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Assignment 1 will be out later today — due Tuesday, Feb 15, 9:30am (in 2 weeks) 



Why classify?

• Authorship attribution 

• Language detection 

• News categorization 

• …. and many more!

Spam detection

Sentiment analysis



Text classification

• Inputs: 

• A document  

• A set of classes  

• Output: 

• Predicted class  for document 

d

C = {c1, c2, c3, . . . , cm}

c d

Movie was 
terrible

Amazing 
acting

Classify

Classify

Negative

Positive



Rule-based classification

• Combinations of features on words in document, meta-data  

 

IF there exists word w in document d such that w in [good, great, extra-ordinary, …],  

            THEN output Positive        

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, …] 

             THEN output SPAM 

+ Can be very accurate 

-  Rules may be hard to define (and some even unknown to us!) 

-  Expensive 

-  Not easily generalizable

http://ithelpdesk.com
http://makemoney.com
http://spinthewheel.com


Supervised Learning: Let’s use statistics!

Let the machine figure out the best patterns using data 

Inputs: 

• Set of  classes  

• Set of  ‘labeled’ documents:   

Output: 

• Trained classifier, 

m C = {c1, c2, . . . , cm}

n {(d1, c1), (d2, c2), . . . , (dn, cn)}

F : d → c

Key questions: 
a) What is the form of F? 
b) How do we learn F? 



Types of supervised classifiers

Naive Bayes Logistic regression

Support vector machines k-nearest neighbors



Multinomial Naive Bayes

• Simple classification model making use of Bayes rule 

• Bayes Rule: 



Predicting a class

• Best class, 

Maximum 
a posteriori (MAP) 

estimate 



How to represent P(d | c)?

• Option 1: represent the entire sequence of words  

•                  (too many sequences!) 

• Option 2: Bag of words  

• Assume position of each word is irrelevant  

(both absolute and relative) 

•  

• Probability of each word is conditionally independent 

 of the other words given class c

P(w1, w2, . . . , wK |c)

P(w1, w2, . . . , wK |c) = P(w1 |c)P(w2 |c) . . . P(wk |c)



Bag of words (BoW)
The%Bag%of%Words%Representation
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Predicting with Naive Bayes

• We now have:
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• We now have:



Naive Bayes as a generative model



Naive Bayes as a generative model



Naive Bayes as a generative model



Naive Bayes as a generative model

Generate the entire data set one document at a time



Estimating the model

Maximum likelihood estimates:



Data sparsity

• What if count(‘amazing’, positive) = 0? 

➡ Implies P(‘amazing’ | positive) = 0 

• Given a review document, d = “…. most amazing movie ever …”

This sounds 
familiar…



Solution: Smoothing!

• Laplace smoothing: 

• Simple, easy to use 

• Effective in practice



Overall process

Input: Set of annotated documents   

A. Compute vocabulary V of all words  

B. Calculate   

C. Calculate  

D. (Prediction) Given document   

               

{(di, ci)}n
i=1

̂P(cj) =
Count(cj)

n

̂P(wi |cj) =
Count(wi, cj) + α

∑w∈V [Count(w, cj) + α]

d = (w1, w2, . . . , wk)

cMAP = arg max
c

̂P(c)
K

∏
i=1

̂P(wi |c)
prior



Naive Bayes as a language model
Naïve Bayes%as%a%Language%Model
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Features

• In general, Naive Bayes can 

use any set of features, not 

just words: 

• URLs, email addresses, 

Capitalization, … 

• Domain knowledge crucial 

to performance

Top features for spam detection



Evaluating a classifier

• Precision: % of selected classes that are correct 

• Recall: % of correct items selected

Precision( + ) =
TP

TP + FP
Precision( − ) =

TN
TN + FN

Recall( + ) =
TP

TP + FN
Recall( − ) =

TN
TN + FP



F-Score

• Combined measure using precision and recall 

• Harmonic mean of Precision and Recall 

• Or more generally,

F1 =
2 ⋅ Precision ⋅ Recall
Precision + Recall

Fβ =
(1 + β2) ⋅ Precision ⋅ Recall

β2 ⋅ Precision + Recall



Advantages of Naive Bayes

• Very fast, low storage requirements 

• Robust to irrelevant features 

    Irrelevant features cancel each other without affecting results 

• Very good in domains with many equally important features 

     Decision trees suffer from fragmentation in such cases — especially if little data 

• Optimal if the independence assumptions hold 

     If assumed independence is correct, this is the ‘Bayes optimal’ classifier 

• A good dependable baseline for text classification 

     However, other classifiers can give better accuracy



Failings of Naive Bayes (1)

Independence assumptions are too strong 

 

• XOR problem: Naive Bayes cannot learn a decision 

boundary 

• Both variables are jointly required to predict class



Failings of Naive Bayes (2)

Class imbalance 

• One or more classes have more instances than others in data 

• Data skew causes NB to prefer one class over the other 

• Potential solution: Complement Naive Bayes (Rennie et al., 

2003)



Logistic Regression



Logistic Regression

• Powerful supervised model 

• Baseline approach for many NLP tasks 

• Connections with neural networks 

• Binary (two classes) or multinomial (>2 classes)



Discriminative Model

• Logistic Regression is a discriminative model 

• Naive Bayes: generative model



Discriminative Model

• Logistic Regression:  

• Naive Bayes:

Cat: a domesticated carnivorous mammal with soft fur, a short snout, and retractable claws.

