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Assignment 1 will be out later today — due Tuesday, Feb 15, 9:30am (in 2 weeks)



Email

Machine Learning
Model

Spam detection

Sentiment analysis

Why classify?

Not Spam ®

-

Authorship attribution
Language detection
News categorization

.... and many more!
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* [nputs:

e A documentd

e Asetofclasses C = {c,cy05,...

e Qutput:

e Predicted class ¢ for document d
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Rule-based classification

e Combinations of features on words in document, meta-data

IF there exists word w in document d such that w in [good, great, extra-ordinary, ...],

THEN output Positive

IF email address ends in [ithelpdesk.com, makemoney.com, spinthewheel.com, ...]

THEN output

+ Can be very accurate

- Rules may be hard to define (and some even unknown to us!)

- Expensive

- Not easily generalizable

VADER-Sentiment-Analysis

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool
that is specifically attuned to sentiments expressed in social media. It is fully open-sourced under the [MIT



http://ithelpdesk.com
http://makemoney.com
http://spinthewheel.com

Supervised Learning: Let’s use statistics!

Let the machine figure out the best patterns using data

Inputs:

e Setoftmclasses C = {c,05,...,C,}

e Set of n'labeled’ documents: {(d;,c),(d,,¢c5),...,(d ,c,)}

— Key questions:
/ a) What is the torm of F?

e Trained classifier, F : d — ¢ b) How do we learn F?

Output:




Types of supervised classifiers
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Nailve Bayes

Support vector machines

p(ylx)

Logistic regression

Training instance - Class 1

New example
to classify

k-nearest neighbors




Multinomial Naive Bayes

® Simple classitication model making use of Bayes rule

® Bayes Rule
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Predicting a class Qﬁ Lo wwmurt
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® Bestclass, ¢ = “A*QMO\X V (C. \ 43
MAP
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a posteriori (MAP)
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How to represent P(d | ¢)?

e Option 1: represent the entire sequence of words
* P(Wi,Ws,...,Wg|cC) (too many sequences!)
e Option 2: Bag of words

* Assume position of each word is irrelevant

(both absolute and relative)

e P(Wi,Wy,...,We|c) =Pw |c)Pw,|c)...P(w,|c)

* Probability of each word is conditionally independent

of the other words given class ¢



Bag of words (BoVWV)
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| love this movie! It's sweet, the

but with satirical humor. The fairy  always loveq !t N

dialogue is great and the . nlél Whimsicalareit | gggn

adventure scenes are fun... triend o . . anyone ot
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Predicting with Naive Bayes

® \We now have:

Coane = 0\9~ng\7< P(d \C> [ (M

C



Predicting with Naive Bayes

® \\Ve now have:
C — TV\C’\7Q <d 5 P CQ\
c

arg x| P w0 Wi | €) Ple)

C



Predicting with Naive Bayes

® \We now have:
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Naive Bayes as a generative model

:




Naive Bayes as a generative model
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Naive Bayes as a generative model
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Naive Bayes as a generative model
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Generate the entire data set one document at a time



Estimating the model

Maximum likelihood estimates:

ﬁ(aﬁ = Count (= )

_ _ Tetall
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Data sparsity

e \What if count('amazing’, ) =07?
= |mplies P("amazing’ | ) =0
e Given areview document, d = “.... most amazing movie ever ...”
A K
- ok C m Plw. |
Cornp = Ohgmax p (c) T\' p(w, o)
C = T
/\
_ oahgmoax P CCB - () This sounds
- a familiar...

C



Solution: Smoothing!

* laplace smoothing:

N J RJ \f \ QOJDV\\O\"\‘J

* Simple, easy to use

e Effective in practice



Overall process

Input: Set of annotated documents {(d;,¢;)}'_;

A. Compute vocabulary V of all words

Count(cj)

B. Calculate }A’(CJ-) =
N

Count(w;, ¢;) + o

ey |Count(w, ¢)) + a

C. Calculate P(w] C;) =

D. (Prediction) Given document d = (W, w,, ..., w;)

C

K
Cyyap = arg max ]A’(C)HIA’(WZ- 9 |
e prior



Naive Bayes as a language model

 Which class assigns the higher probability to s?

