
L13: Neural Machine Translation

Spring 2022

COS 484

• Reminder: Proposals due March 29 (next week)

• Course website has guidelines, along with sample

proposals and projects from last year

Final Projects

• Assume

• We then have:

p(am |m, M(s), M(t)) =
1

M(t)

p(w(s), w(t)) = p(w(t))∑
A

(
1

M(t)
)M(s) p(w(s) |w(t))

Last time: IBM Model 1

Neural Machine Translation

‣ A single neural network is used to translate from source to target language

‣ Architecture: Encoder-Decoder

‣ Two main components:

‣ Encoder: Convert source sentence (input) into a vector/matrix

‣ Decoder: Convert encoding into a sentence in target language (output)

Recall: RNNs

ht = g(Wht−1 + Uxt + b) ∈ ℝd

Sequence to Sequence learning
(Seq2seq)

• Encode entire input sequence into a single vector (using an RNN)

• Decode one word at a time (again, using an RNN!)

• Beam search for better inference

• Learning is not trivial! (vanishing/exploding gradients) (Sutskever et al., 2014)

Encoder

xt

ht−1

xt+1

ht

xt+2

ht+1 ht+2

xt+3

ht+3

h

This cat is cute

Sentence: This cat is cute

word
embedding

Encoder

x1

h0

xt+1

h1

xt+2

ht+1 ht+2

xt+3

ht+3

h

Sentence: This cat is cute

word
embedding

This cat is cute

x1

h0

x2

h1

x3

h2 h3

x4

h4

Encoder

xt+2

ht+2

xt+3

ht+3

h

Sentence: This cat is cute

word
embedding

This cat is cute

Encoder

x1

h0

x2

h1

x3

h2 h3

x4

h4

(encoded representation)

Sentence: This cat is cute

word
embedding

henc

This cat is cute

Decoder

x′ 1 x′ 2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

<s> ce chat est

chat mignonest

x′ 5

z5

o

<e>

mignon

word
embedding

henc

Decoder

y1

henc

x′ 2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

<s> ce chat est

chat mignonest

x′ 5

z5

o

<e>

mignon

word
embedding

Decoder

y1 y2

z1

x′ 3

z2

ce

o o

z3

o

x′ 4

z4

o

chat mignonest

x′ 5

z5

o

<e>

mignon

henc

word
embedding

<s> ce

Decoder

y1 y2

z1

y3

z2

ce

o o

z3

o

y4

z4

o

<s> ce chat est

chat mignon
• A conditioned language model

est

y5

z5

o

<e>

mignon

henc

word
embedding

Seq2seq training

‣ Similar to training a language model!

‣ Minimize cross-entropy loss:

‣ Back-propagate gradients through both

decoder and encoder

‣ Need a really big corpus

T

∑
t=1

− log P(yt |y1, . . . , yt−1, x1, . . . , xn)

English: Machine translation is cool!

36M sentence pairs

Russian: Машинный перевод - это крутo!

Seq2seq training

(slide credit: Abigail See)

Greedy decoding

‣ Compute argmax at every step of

decoder to generate word

‣ What’s wrong?

Exhaustive search?

‣ Find

‣ Requires computing all possible sequences

‣ complexity!

‣ Too expensive

arg max
y1,...,yT

P(y1, . . . , yT |x1, . . . , xn)

O(VT)

What is the complexity of doing this search?

V - Vocabulary
T - length of sequence

A middle ground: Beam search

‣ Key idea: At every step, keep track of the k most probable partial

translations (hypotheses)

‣ Score of each hypothesis = log probability of sequence so far

‣ Not guaranteed to be optimal

‣ More efficient than exhaustive search

j

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Beam decoding

(slide credit: Abigail See)

Backtrack

(slide credit: Abigail See)

Beam decoding

‣ Different hypotheses may produce (end) token at different time steps

‣ When a hypothesis produces , stop expanding it and place it aside

‣ Continue beam search until:

‣ All hypotheses produce OR

‣ Hit max decoding limit T

‣ Select top hypotheses using the normalized likelihood score

‣ Otherwise shorter hypotheses have higher scores

⟨e⟩

⟨e⟩

k ⟨e⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, x1, . . . , xn)

NMT vs SMT

Pros

‣ Better performance

‣ Fluency

‣ Longer context

‣ Single NN optimized end-to-end

‣ Less feature engineering

‣ Works out of the box for many

language pairs

Cons

‣ Requires more data and compute

‣ Less interpretable

‣ Hard to debug

‣ Uncontrollable

‣ Heavily dependent on data - could

lead to unwanted biases

‣ More parameters

How seq2seq changed the MT
landscape

MT Progress

(source: Rico Sennrich)

(Wu et al., 2016)

Versatile seq2seq

‣ Seq2seq finds applications in many other tasks!