Dog: a domesticated carnivorous mammal with a long snout, nonretractable claws, and a 
barking, howling, or whining voice.



Overview

• Inputs:  

1. Classification instance in a feature representation 

2. Classification function to compute  using   

3. Loss function (for learning) 

4. Optimization algorithm  

• Train phase: Learn the parameters of the model to minimize loss function 

• Test phase: Apply parameters to predict class given a new input x

̂y P( ̂y |x)



1. Feature representation

• Input observation:  

• Feature vector:  

• Feature j of ith input  : 

x(i)

[x1, x2, . . . , xd] = x

x(i)
j

The%Bag%of%Words%Representation
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Bag of words

x(i) [x1, x2, . . . , xd]



2. Classification function

• Given: Input feature vector  

• Output:  and                       

(binary classification) 

• Require a function,  

• Sigmoid: 

x = [x1, x2, . . . , xd]

P(y = 1 |x) P(y = 0 |x)

F : IRd → [0,1] y

z

f(z) =
1

1 + e−z
=

ez

1 + ez



Weights and Biases

• Which features are important and how much? 

• Learn a vector of weights and a bias 

• Weights: Vector of real numbers,  

• Bias: Scalar intercept,  

• Given input features , :      

• Therefore, 

w = [w1, w2, . . . , wd]

b

x z = w ⋅ x + b

f(w ⋅ x + b) =
ew⋅x+b

1 + ew⋅x+b



Putting it together

• Compute probabilities:  

                               

 

• Decision boundary:                      

P(y = 1 |x) =
1

1 + e−z

P(y = 1) = σ(w ⋅ x + b) =
1

1 + e−(w⋅x+b)

P(y = 0) = 1 − σ(w ⋅ x + b)

= 1 −
1

1 + e−(w⋅x+b)
=

e−(w⋅x+b)

1 + e−(w⋅x+b)

̂y = {1 if P(y = 1 |x) > 0.5
0 otherwise



Example: Sentiment classification

Remember that the 
values make up the  

feature vector!



Example: Sentiment classification

• Assume weights  and bias w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1



Designing features

• Most important rule: Data is 

key! 

• Linguistic intuition (e.g. part 

of speech tags, parse trees) 

• Complex combinations

• Feature templates 

• Sparse representations, hash 

only seen features into index 

• Ex. Trigram(logistic regression 

classifier) = Feature #78 

• Advanced: Representation 

learning (we will see this later!)



Logistic Regression: what’s good and what’s not

• More freedom in designing features 

• No strong independence assumptions like Naive Bayes 

• More robust to correlated features (“San Francisco” vs “Boston”) 

—LR is likely to work better than NB 

• Can even have the same feature twice! (why?) 

• May not work well on small datasets (compared to Naive Bayes) 

• Interpreting learned weights can be challenging



3. Learning

• We have our classification function - how to assign 

weights and bias? 

• Goal: prediction  as close as possible to actual label  

• Distance metric/Loss function between predicted  and 

true  :  

• Optimization algorithm for updating weights

̂y y

̂y
y L( ̂y, y)



Loss function

• Assume  

• . But what form? 

• Maximum likelihood estimation (conditional): 

• Choose  and  such that  is maximized for true labels  paired with 

input  

• Similar to language models! 

• where we chose parameters to maximize  given a corpus

̂y = σ(w ⋅ x + b)

L( ̂y, y) =  Measure of difference between  ̂y and y

w b log P(y |x) y
x

log P(wt |wt−n, . . . , wt−1)



Cross Entropy loss for a single instance

• Assume a single data point  and two possible classes to choose from 

• Classifier probability:                         (compact notation) 

• Log probability:  

                                                   (maximize this) 

• Loss:                   (minimize this) 

•    

(x, y)

P(y |x) = ̂y y(1 − ̂y)1−y

log P(y |x) = log[ ̂yy(1 − ̂y)1−y]
= y log ̂y + (1 − y)log(1 − ̂y)

−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y]

y = 1 ⟹ − log ̂y, and y = 0 ⟹ − log(1 − ̂y)



Cross Entropy loss

• For n data points  , 

• Classifier probability:   

• Loss:  

 

                   

           

(x(i), y(i))

Πn
i=1P(y |x) = Πn

i=1 ̂yy(1 − ̂y)1−y

−log
n

∏
i=1

P(y |x) = −
n

∑
i=1

log P(y |x)

LCE = −
n

∑
i=1

[y log ̂y + (1 − y)log(1 − ̂y)]



Example: Computing CE Loss

• Assume weights  and bias  

• If y = 1 (positive sentiment),  

• If y = 0 (negative sentiment), 

w = [2.5, − 5.0, − 1.2,0.5,2.0,0.7] b = 0.1

LCE = − log(0.69) = 0.37

LCE = − log(0.31) = 1.17



Properties of CE Loss

•  

• What values can this loss take? 

