COS 484

Natural Language Processing

L 14: Self-Attention and Transformers

Spring 2022

(Some slides adapted from Stanford CS224N)



Issues with RNNs

® Sequential nature = difficult to parallelize

h =f(h_,,x) € R"

LSTMs
¢ Input gate (how much to write): e New memory cell (what to write):
i, =c(Wh,_, +Ux, +b') e R” g, = tanh(W*h,_; + U%x, + b¥) € R"
® Forget gate (how much to erase): e Final memorycell: ¢,=f,0c¢,_;+1,0 g,

f.=c(Wh,_, +Ux +b/)eR"
¢ Final hidden cell: h, = o, © tanh(c,)
® Qutput gate (how much to reveal):

0, = 6(W°h,_, + U’%x, + b°) € R”




Issues with RNNs

® [onger sequences can lead to vanishing gradients = It is hard to capture
long-distance information

: Attention pie
: output T
- T ;
. . : S i B > Ye
Attention is the key to 25 ]
. - [ = ' |
solving the problem! 28 - =
©
S
2 i
§ S { éMszc
g (V)
s _ [ [e] [e] [®] [e@ o] (e] [e] [e] [e] |[o
SZ.) (oo ol e lo| Jo| Jo| Jo| o] .o
S Z o[ lo[ o[ |@ e[l e[ e[
ST L (e (o (o (o ol (o] |o| o] [of |o
il a m’  entarté <START> he hit me  with a
N o J

Source sentence (input)

NNY 42p02a(



This lecture

® Do we really need RNNs to model the arbitrary context?

® Maybe attention is all you need!

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* 1 Lukasz Kaiser*
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Vaswani et al., 2017: Attention Is All You Need



N x

Positional
Encoding

r

Add & Norm

Feed
Forward

|

A

Add & Norm

.

\

Multi-Head
Attention

|

At

J

Sa

Input
Embedding

|

T

Inputs

Transformer

Qutput
Probabilities
|
Softmax
1 ® Consists of an encoder and a decoder
A
G D
== e Originally proposed for neural machine translation and
\ overs J later adapted for almost all the NLP tasks
——— a e For example, BERT only uses the encoder of the
_}Aﬁj"“on - N Transformer architecture (next lecture)
Add &_Norm - .
Vaskes ® Both encoder and decoder consist of N layers
Multi-Head
Attention
- ® Each encoder layer has two sub-layers
- v,
eg—@ Positional ® Each decoder layer has three sublayers
Encoding . . . .
Output e Key innovation: multi-head self-attention
Embedding
Outputs
(shifted right)

Vaswani et al., 2017: Attention Is All You Need



Transformers: roadmap

Qutput
Probabilities

1

Softmax

i

Linear
A

(
Add & Norm J<=~

Feed
Forward

- w 1 /
e \ Add & Norm Je=~
> Add & Norm Multi-Head
’ Feed l Attention
Forward \_j JYD) N x
L A 4 y
Add & Norm -
N x r
~—>| Add & Norm VR
Multi-Head Multi-Head
Attention Attention
A+ At 2
(S J <)
Positional Positional
. + + :
Encoding %@ Encoding
Input Output
Embedding Embedding
Inputs OQutputs

(shifted right)

From attention to self-attention

From self-attention to multi-head self-attention
Transformer encoder

Transformer decoder

Putting the pieces together



Attention
distribution

Attention

Encoder

scores

RNN

Recap: Attention in NMT

: Attention
o
® output

>
[E—

>

Y
Source sentence (input)

Re—

(@) (@) (@) (@) @)

(@) (@) e O 3| @

(@) (@) | |O 10

(@) (@) (@) (@) @)

il a m’  entarté <START>
L 0

@)
@)
@)
@)
he

\ 4

I~

. —>1 0000

—>1 0000

me

pie

N\

> Je

N

(@) (@)
|0 (@)
10 (@)
(@) (@)
with a

4

4

4

4

Encoder hidden states: h{", ..., h "

g(-) takes dot product

Decoder hidden state at time t: htd"c in the simplest form!

