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• Reminder: Proposals due March 29 (next week) 

• Course website has guidelines, along with sample 

proposals and projects from last year

Final Projects



• Assume   

• We then have:  
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Last time: IBM Model 1



Neural Machine Translation

‣ A single neural network is used to translate from source to target language 

‣ Architecture: Encoder-Decoder 

‣ Two main components: 

‣ Encoder: Convert source sentence (input) into a vector/matrix 

‣ Decoder: Convert encoding into a sentence in target language (output)



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd



Sequence to Sequence learning 
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN) 

• Decode one word at a time (again, using an RNN!) 

• Beam search for better inference 

• Learning is not trivial! (vanishing/exploding gradients) (Sutskever et al., 2014)
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Seq2seq training

‣ Similar to training a language model! 

‣ Minimize cross-entropy loss: 

 

‣ Back-propagate gradients through both 

decoder and encoder 

‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo! 



Seq2seq training

(slide credit: Abigail See)



Greedy decoding

‣ Compute argmax at every step of 

decoder to generate word 

‣ What’s wrong?



Exhaustive search?

‣ Find  

‣ Requires computing all possible sequences  

‣  complexity! 

‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

What is the complexity of doing this search?

V - Vocabulary 
T - length of sequence



A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most probable partial 

translations (hypotheses) 

‣ Score of each hypothesis = log probability of sequence so far 

 

‣ Not guaranteed to be optimal 

‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



Beam decoding

(slide credit: Abigail See)
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Beam decoding

(slide credit: Abigail See)



Backtrack

(slide credit: Abigail See)



Beam decoding

‣ Different hypotheses may produce  (end) token at different time steps 

‣ When a hypothesis produces , stop expanding it and place it aside 

‣ Continue beam search until: 

‣ All  hypotheses produce  OR 

‣ Hit max decoding limit T 

‣ Select top hypotheses using the normalized likelihood score 

 

‣ Otherwise shorter hypotheses have higher scores
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log P(yt |y1, . . . , yt−1, x1, . . . , xn)



NMT vs SMT

Pros 

‣ Better performance 

‣ Fluency 

‣ Longer context 

‣ Single NN optimized end-to-end 

‣ Less feature engineering 

‣ Works out of the box for many 

language pairs

Cons 

‣ Requires more data and compute 

‣ Less interpretable 

‣ Hard to debug 

‣ Uncontrollable 

‣ Heavily dependent on data - could 

lead to unwanted biases 

‣ More parameters



How seq2seq changed the MT 
landscape



MT Progress

(source: Rico Sennrich)



(Wu et al., 2016)



Versatile seq2seq

‣ Seq2seq finds applications in many other tasks! 

‣ Any task where inputs and outputs are sequences of words/

characters 

‣ Summarization (input text  summary) 

‣ Dialogue (previous utterance  reply) 

‣ Parsing (sentence  parse tree in sequence form) 

‣ Question answering (context+question  answer)

→

→

→

→



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence 

‣ Longer sequences can lead to vanishing gradients 

‣ Model may “overfit” to training sequences

henc

Bottleneck
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Remember alignments?



Attention

‣ The neural MT equivalent of alignment models 

‣ Key idea: At each time step during decoding, focus on a particular part 
of source sentence 

‣ This depends on the decoder’s current hidden state  (i.e. an idea 

of what you are trying to decode) 

‣ Usually implemented as a probability distribution over the hidden 

states of the encoder (  )

hdec

henc
i



Seq2seq with attention

(slide credit: Abigail See)











Computing attention

‣ Encoder hidden states:  

‣ Decoder hidden state at time :  

‣ First, get attention scores for this time step of decoder (we’ll define  soon): 

                                  

‣ Obtain the attention distribution using softmax: 

                                         

‣ Compute weighted sum of encoder hidden states: 

                                         

‣ Finally, concatenate with decoder state and pass on to output layer: 
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(credits: Jay Alammar)



Types of attention

‣ Assume encoder hidden states  and a decoder hidden state  

1. Dot-product attention (assumes equal dimensions for  and ): 

                     

2. Multiplicative attention: 
             , where  is a weight matrix (learned) 

3. Additive attention: 
                   

where  are weight matrices (learned) and  is a weight vector (learned)

henc
1 , henc

2 , . . . , henc
n hdec

henc hdec

g(henc
i , hdec) = (hdec)T henc

i ∈ ℝ

g(henc
i , hdec) = (hdec)T W henc

i ∈ ℝ W

g(henc
i , hdec) = vT tanh (W1henc

i + W2hdec) ∈ ℝ
W1, W2 v



Assuming we use dot product attention, which input word 
will have the highest attention value at current time step? 

A) the 
B) cat 
C) sat
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What if we use multiplicative attention with ? 

Which input word will have the highest attention value at 
current time step? 

A) the 
B) cat 
C) sat

W = [1 0
0 0]
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Which value of  in multiplicative attention will provide the same word 
with highest attention value as dot-product attention? 

A)     B)    C) both 
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(Luong et al., 2015)

Attention improves translation



(credits: Jay Alammar)

Visualizing attention



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence 

‣ Longer sequences can lead to vanishing gradients 

‣ Model may “overfit” to training sequences
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Dropout (advanced)

‣ Form of regularization for RNNs (and any NN in general) 

‣ Idea: “Handicap” NN  by removing hidden units stochastically 

‣ set each hidden unit in a layer to 0 with probability  during 

training (  usually works well) 

‣ scale outputs by  

‣ hidden units forced to learn more general patterns and 

improve redundancy 

‣ Test time: Simply compute identity

p
p = 0.5

1/(1 − p)

(Srivastava et al., 2014)



Other challenges with NMT

‣ Out-of-vocabulary words 

‣ Low-resource languages  

‣ Long-term context 

‣ Common sense knowledge (e.g. hot dog, paper jam) 

‣ Fairness and bias 

‣ Uninterpretable



Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with English (remember Interlingua?) 

‣ Massive improvements on low-resource languages





Bias and Fairness

‣ NMT systems suffer from issues of 

systematic bias (e.g. gender) 

‣ Evident when translating from/to a 

language with gender-specific (or gender-

agnostic) terms 

‣ Models learn (and amplify) stereotypes 

from data

(Farkas and Nemeth, 2020)



Measuring bias in MT

‣ WinoMT: Stanovsky et al. (2019) use coreference resolution to construct a dataset of 

non-stereotypical gender roles  

‣ e.g. “The doctor asked the nurse to help her in the operation” 

‣ Systems consistently performed worse on non-stereotypical gender translation



(Stanovsky et al. 2019)



Anonymous feedback form: 
https://forms.gle/875aEkJqodZcDx8H6




