
Sequence Models - 2

Spring 2021

COS 484/584

Midterm

• Topics: Lectures up to March 8 (RNNs, Neural LMs)

• Logistics of the exam will be announced on Canvas tomorrow

• Last year’s midterm will be made available

• Not all topics are relevant for this year, but you will get a sense for

format and types of questions

• Midterm review: COS 484 precept this week (March 5)

Recap: Hidden Markov Models

s1 s2 s3 s4Tags

Words

1. Set of states S = {1, 2, ..., K} and set of observations O

2. Initial state probability distribution

3. Transition probabilities (OR)

4. Emission probabilities (OR)

π(s1)

P(st+1 |st) θst → st+1

P(ot |st) ϕst → ot

o1 o2 o3 o4

Strong assumptions

Maximum Entropy Markov Models

Generative vs Discriminative

• HMM is a generative model

• Can we model directly?P(s1, . . . , sn |o1, . . . , on)

(No factorization)

Generative Discriminative

Naive Bayes: P(c)P(d |c) Logistic Regression: P(c |d)Text classification

HMM:
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM: P(s1, . . . , sn |o1, . . . , on)
Sequence prediction

Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly:

•

• Use features:

̂S = arg max
S

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si |oi, si−1) ∝ exp(w ⋅ f(si, oi, si−1))

No factorization into
transition, emission

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩

MEMM

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states:

 ̂S = arg max
S

P(S |O) = arg max
S ∏

i

P(si |on, oi−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)

Why couldn’t we do this with HMMs?

Features in an MEMM

Feature templates

Features

t = tags (states)
w = words (observations)

Features in an MEMM

DT NN VB DT NN

The old man the boat

t = tags
w = words

Which of these feature templates would
help most to tag ‘old’ correctly?
A)
B)
C)
D)

⟨ti, wi⟩
⟨ti, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT JJ NN DT NN

Correct

Incorrect

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

(assume features only on previous time step and current obs)

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

MEMMs: Decoding

• Greedy decoding

• Viterbi decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n (or equivalent
log form)

(Best sequence ending in)sj

MEMMs: Decoding

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

What do you think of the computational complexity of Viterbi
decoding for bigram MEMMs compared to decoding for bigram HMMs?
A) More operations in MEMM
B) More operations in HMM
C) Equal
D) Depends on number of features in MEMM

MEMM: Learning

• Gradient descent: similar to logistic regression!

• Given: pairs of

Loss for one sequence,

• Compute gradients with respect to weights and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = − ∑
i

log P(si |s1, . . . , si−1, O)

w

P(si |s1, . . . , si−1, O) =
exp(w ⋅ f(s1, . . . , si−1, si, O))

∑s′
exp(w ⋅ f(s1, . . . , si−1, s′ , O))

Label bias

HMM

The/? old/? man/? the/? boat/?

s1 s2 s3 s4

o1 o2 o3 o4

P(JJ |DT) P(old |JJ) P(NN |JJ) P(man |NN) P(DT |NN)

P(NN |DT) P(old |NN) P(VB |NN) P(man |VB) P(DT |VB)

DT JJ NN DT

The old man the

MEMM

Low entropy transitions between labels may override the effect of observations

Solution?
Conditional Random Fields

(advanced)

Expectation Maximization

Expectation Maximization

• Unsupervised learning method

• Can train a model without any labeled data

• Treat unknowns as “hidden” or “latent” variables

• Maximize (expected) likelihood of observed data

EM: Some intuition

• Let’s say I have 3 coins in my pocket,

• Coin 0 has probability of heads
Coin 1 has probability of heads
Coin 2 has probability of heads

• For each trial:

• First I toss Coin 0
If coin 0 turns up heads, I toss coin 1 three times
If coin 0 turns up tails, I toss coin 2 three times

I don’t tell you the results of the coin 0 toss, or whether coin
1 or coin 2 was tossed, but I tell you how many heads/tails are
seen after each trial

• You see the following sequence:

λ
p1
p2

⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩, ⟨T, T, T⟩, ⟨H, H, H⟩

What would you estimate as
the values for ?
A) 1/2, 1, 0
B) 3/5, 1, 0
C) 1/2, 1/2, 1/2

λ, p1, p2

Maximum Likelihood Estimate

• Data points

• Parameter vector

• Parameter space , i.e.