First, get attention scores for this time step of decoder (we'll define g soon):
et — [g(hlenc’ htdeC), o, g(hsnc, htdeC)]

Obtain the attention distribution using softmax:

a' = softmax (e’) € R”

Compute weighted sum of encoder hidden states:

n
at — Z ait hien(; = Rh
i=1



Attention is a general deep learning technique

® Given a set of vector values, and a vector query, attention is a technique to compute a
weighted sum of the values, dependent on the query.

e We sometimes say that the query attends to the values.

® In the NMT case, each decoder hidden state (query) attends to all the encoder hidden
states (values).

® [ntuition:

® The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

® Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).



Attention is a general deep learning technique

€ R% and a query vector € R%

e Assume that we have a set of values v, ..., v,

® Attention always involves the following steps:

e Computing the attention scores e = g(v;,q) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:
n
a = Z Q;V; € Rd”
1=1

® A more general form: use a set of keys and values (k{,v;),...,(K ,v ), K. & R%. V. € R keys
are used to compute the attention scores and values are used to compute the output vector



Attention is a general deep learning technique

e Assume that we have a set of key-value pairs (K, v{), ..., (K,, v ), K. € R%. V. € R% and a
query vector ( € R%

® Attention always involves the following steps:

e Computing the attention scores €= g(k;,q) € R"

e Taking softmax to get attention distribution a:
o = softmax(e) € R"

e Using attention distribution to take weighted sum of values:

n
a= E a;v; € R%
i=1



Self-attention

® We saw attention from the decoder (query) to

the encoder (values), now we think about 1 T T T
attention within one single sequence. self-attention
® Self-attention = attention from the ki g1 v1 ky, @ v, ks q3 Vs kr qr vy
sequence to itself e L7 L L
T 1 1

, : , self-attention
e Self-attention: let’s use each word in a sequence

: ki @1 V1 ky G2 v, k3 q3 v k v
as the query, and all the other words in the 1 71 Y1 Ky 42 Va K3 43 V3 r qr Vr
quety L7 N % %
sequence as keys and values. ‘ _ vee |
The chef who food

® The queries, keys and values are drawn
from the same source.

Self-attention doesn’t know the order of the
inputs - we will come back to this later!



Self-attention in equations

e A self-attention layer maps a sequence of input vectors Xy, ..., X, € R% to a
sequence of n vectors: yy, ..., Yy, € R%

® The same abstraction as RNNs - can be used as a drop-in replacement for an RNN layer

® First, construct a set of queries, keys and values:
K 1%
q; = W, k; = Whx;, v, = W'k,
WQ c quxdl WK c dexdl WV c Rdvxdl

® Second, for each q;, compute attention scores and attention distribution:

q; - K; ) aka. “scaled dot product”

o; ; = softmax(
/ v di It must be dq = d, in this case

e Finally, compute the weighted sum:

Yi — Z Q; Vi & Rd” (dv = dz)
j=1



Input

Embedding

Queries

Keys

Values

Self-attention: illustration

Input

Embedding

Queries 1

Keys

Values

Score

Divide by 8 ( d;. )

http://jalammar.github.io/illustrated-transformer/




Input

Embedding

Queries

Keys

Values

I'hinking

Self-attention: illustration

Input

Embedding

Machines

Queries

Keys

Values

Score

Divide by 8 (Vdy )

Softmax

Softmax
X

Sum

'hinking

http://jalammar.github.io/illustrated-transformer/




Self-attention: matrix notations

X € R X d1 Note: the notations we use h.ere gre follc?wing the f)riginal paper
(= the transpose of the matrices in previous notations)

Q=XWe K=xwEK v=xwV
WQ - Rd1><dq WK = Rledk WV c Rledv

nxd, d, X n
Q T
Attention(Q, K, V') = softmax( @ nXd, Y
d softmax (
Vi

Q: What is this softmax operation?

http://jalammar.github.io/illustrated-transformer/




’ hardmaru

The most important formula in deep learning after 2018

Self-Attention

What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,

X € R™* % is projected using three matrices Wqg € R%%%q_
Wg € R%*9% and Wy € R%*% to extract feature repre-
sentations (), K, and V, referred to as query, key, and value
respectively with di, = d,. The outputs ), K, V' are com-
puted as

Q=XWo, K=XWk, V=XWy. (1)

So, self-attention can be written as,

T
S = D(Q, K,V) = softmax (QI; ) V.

where softmax denotes a row-wise softmax normalization
function. Thus, each element in .S depends on all other ele-
ments 1n the same row.




