
COS 484: Natural Language Processing

L2: Language Modeling

Spring 2022

Reminder: Assignment 0 is out — due Tuesday, Feb 1, 9:30am

- Check FAQ section on the class website regularly, will be continually updated

- Midterm format: will be announced soon

What is a language model?

• Probabilistic model of a sequence of words

• How likely is a given phrase/sentence/paragraph/
document?

• Joint probability distribution of words :
w1, w2, w3, . . . , wn

P (w1, w2, w3, ..., wn)

Chain rule

P (the cat sat on the mat) = P (the) ⇤ P (cat|the) ⇤ P (sat|the cat)

⇤P (on|the cat sat) ⇤ P (the|the cat sat on)

⇤P (mat|the cat sat on the)

Sentence: “the cat sat on the mat”

Conditional probability

Implicit order

Estimating probabilities

• Assume we have a vocabulary of size , 

how many sequences of length do we have? 

A)  

B)  

C)  

D)

V
n

n * V
nV

Vn

V/n

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

trigram

bigram

Estimating probabilities

• With a vocabulary of size V,

• # sequences of length n =

• Typical English vocabulary ~ 40k words

• even sentences of length <= 11 results in more than 4 * 10^50 sequences.
Too many to count! 
(# of atoms in the earth ~ 10^50)

Vn

P (sat|the cat) =
count(the cat sat)

count(the cat)

P (on|the cat sat) =
count(the cat sat on)

count(the cat sat)

Maximum
likelihood
estimate

(MLE)

Markov assumption

• Use only the recent past to predict the next word

• Reduces the number of estimated parameters in exchange for modeling
capacity

• 1st order

• 2nd order

P (mat|the cat sat on the) ⇡ P (mat|the)

P (mat|the cat sat on the) ⇡ P (mat|on the) Andrey Markov

kth order Markov

• Consider only the last k words (or less) for context

which implies the probability of a sequence is:

Need to estimate counts for up to (k+1) grams

P(w1w2 . . . wn) ≈
n

∏
i=1

P(wi |wi−k . . . wi−1 ∀k < i)

(assume)wj = ϕ ∀j < 0

n-gram models

P (w1, w2, ...wn) =
nY

i=1

P (wi)

Larger the n, more accurate and better the language model  
(but also higher costs)

Unigram

P (w1, w2, ...wn) =
nY

i=1

P (wi|wi�1)Bigram

and Trigram, 4-gram, and so on.

Caveat: Assuming infinite data!

e.g. P(the) P(cat) P(sat)

e.g. P(the) P(cat | the) P(sat | cat)

Generating from a language model

arg max
(w1,w2,...,wn)

P(w1, w2, . . . , wn) = arg max
(w1,w2,...,wn)

n

∏
i=1

P(wi |wi−k, . . . , wi−1)

• Use the estimated (learned) probability distribution to predict one
word at a time

• Choose the most likely word!

• To predict the next word given a context of two words :

• And to predict an entire sequence:

w1, w2

̂w3 = arg max
w∈V

P(w |w1, w2)

Generations

release millions See ABC accurate President of Donald Will
cheat them a CNN megynkelly experience @ these word

out- the
Unigram

Thank you believe that @ ABC news, Mississippi tonight
and the false editorial I think the great people Bill Clinton

. ''

Bigram

We are going to MAKE AMERICA GREAT AGAIN!
#MakeAmericaGreatAgain https: //t.co/DjkdAzT3WV

Trigram

“Alice/Bob could not go to work that day because
she/he had a doctor’s appointment”

Typical LMs are not sufficient to handle long-range dependencies

Evaluating language models

• A good language model should assign higher probability to
typical, grammatically correct sentences

• Research process:

• Train parameters on a suitable training corpus

• Assumption: observed sentences ~ good sentences

• Test on different, unseen corpus

• Training on any part of test set not acceptable!

• Evaluation metric

Extrinsic evaluation

• Train LM -> apply to task -> observe accuracy

• Directly optimized for downstream tasks

• higher task accuracy better model

• Expensive, time consuming

• Hard to optimize downstream objective (indirect feedback)

⟹

Language
model

Machine
Translation Eval

refine

Perplexity (ppl)

• Measure of how well a probability distribution (or LM) predicts a sample

• For a test corpus S with words

 where n is the total number of words in test corpus

• Unigram model:

• Minimizing perplexity ~ maximizing probability of corpus

w1, w2, . . . wn

x = −
1
n

n

∑
i=1

log2 P(wi) (since)P(wj |w1 . . . wj−1) ≈ P(wj)

Cross-
Entropy

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

 A) B) C) D)
2|V| |V | |V |2 2−|V|

Cross-
Entropy

 where ppl(S) = 2x x = −
1
n

n

∑
i=1

log2 P(wi |w1 . . . wi−1)

P(wi |wi−k, . . . wi−1) =
1

|V |
∀wi

Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

what is the perplexity of the test corpus?

(model is ‘fine’ with observing any word at every step)

Measure of model’s uncertainty about next word (aka `average branching factor’)

 where ppl(S) = 2x

x = −
1
n

n

∑
i=1

log2 P(Si)

ppl = 2− 1
n n log(1/|V|) = |V |

P(wi |wi−k, . . . wi−1) =
1

|V |
∀wi

Perplexity as a metric

Pros Cons

Pros Cons

Easy to compute Requires domain match between train and test

standardized might not correspond to end task optimization

directly useful, easy to use to correct sentences log 0 undefined

nice theoretical interpretation - matching
distributions can be ‘cheated’ by predicting common tokens

size of test set matters

can be sensitive to low prob tokens/sentences

Perplexity as a metric

Generalization of n-grams

• Not all n-grams will be observed in training data

• Test corpus might have some that have zero probability
under our model

• Training set: Google news

• Test set: Shakespeare

• P (affray | voice doth us) = 0 P(test corpus) = 0

• Undefined perplexity

Sparsity in language

Fr
eq

ue
nc

y

Rank

• Long tail of infrequent words

• Most finite-size corpora will have this problem.