 

A) 0 to            B)  to          C)  to 0       D) 1 to 

LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

∞ −∞ ∞ −∞ ∞



Properties of CE Loss

•  

• Ranges from 0 (perfect predictions) to  

• Lower the value, better the classifier 

• Cross-entropy between the true distribution  in the 

data and predicted distribution 

LCE = −
n

∑
i=1

[y(i) log ̂y(i) + (1 − y(i))log(1 − ̂y(i))]

∞

P(y |x)
P( ̂y |x)



4. Optimization

• We have our classification function and loss function - how do we find the best  and ? 

                                                       

                                          

• Gradient descent:  

• Find direction of steepest slope   

• Move in the opposite direction

w b

θ = [w; b]

̂θ = arg min
θ

1
n

n

∑
i=1

LCE(y(i), x(i); θ)



Gradient descent (1-D)

θt+1 = θt − η
d
dθ

f(x; θ)



Gradient descent for LR

• Cross entropy loss for logistic regression is convex (i.e. has 

only one global minimum) 

• No local minima to get stuck in 

• Deep neural networks are not so easy 

• Non-convex



Learning Rate

• Updates:  

• Magnitude of movement along gradient 

• Higher/faster learning rate = larger 

updates to parameters

θt+1 = θt − η
d
dθ

f(x; θ)



Recap: Logistic regression

• Inputs:  

1. Classification instance in a feature representation 

2. Classification function to compute  using   

3. Loss function (for learning) 

4. Optimization algorithm  

• Train phase: Learn the parameters of the model to minimize loss function 

• Test phase: Apply parameters to predict class given a new input x

̂y P( ̂y |x)



• In LR: weight  is a vector 

• Express slope as a partial derivative of loss 

w.r.t each weight:

w

Gradient descent with vector weights

• Updates: θ(t+1) = θt − η∇L( f(x; θ), y)



Gradient for logistic regression

•  

• Gradient,  

•

LCE = −
n

∑
i=1

[y(i) log σ(w ⋅ x(i) + b) + (1 − y(i))log(1 − σ(w ⋅ x(i) + b))]

dLCE(w, b)
dwj

=
n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]x(i)
j

dLCE(w, b)
db

=
n

∑
i=1

[σ(w ⋅ x(i) + b) − y(i)]



Stochastic Gradient Descent

• Online optimization 

• Compute loss and 

minimize after each 

training example



Stochastic Gradient Descent

• Online optimization 

• Compute loss and 

minimize after each 

training example



Regularization

• Training objective:  

• This might fit the training set too well! (including noisy features) 

• Poor generalization to the unseen test set — Overfitting 

• Regularization helps prevent overfitting 

                       

̂θ = arg max
θ

n

∑
i=1

log P(y(i) |x(i))

̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − αR(θ)]



L2 regularization

•  

• Euclidean distance of weight vector  from origin 

• L2 regularized objective: 

                

R(θ) = | |θ | |2 =
d

∑
j=1

θ2
j

θ

̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

θ2
j ]



L1 Regularization

•  

• Manhattan distance of weight vector  from origin 

• L1 regularized objective: 

                

R(θ) = | |θ | |1 =
d

∑
j=1

|θj |

θ

̂θ = arg max
θ

[
n

∑
i=1

log P(y(i) |x(i)) − α
d

∑
j=1

|θj |]



L2 vs L1 regularization

• L2 is easier to optimize - simpler derivation 

• L1 is complex since the derivative of  is 

not continuous at 0 

• L2 leads to many small weights (due to  term) 

• L1 prefers sparse weight vectors with many 

weights set to 0 (i.e. far fewer features used)

|θ |

θ2



Multinomial Logistic Regression

• What if we have more than 2 classes? (e.g. Part of speech 

tagging, named entity recognition) 

• Need to model   

• Generalize sigmoid function to softmax 

                      

P(y = c |x) ∀c ∈ C

softmax(zi) =
ezi

∑k
j=1 ezj

1 ≤ i ≤ k



Softmax

• Similar to sigmoid, softmax squashes values towards 0 or 1 

• If , then 

•  

• For multinomial LR,  

                        

z = [0,1,2,3,4]

softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

P(y = c |x) =
ewc ⋅ x+bc

∑k
j=1 ewj ⋅ x+bj



Features in multinomial LR

• Features need to include both input (x) and class (c) 

• There were implicit in binary case



Learning

• Generalize binary loss to multinomial CE loss:                         

 

• Gradient: 

                   

LCE( ̂y, y) = −
k

∑
c=1

1{y = c}log P(y = c |x)

= −
k

∑
c=1

1{y = c}log
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

dLCE

dwc
= − (1{y = c} − P(y = c |x))x

= − 1{y = c} −
ewc⋅x+bc

∑k
j=1 ewj⋅x+bj

x

Binary CE Loss: 
−log P(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]