Multi-head attention

® [t is better to use multiple attention functions instead of one!

e Each attention function (“head”) can focus on different positions.

® How to do this? Use different sets of query, key and value matrices!

ATTENTION HEAD #0 ATTENTION HEAD #1

SARF N t T | SAF N

http://jalammar.github.io/illustrated-transformer/

softmax(




Multi-head attention

® [t is better to use multiple attention functions instead of one!

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

e Finally, we just concatenate all the heads and apply an output projection matrix.

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
head; = Attention(X W,L-Q, XWHE XW,))

http://jalammar.github.io/illustrated-transformer/



Multi-head attention

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
head; = Attention(X WZ-Q, XWHE XW,))

® In practice, we use a reduced dimension for each head.
WZQ c Rdl ><dq7 WZK c Rdl ><Clk7 W@'V c Rdl X d o,
dy =dr =d, =d/h  d = hidden size, h = # of heads

WO e Rdxdz If we stack multiple layers, usually d; = ds = d

® The total computational cost is similar to that of single-head attention with full dimensionality.

http://jalammar.github.io/illustrated-transformer/



What does multi-head attention learn?

Layer:| 5 § Attention: Input - Input v

The_
animal_
didn_

street_
because_
it_

was_
too_

d

Layer: 5 5| Attention:

The_ 'The_
animal_ animal_
didn didn_

Cross_
Cross._ o
the ©-
street
street_
because _
because .
: Iit_
It_
was_
was_
00 too_
t're— I tire
|
d_
d

https://github.com/jessevig/bertviz

Input - Input

The_
animal_
didn_

street
because
it

wadas

too
tire



Missing piece: positional information!

e Unlike RNNs, self-attention doesn’t build in order information, we need to encode the order
of the sentence.

® Solution: Add “positional encoding” to the input embeddings
Xi < Xi + Pi
® Use sine and cosine functions of different frequencies (not learnable):

(sin(i/100002*/a) | :
cos(i/10000%*1/@)

Pi

d
sin(i/10000%2/%)

Z*Qd
c0s(i/10000%°2/¢),

Dimension

Index in the sequence

e Later, people just use a learnable embedding p, € R% for every unique position.



Adding nonlinearities

® There is no elementwise nonlinearities in self-
attention; stacking more self-attention layers just re-
averages value vectors

e Simple fix: add a feed-forward network to FF FF FF FF
post-process each output vector T T ! T
self-attention
) — | r ! L
FFN(x;) = WaReLU(Wix; + by) + bs i 1 i 1
T T T T
Wy € R¥%4 by € R/ self-attention
W2 E Rddef ’ b2 E Rd W1 W2 W3 WT
The chef who food

In practice, they use dyr = 4d



Transformers: pros and cons

® Easier to capture dependencies: we draw attention between every pair of words!

® Fasier to parallelize: Q=XW® K=xwK v=xwV"

. K*
Attention(Q, K,V) = softmax(cf/? 1%
k
® (Quadratic computation in self-attention:
® Can become very slow when the sequence length is large
[T
(a) Random attention (b) Window attention (¢) Global Attention (d) BIGBIRD

® Are these positional representations enough to capture positional information?



Add & Norm

Add & Norm
Multi-Head
Attention
1 J

Positional
Encoding e &
Input
Embedding

INnputs

N x

Transformer encoder

Each encoder layer has two sub-layers:
e A multi-head self-attention layer

e A feedforward layer

Add & Norm:

LayerNorm(x + Sublayer(z))

® Residual connection (He et al., 2016)

® Layer normalization (Ba et al., 2016)

[advanced]

T E|z!
/ v/ Var|z| + €

In (Vaswani et al., 2017), N = 6



Transformer decoder

Qutput
Probabillities
t
Softmax
L_T Each decoder layer has three sub-layers:
Inear
) : :
(e ¢ A masked multi-head attention layer
| oo | e A multi-head cross-attention layer
A )
| | (Foaz Nom J—~ e A feedforward layer
’ Multi-Head ‘
Attention N
77 x : :
+—— ) Masked multi-head attention:
Add &'Norm - .
Masked self-attention on the decoder states
Multi-Head
Attention ,
T However, you can’t see the future!
\_ J
e{)_® Egggggg‘ Multi-head cross-attention:
[ Emoding l Decoder attends to encoder states
Outouts encoder: keys/values, decoder: queries
(shifted right)

In (Vaswani et al., 2017), N = 6



Transformer decoder

Decoding time step: 1@3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

ENCODERS

LK—J

E’._'._‘ !

