then log likelihood can be estimated as: 

                               

• If we have partially observable data,  examples only, then 

                             

𝒳 𝒴 P(x, y |θ)

(xi, yi)
L(θ) = ∑

i

log P(xi, yi |θ)

xi

L(θ) = ∑
i

log P(xi |θ)

= ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

Unsupervised Learning

(y is hidden)



Expectation Maximization

• If we have partially observable data,  examples only, 

then 

                              

• The EM (Expectation Maximization) algorithm is a method 

for finding 

xi

L(θ) = ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

θMLE = arg max
θ

L(θ) = arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)

Maximization
“Expectation”



The three coins example

• In the three coins example,  

   (possible outcomes of coin 0) 

 

 

• and  

where  

                              

and 

                    

𝒴 = {H, T}
𝒳 = {HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
θ = {λ, p1, p2}

P(x, y |θ) = P(y |θ) P(x |y, θ)

P(y |θ) = { λ if y = H
1 − λ if y = T

P(x |y, θ) = {
ph

1 (1 − p1)t if y = H

ph
2 (1 − p2)t if y = T

(all possible 
observations of length 3)



• Calculating various probabilities: 

 

 

 

 

 

 

P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2

P(x = THT |θ) = P(x = THT, y = H |θ) + P(x = THT, y = T |θ)
= λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

P(y = H |x = THT, θ) =
P(x = THT, y = H |θ)

P(x = THT |θ)

=
λp1(1 − p1)2

λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

The three coins example



The three coins example

• Fully observed data might look like: 

 

• In this case, maximum likelihood estimates are: 

 

                                         

(⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H)

λ =
3
5

p1 =
9
9

p2 =
0
6



• Partially observed data might look like: 

 

 

• How do we find the MLE parameters?

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

The three coins example

EM!



• Partially observed data might look like: 

 

 

• Assume we guess the current parameters to be some . Then: 

 

 

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T )

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨TTT⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T )

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

The three coins example



The three coins example

• If the current parameters are  

 

 

• If  : 

                                    

                                   

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T )

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨HHH⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T )

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

λ = 0.3, p1 = 0.3, p2 = 0.6
P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967



The three coins example

• After filling in hidden variables for each example, partially 

observed data might look like:

each pair sums to 1

Treat this as a pseudo-annotated dataset (with appropriate weights) and use MLE!



The three coins example

• New estimates:



The three coins example

• New estimates:



The three coins example

• New estimates:



Summary

• Begin with parameters:  

• Fill in hidden variables, using 

 

 

• This gives us a pseudo-annotated dataset with fractional counts 

• Re-estimate parameters to be 

λ = 0.3, p1 = 0.3, p2 = 0.6

P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

λ = 0.3092, p1 = 0.0987, p2 = 0.8244

Repeat!



EM iterations

The coin example for . The solution that EM reaches is 
intuitively correct: the coin tosser has two coins, one which always shows heads, and another 
which always shows tails, and is picking between them with equal probability . 

x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

(λ = 0.5)

Posterior probabilities  show that we are certain that coin 1 (tail-biased) generate 
, whereas coin 2 generated 

p̄i
x2 and x4 x1 and x3



EM iterations

Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

 is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-
biased coin

λ



EM iterations

Coin example for . x = {⟨HHT⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

EM selects a tails-only coin, and a coin which is heavily heads-biased 
. It’s certain that  and  were generated by coin 2 since they 

contain heads.  and  could have been generated by either coin but coin 1 
(tail-biased) is far more likely.

(p2 = 0.8284) x1 x3
x2 x4



Initialization matters

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

In this case, EM is stuck at a saddle point.



If we initialize  and  even a small amount away from the saddle point 
, EM diverges and eventually reaches the global maximum

p1 p2
p1 = p2

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}