• We have a distribution for any , such that

• Assume data points are drawn independently and identically distributed from a distribution

• This is the MLE

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ

Ω θ ∈ Ω

P(x |θ) θ ∈ Ω

∑
x∈𝒳

P(x |θ) = 1 and P(x |θ) ≥ 0 ∀x

P(x |θ*) for some θ* ∈ Ω

θ*

Log Likelihood

• Data points

• Parameter vector and a parameter space

• Probability distribution for any

• Data Likelihood =

• Log-likelihood,

x1, x2, . . . , xn from (finite or countable) set 𝒳

θ Ω

P(x |θ) θ ∈ Ω

(θ) P(x1, x2, . . . , xn |θ) =
n

∏
i=1

P(xi |θ)

L(θ) =
n

∑
i=1

log P(xi |θ)

(Each is a data point)xi

Example 1: Coin Tossing

• . Our data points are a sequence of

heads and tails, e.g.

• HTHTHHHHTTT

• Parameter vector is a single parameter, i.e probability of coin

coming up heads

• Parameter space

• Distribution

𝒳 = {H, T} x1, x2, . . . , xn

θ

Ω = [0,1]

P(x |θ) = { θ if x = H
1 − θ if x = T

What distribution is this?
A) Binomial
B) Bernoulli
C) Multinomial
D) Gaussian

Example 2: Markov chains

• is the set of all possible state (e.g tag) sequences created by the underlying generative process. Our

sample is sequences such that each , consists of a sequence of states

• is the vector of all transition parameters. Without loss of generality, assume a dummy start

state and initial transition (how many parameters?)

• Let (i.e. all transitions from state)

• Then, parameter space is the set of where S is set of all states (tags), such that:

 (why?)

𝒳
n X1, . . . , Xn Xi ∈ 𝒳 s1, s2, s3, . . .

θT (si → sj)

ϕ ϕ → s1

T(α) ⊂ T be all the transitions of the form α → β α

Ω θ ∈ [0,1]|S+1||S|

for all α ∈ S, ∑
t∈T(α)

θt = 1

s1 s2 s3 s4

Example 2: Markov chains

• Now, if is the vector of all transition parameters

• Then, we have for a sequence :

where is the number of times transition is seen in

sequence

θT

X
P(X |θ) = ∏

t∈T

θCount(X,t)
t

Count(X, t) t
X

⟹ log P(X |θ) = ∑
t∈T

Count(X, t) log θt

MLE for Markov chains

• We have

where is the number of times transition is seen

in sequence

• And,

log P(X |θ) = ∑
t∈T

Count(X, t) log θt

Count(X, t) t
X

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

MLE for Markov chains

•

• Solve

 with appropriate probability constraints

• This gives:

where is of the form

• Intuitively, the denominator is simply counting all occurrences of state at the start of

a transition.

L(θ) = ∑
i

log P(Xi |θ) = ∑
i

∑
t∈T

Count(Xi, t) log θt

θMLE = arg max
θ∈Ω

L(θ)

⟹ find θ s. t.
∂L(θ)

∂θ
= 0

θt =
∑i Count(Xi, t)

∑i ∑t′ ∈T(α) Count(Xi, t′)

t α → β for some β

α

Models with hidden variables

• Now say we have two sets and , and a joint distribution

• If we had fully observable data, pairs, then log likelihood can be estimated as:

• If we have partially observable data, examples only, then

𝒳 𝒴 P(x, y |θ)

(xi, yi)
L(θ) = ∑

i

log P(xi, yi |θ)

xi

L(θ) = ∑
i

log P(xi |θ)

= ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

Unsupervised Learning

(y is hidden)

Expectation Maximization

• If we have partially observable data, examples only,

then

• The EM (Expectation Maximization) algorithm is a method

for finding

xi

L(θ) = ∑
i

log ∑
y∈𝒴

P(xi, y |θ)

θMLE = arg max
θ

L(θ) = arg max
θ ∑

i

log ∑
y∈𝒴

P(xi, y |θ)