‣ Any task where inputs and outputs are sequences of words/

characters

‣ Summarization (input text summary)

‣ Dialogue (previous utterance reply)

‣ Parsing (sentence parse tree in sequence form)

‣ Question answering (context+question answer)

→

→

→

→

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Remember alignments?

Attention

‣ The neural MT equivalent of alignment models

‣ Key idea: At each time step during decoding, focus on a particular part
of source sentence

‣ This depends on the decoder’s current hidden state (i.e. an idea

of what you are trying to decode)

‣ Usually implemented as a probability distribution over the hidden

states of the encoder ()

hdec

henc
i

Seq2seq with attention

(slide credit: Abigail See)

Computing attention

‣ Encoder hidden states:

‣ Decoder hidden state at time :

‣ First, get attention scores for this time step of decoder (we’ll define soon):

‣ Obtain the attention distribution using softmax:

‣ Compute weighted sum of encoder hidden states:

‣ Finally, concatenate with decoder state and pass on to output layer:

henc
1 , . . . , henc

n

t hdec
t

g
et = [g(henc

1 , hdec
t), . . . , g(henc

n , hdec
t)]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

[at; hdec
t] ∈ ℝ2h

henc
1

hdec
1

(credits: Jay Alammar)

Types of attention

‣ Assume encoder hidden states and a decoder hidden state

1. Dot-product attention (assumes equal dimensions for and):

2. Multiplicative attention:
 , where is a weight matrix (learned)

3. Additive attention:

where are weight matrices (learned) and is a weight vector (learned)

henc
1 , henc

2 , . . . , henc
n hdec

henc hdec

g(henc
i , hdec) = (hdec)T henc

i ∈ ℝ

g(henc
i , hdec) = (hdec)T W henc

i ∈ ℝ W

g(henc
i , hdec) = vT tanh (W1henc

i + W2hdec) ∈ ℝ
W1, W2 v

Assuming we use dot product attention, which input word
will have the highest attention value at current time step?

A) the
B) cat
C) sat

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

the -> -0.05 + 0.02
cat -> -0.02 + 0.08
sat -> 0.01 + 0.04

Dot-product
attention:
g(henc

i , hdec) = hdec ⋅ henc

What if we use multiplicative attention with ?

Which input word will have the highest attention value at
current time step?

A) the
B) cat
C) sat

W = [1 0
0 0]

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

the -> -0.05
cat -> -0.02
sat -> 0.01

Multiplicative
attention:
g(henc

i , hdec) = (hdec)T W henc
i

Which value of in multiplicative attention will provide the same word
with highest attention value as dot-product attention?

A) B) C) both

W

W = [1 0
0 1] W = [0.5 0

0 0.5]

h3h1 h2

the cat sat

Encoder

hdec
1 hdec

2

<s>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

Multiplicative
attention:
g(henc

i , hdec) = (hdec)T W henc
i

(Luong et al., 2015)

Attention improves translation

(credits: Jay Alammar)

Visualizing attention

Issues with vanilla seq2seq

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

‣ Model may “overfit” to training sequences

henc

Bottleneck

Dropout (advanced)

‣ Form of regularization for RNNs (and any NN in general)

‣ Idea: “Handicap” NN by removing hidden units stochastically

‣ set each hidden unit in a layer to 0 with probability during

training (usually works well)

‣ scale outputs by

‣ hidden units forced to learn more general patterns and

improve redundancy

‣ Test time: Simply compute identity

p
p = 0.5

1/(1 − p)

(Srivastava et al., 2014)

Other challenges with NMT

‣ Out-of-vocabulary words

‣ Low-resource languages

‣ Long-term context

‣ Common sense knowledge (e.g. hot dog, paper jam)

‣ Fairness and bias

‣ Uninterpretable

Massively multilingual MT

(Arivazhagan et al., 2019)

‣ Train a single neural network on 103 languages paired with English (remember Interlingua?)

‣ Massive improvements on low-resource languages

Bias and Fairness

‣ NMT systems suffer from issues of

systematic bias (e.g. gender)

‣ Evident when translating from/to a

language with gender-specific (or gender-

agnostic) terms

‣ Models learn (and amplify) stereotypes

from data

(Farkas and Nemeth, 2020)

Measuring bias in MT

‣ WinoMT: Stanovsky et al. (2019) use coreference resolution to construct a dataset of

non-stereotypical gender roles

‣ e.g. “The doctor asked the nurse to help her in the operation”

‣ Systems consistently performed worse on non-stereotypical gender translation

(Stanovsky et al. 2019)

Anonymous feedback form:
https://forms.gle/875aEkJqodZcDx8H6

