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• Reminder: Proposals due March 29 (next week)


• Course website has guidelines, along with sample 

proposals and projects from last year

Final Projects



• Assume  


• We then have:  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1

M(t)

p(w(s), w(t)) = p(w(t))∑
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Last time: IBM Model 1



Neural Machine Translation

‣ A single neural network is used to translate from source to target language


‣ Architecture: Encoder-Decoder


‣ Two main components:


‣ Encoder: Convert source sentence (input) into a vector/matrix


‣ Decoder: Convert encoding into a sentence in target language (output)



Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd



Sequence to Sequence learning 
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)


• Decode one word at a time (again, using an RNN!)


• Beam search for better inference


• Learning is not trivial! (vanishing/exploding gradients) (Sutskever et al., 2014)
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Seq2seq training

‣ Similar to training a language model!


‣ Minimize cross-entropy loss:





‣ Back-propagate gradients through both 

decoder and encoder


‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo! 



Seq2seq training

(slide credit: Abigail See)



Greedy decoding

‣ Compute argmax at every step of 

decoder to generate word


‣ What’s wrong?



Exhaustive search?

‣ Find 


‣ Requires computing all possible sequences 


‣  complexity!


‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

What is the complexity of doing this search?

V - Vocabulary 
T - length of sequence



A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most probable partial 

translations (hypotheses)


‣ Score of each hypothesis = log probability of sequence so far





‣ Not guaranteed to be optimal


‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



Beam decoding

(slide credit: Abigail See)
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Beam decoding

(slide credit: Abigail See)



Backtrack

(slide credit: Abigail See)



Beam decoding

‣ Different hypotheses may produce  (end) token at different time steps


‣ When a hypothesis produces , stop expanding it and place it aside


‣ Continue beam search until:


‣ All  hypotheses produce  OR


‣ Hit max decoding limit T


‣ Select top hypotheses using the normalized likelihood score





‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)



NMT vs SMT

Pros


‣ Better performance


‣ Fluency


‣ Longer context


‣ Single NN optimized end-to-end


‣ Less feature engineering


‣ Works out of the box for many 

language pairs

Cons


‣ Requires more data and compute


‣ Less interpretable


‣ Hard to debug


‣ Uncontrollable


‣ Heavily dependent on data - could 

lead to unwanted biases


‣ More parameters



How seq2seq changed the MT 
landscape



MT Progress

(source: Rico Sennrich)



(Wu et al., 2016)



Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!


‣ Any task where inputs and outputs are sequences of words/

characters


‣ Summarization (input text  summary)


‣ Dialogue (previous utterance  reply)


‣ Parsing (sentence  parse tree in sequence form)


‣ Question answering (context+question  answer)

→

→

→

→



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence


‣ Longer sequences can lead to vanishing gradients


‣ Model may “overfit” to training sequences

henc

Bottleneck
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Remember alignments?



Attention

‣ The neural MT equivalent of alignment models


‣ Key idea: At each time step during decoding, focus on a particular part 
of source sentence


‣ This depends on the decoder’s current hidden state  (i.e. an idea 

of what you are trying to decode)


‣ Usually implemented as a probability distribution over the hidden 

states of the encoder (  )

hdec

henc
i



Seq2seq with attention

(slide credit: Abigail See)











Computing attention

‣ Encoder hidden states: 


‣ Decoder hidden state at time : 


‣ First, get attention scores for this time step of decoder (we’ll define  soon): 

                                 


‣ Obtain the attention distribution using softmax: 

                                        


‣ Compute weighted sum of encoder hidden states: 

                                        


‣ Finally, concatenate with decoder state and pass on to output layer: 

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc
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t ), . . . , g(henc
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αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t ] ∈ ℝ2h

henc
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(credits: Jay Alammar)



Types of attention

‣ Assume encoder hidden states  and a decoder hidden state 


1. Dot-product attention (assumes equal dimensions for  and ): 

                    


2. Multiplicative attention: 
             , where  is a weight matrix (learned)


3. Additive attention: 
                   

where  are weight matrices (learned) and  is a weight vector (learned)

henc
1 , henc

2 , . . . , henc
n hdec

henc hdec

g(henc
i , hdec) = (hdec)T henc

i ∈ ℝ

g(henc
i , hdec) = (hdec)T W henc

i ∈ ℝ W

g(henc
i , hdec) = vT tanh (W1henc

i + W2hdec) ∈ ℝ
W1, W2 v



Assuming we use dot product attention, which input word 
will have the highest attention value at current time step?


A) the

B) cat

C) sat

h3h1 h2
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sat -> 0.01 + 0.04    


Dot-product 
attention: 
g(henc

i , hdec) = hdec ⋅ henc



What if we use multiplicative attention with ? 

Which input word will have the highest attention value at 
current time step?


A) the

B) cat

C) sat

W = [1 0
0 0]
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Which value of  in multiplicative attention will provide the same word 
with highest attention value as dot-product attention?


A)     B)    C) both


W
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(Luong et al., 2015)

Attention improves translation



(credits: Jay Alammar)

Visualizing attention



Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence


‣ Longer sequences can lead to vanishing gradients
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Dropout (advanced)

‣ Form of regularization for RNNs (and any NN in general)


‣ Idea: “Handicap” NN  by removing hidden units stochastically


‣ set each hidden unit in a layer to 0 with probability  during 

training (  usually works well)


‣ scale outputs by 


‣ hidden units forced to learn more general patterns and 

improve redundancy


‣ Test time: Simply compute identity

p
p = 0.5

1/(1 − p)

(Srivastava et al., 2014)



Other challenges with NMT

‣ Out-of-vocabulary words


‣ Low-resource languages 


‣ Long-term context


‣ Common sense knowledge (e.g. hot dog, paper jam)


‣ Fairness and bias


‣ Uninterpretable



Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with English (remember Interlingua?)


‣ Massive improvements on low-resource languages





Bias and Fairness

‣ NMT systems suffer from issues of 

systematic bias (e.g. gender)


‣ Evident when translating from/to a 

language with gender-specific (or gender-

agnostic) terms


‣ Models learn (and amplify) stereotypes 

from data

(Farkas and Nemeth, 2020)



Measuring bias in MT

‣ WinoMT: Stanovsky et al. (2019) use coreference resolution to construct a dataset of 

non-stereotypical gender roles 


‣ e.g. “The doctor asked the nurse to help her in the operation”


‣ Systems consistently performed worse on non-stereotypical gender translation



(Stanovsky et al. 2019)



Anonymous feedback form:

https://forms.gle/875aEkJqodZcDx8H6