Maximization
“Expectation”

The three coins example

• In the three coins example,

 (possible outcomes of coin 0)

• and

where

and

𝒴 = {H, T}
𝒳 = {HHH, TTT, HTT, THH, HHT, TTH, HTH, THT}
θ = {λ, p1, p2}

P(x, y |θ) = P(y |θ) P(x |y, θ)

P(y |θ) = { λ if y = H
1 − λ if y = T

P(x |y, θ) = {
ph

1 (1 − p1)t if y = H

ph
2 (1 − p2)t if y = T

(all possible
observations of length 3)

• Calculating various probabilities:

P(x = THT, y = H |θ) = λp1(1 − p1)2

P(x = THT, y = T |θ) = (1 − λ)p2(1 − p2)2

P(x = THT |θ) = P(x = THT, y = H |θ) + P(x = THT, y = T |θ)
= λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

P(y = H |x = THT, θ) =
P(x = THT, y = H |θ)

P(x = THT |θ)

=
λp1(1 − p1)2

λp1(1 − p1)2 + (1 − λ)p2(1 − p2)2

The three coins example

The three coins example

• Fully observed data might look like:

• In this case, maximum likelihood estimates are:

(⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H), (⟨TTT⟩, T), (⟨HHH⟩, H)

λ =
3
5

p1 =
9
9

p2 =
0
6

• Partially observed data might look like:

• How do we find the MLE parameters?

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

The three coins example

EM!

• Partially observed data might look like:

• Assume we guess the current parameters to be some . Then:

⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T)

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨TTT⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T)

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

The three coins example

The three coins example

• If the current parameters are

• If :

λ, p1, p2

P(y = H |x = ⟨HHH⟩) =
P(⟨HHH⟩, H)

P(⟨HHH⟩, H) + P(⟨HHH⟩, T)

=
λp3

1

λp3
1 + (1 − λ)p3

2

P(y = H |x = ⟨TTT⟩) =
P(⟨HHH⟩, H)

P(⟨TTT⟩, H) + P(⟨TTT⟩, T)

=
λ(1 − p1)3

λ(1 − p1)3 + (1 − λ)(1 − p2)3

λ = 0.3, p1 = 0.3, p2 = 0.6
P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

The three coins example

• After filling in hidden variables for each example, partially

observed data might look like:

each pair sums to 1

Treat this as a pseudo-annotated dataset (with appropriate weights) and use MLE!

The three coins example

• New estimates:

The three coins example

• New estimates:

The three coins example

• New estimates:

Summary

• Begin with parameters:

• Fill in hidden variables, using

• This gives us a pseudo-annotated dataset with fractional counts

• Re-estimate parameters to be

λ = 0.3, p1 = 0.3, p2 = 0.6

P(y = H |x = ⟨HHH⟩) = 0.0508
P(y = H |x = ⟨TTT⟩) = 0.6967

λ = 0.3092, p1 = 0.0987, p2 = 0.8244

Repeat!

EM iterations

The coin example for . The solution that EM reaches is
intuitively correct: the coin tosser has two coins, one which always shows heads, and another
which always shows tails, and is picking between them with equal probability .

x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

(λ = 0.5)

Posterior probabilities show that we are certain that coin 1 (tail-biased) generate
, whereas coin 2 generated

p̄i
x2 and x4 x1 and x3

EM iterations

Coin example for {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩}

 is now 0.4, indicating that coin 0 has a probability 0.4 of selecting the tail-
biased coin

λ

EM iterations

Coin example for . x = {⟨HHT⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

EM selects a tails-only coin, and a coin which is heavily heads-biased
. It’s certain that and were generated by coin 2 since they

contain heads. and could have been generated by either coin but coin 1
(tail-biased) is far more likely.

(p2 = 0.8284) x1 x3
x2 x4

Initialization matters

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

In this case, EM is stuck at a saddle point.

If we initialize and even a small amount away from the saddle point
, EM diverges and eventually reaches the global maximum

p1 p2
p1 = p2

Coin example for . x = {⟨HHH⟩, ⟨TTT⟩, ⟨HHH⟩, ⟨TTT⟩}