E’T’T .

OUTPUT
g O

|

~

DECODERS

t : t
N O I I I Ry I I I

(rririy1 orriy]  [Orrd

Je Suis étudiant

PREVIOUS
OUTPUTS

http://jalammar.github.io/illustrated-transformer/



Masked multi-head attention

® Key point: you can’t see the future words for the decoder!

Y

(@O ¢+ O ++00)
A

Y2

(@@ ++ @ «-00)
A

Ys Y4 Ys

&.oo:oo..) m.o:oo._.) @.oo:oo.!)

Self-Attention
Layer A

(@O ++ © ++-00)

X

— = .|

(OO ¢+ © - 00)

X2

(@@ ++ @ - 0Q0) (OO0 ¢+ @ +»+ Q00) (OO *+ @ ++ 00)

X, X, X,

e Solution: for every 4, only attend to {(kj,v;)},J <1



Masked multi-head attention

Q= We,, ki = Whx;, v, = WVx,

qz"kj)
Vi

a; ; = softmax(

raw attention weights mask X1

W7t

¢
. '-‘

AN
N\

@-

Y 9%

dot = torch.bmm(queries, keys.transpose(l, 2))

Efficient implementation: compute
attention as we normally do, mask
out attention to future words by

. ) dot[:, indices[(0], indices[1]]
settmg attention scores to —

dot = F.softmax(dot, dim=2)

http://peterbloem.nl/blog/transtormers

indices = torch.triu indices(t, t, offset=1)

float('-inf')

Ye




Multi-head cross-attention

W9 . — W E v v. — VY .
Qi = W=x;, ki = Wox;, vi =W"xy e hy,..., h,: hidden states from encoder

q; - K; ) * X1,...,Xp: hidden states from decoder

Vg

a; ; = softmax(

|

q; = WQX?Z k; = WKhjan — thj

%'kj)
Vdg

Q: What is the size of a?

a; ; = softmax(

™m
yi= ) Qi;V,
j=1



Putting the pieces together

[predictions!]
¢

Transformer

Decoder
[decoder attends t

)
to encoder states] ®

®
t

Transformer
Decoder

wmw e

[input sequence] loutput sequence]




Putting the pieces together

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]
t
. Transformer
: Decoder
Residual + LayerNorm [decoder attends ¢
Feed-Forward 0 encoder states] -
°
Residual + LayerNorm t
. : Transformer
Multi-Head Attention Decoder

[input sequence] [output sequence]




Putting the pieces together

[predictions!]

Looking back at the whole model, )
zooming in on a Decoder block: , Transformer
Decoder

t
Residual + LayerNorm

T

Feed-Forward

t

TN
-

Residual + LayerNorm

T

TN

Multi-Head Cross-Attention =~~~

T/"‘"
Residual + LayerNorm

T
Masked Multi-Head Self-Attention

linput sequence]

[output sequence]




Transformers: machine translation

Aodel BLEU Training Cost (FLOPs)
ot EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0 -10%°
GNMT + RL [31] 24.6 39.92 2.3-10*° 1.4-10%°
ConvS2S [8] 25.16  40.46 9.6-10® 1.5.10%
MOoE [26] 26.03  40.56 2.0-10*Y 1.2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 10%°
GNMT + RL Ensemble [31] 26.30  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 26.36  41.29 7.7-10  1.2-10%
Transformer (base model) 27.3 38.1 3.3-1018
Transformer (big) 28.4 41.0 2.3-1019

Vaswani et al., 2017: Attention Is All You Need



Transformers: document generation

Model Test perplexity ROUGE-L
seqg2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645 34.2
Transformer-D, L = 4000 2.22216 33.6
Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2
Transformer-DMCA, MoE-128, L = 11000 1.92871 37.9
Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8

Very large gains compared to
seq2seq-attention with LSTMs!

Liu et al., 2018: Generating Wikipedia by Summarizing Long Sequences