Zipf’s Law

freq / 1

rank

Smoothing

• Handle sparsity by making sure all probabilities are non-zero in our model

• Additive: Add a small amount to all probabilities

• Discounting: Redistribute probability mass from observed n-grams to
unobserved ones

• Back-off: Use lower order n-grams if higher ones are too sparse

• Interpolation: Use a combination of different granularities of n-grams

Smoothing intuition
Dan*Jurafsky

The(intuition(of(smoothing((from(Dan(Klein)

• When*we*have*sparse*statistics:

• Steal*probability*mass*to*generalize*better

P(w*|*denied*the)
3*allegations
2*reports
1*claims
1*request
7*total

P(w*|*denied*the)
2.5*allegations
1.5*reports
0.5*claims
0.5*request
2*other
7*total

al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

at
ta
ck

re
q
u
es
t

m
an

ou
tc
om
e

…

al
le
g
at
io
n
s

at
ta
ck

m
an

ou
tc
om
e

…al
le
g
at
io
n
s

re
p
o
rt
s

cl
ai
m
s

re
q
u
es
t

(Credits: Dan Klein)

Laplace smoothing

• Also known as add-alpha

• Simplest form of smoothing: Just add to all counts and
renormalize!

• Max likelihood estimate for bigrams:

• After smoothing:

α

P (wi|wi�1) =
C(wi�1, wi)

C(wi�1)

P (wi|wi�1) =
C(wi�1, wi) + ↵

C(wi�1 + ↵|V |
P (wi|wi�1) =

C(wi�1, wi) + ↵

C(wi�1 + ↵|V |

Raw bigram counts

 (Berkeley restaurant corpus)

Dan*Jurafsky

Raw'bigram'counts

• Out*of*9222*sentences

(Credits: Dan Jurafsky)

Smoothed bigram counts
Dan*Jurafsky

Berkeley(Restaurant(Corpus:(Laplace(
smoothed(bigram(counts

Add 1 to all the entries in the matrix

(Credits: Dan Jurafsky)

Smoothed bigram probabilities

(Credits: Dan Jurafsky)

Dan*Jurafsky

LaplaceAsmoothed(bigrams

Problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw counts

Reconstituted counts

C(wn−1wn) =
C(wn−1wn)
C(wn−1)

× C(wn−1)

C*(wn−1wn) =
C(wn−1wn) + 1
C(wn−1) + V

× C(wn−1)

Problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw counts

Reconstituted counts

C(wn−1wn) =
C(wn−1wn)
C(wn−1)

× C(wn−1)

C*(wn−1wn) =
C(wn−1wn) + 1
C(wn−1) + V

× C(wn−1)

Problem with Laplace smoothing

(Credits: Dan Jurafsky)

Dan*Jurafsky

Compare(with(raw(bigram(counts

Raw counts

Reconstituted counts

C(wn−1wn) =
C(wn−1wn)
C(wn−1)

× C(wn−1)

C*(wn−1wn) =
C(wn−1wn) + 1
C(wn−1) + V

× C(wn−1)

Linear Interpolation

• Use a combination of models to estimate probability

• Strong empirical performance

P̂ (wi|wi�1, wi�2) = �1P (wi|wi�1, wi�2)

+�2P (wi|wi�1)

+�3P (wi)X

i

�i = 1

Trigram

Bigram

Unigram

How can we choose lambdas?

• First, estimate n-gram prob. on training set

• Then, estimate lambdas (hyperparameters) to maximize
probability on the held-out development/validation set

• Use best model from above to evaluate on test set

Text corpus

Train
Development/

Validation Test

Average-count (Chen and Goodman, 1996)

• Like simple interpolation, but with context-specific lambdas,

• Partition according to average number of counts per
non-zero element:

• Larger for contexts that appear more often.

(recursive definition)

Discounting

• Determine some “mass” to remove from
probability estimates

• More explicit method for redistributing mass
among unseen n-grams

• Just choose an absolute value to discount
(usually <1)

Absolute Discounting

• Define Count*(x) = Count(x) - 0.5

• Missing probability mass:

• Divide this mass between words
for which Count(the,) = 0

w
w

• Determine some “mass” to remove from probability estimates

• More explicit method for redistributing mass among unseen n-grams

• Just choose an absolute value to discount (usually <1)

 if

 for all s.t. if

Pabs_discount(wi |wi−1) =
c(wi−1, wi) − d

c(wi−1)
c(wi−1, wi) > 0

α(wi−1)
P(wi)

∑w′￼
P(w′￼)

w′￼ c(wi−1, w′￼) = 0 c(wi−1, wi) = 0

Unigram probabilities

Absolute Discounting

Back-off

• Use n-gram if enough evidence, else back off to using 
(n-1)-gram

(Katz back-off)

• d = amount of discounting

• = back-off weight↵

Other language models

• Discriminative models:

‣ train n-gram probabilities to directly maximize performance on end task
(e.g. as feature weights)

• Parsing-based models

‣ handle syntactic/grammatical dependencies

• Topic models

• Neural networks
We’ll see these later on