Model pos
0.1 |
0.1 love
0.01 this
0.05 fun
0.1 film

Model neg

Sentence s

love

0.1
0.2

0.1
0.001

A) pos

this

0.01
0.01

B) neg

fun film
0.05 0.1
0.005 0.1

C) both equal

Il



Naive Bayes as a language model

 Which class assigns the higher probability to s?

Model pos
0.1 |
0.1 love
0.01 this
0.05 fun

0.1

film

Model neg

0.1
0.2

Sentence s
love this fun film
0.1 0.01 0.05 0.1
0.001 0.01 0.005 0.1

P(s|pos) > P(s|neg)



Rank

o

o

Category
Subject
Subject
Subject
Subject

Header

URL
URL
Payload
Payload

Payload

Feature Rank Category

Number of capitalized words l Subject

Sum of all the character lengths of words 2 Subject
Number of words containing letters and numbers 3 Subject
Hour of day when email was sent 5 Subject

(a)
Spam URLSs Features

The number of all URLs in an email 1 Header

The number of unique URLs in an email 2 Payload
Number of words containing letters and numbers 3 Payload
Min of the compression ratio for the bz2 compressor 4 Header
Number of words containing only letters 5 Header

Top features for spam detection

Features

Feature

Min of the compression ratio
for the bz2 compressor

Min of the compression ratio
for the zlib compressor

Min of character diversity of each word

Min of the compression ratio
for the lzw compressor

Max of the character lengths of words

(b)

Day of week when email was sent
Number of characters
Sum of all the character lengths of words
Minute of hour when email was sent

Hour of day when email was sent

* |n general, Naive Bayes can
use any set of features, not

just words:

e URLs, email addresses,

Capitalization, ...

e Domain knowledge crucial

to performance



Evaluating a classifier

® Precision: % of selected classes that are correct

TP L TN
Precision( — ) =

Precision( + ) =
TP+ FP IN + FN

® Recall: % of correct items selected

TP TN
Recall(+) = Recall( —) =
TP + FN TN + FP



F-Score

e Combined measure using precision and recall

¢ Harmonic mean of Precision and Recall

r 2 - Precision - Recall
™ Precision + Recall

e Or more generally,

L + %) - Precision - Recall
a4 (2 - Precision + Recall




Advantages of Naive Bayes

Very tast, low storage requirements

Robust to irrelevant features

Irrelevant teatures cancel each other without affecting results

Very good in domains with many equally important features

Decision trees sufter from fragmentation in such cases — especially if little data

Optimal if the independence assumptions hold

f assumed independence is correct, this is the ‘Bayes optimal’ classifier

A good dependable baseline for text classification

However, other classifiers can give better accuracy



Failings of Naive Bayes (1)

Independence assumptions are too strong

X1 X2 Class: x, XOR Xx,
1 1 0

0 1 1

1 0 1

0 0 0

e XOR problem: Naive Bayes cannot learn a decision

boundary

e Both variables are jointly required to predict class



Failings of Naive Bayes (2)

Class imbalance
® One or more classes have more instances than others in data
® Data skew causes NB to prefer one class over the other

® Potential solution: Complement Naive Bayes (Rennie et al.,
2003)

50 10N - Z Gt (wy,C) o dakiey
P (o (CJX ) "o Yon ©
2 2 lowk (w,C)

C_#QJ' )



Logistic Regression



Logistic Regression

« Boundary
« False samples

« True samples

Powertul supervised model
Baseline approach for many NLP tasks
Connections with neural networks

Binary (two classes) or multinomial (>2 classes)



Discriminative Model

* |[ogistic Regression is a discriminative model

 Naive Bayes: generative model



Discriminative Model

e |[ogistic Regression:

C

e Naive BayeS: /C\l _ 0\3\3 MOX ?<C> P CC‘J \ C/>

Cat: a domesticated carnivorous mammal with soft fur, a

short snout

. and

A RGMOX Plc]d)

retractable|claws.

Dog: a domesticated carnivorous mammal with ajlong snout||nonretractable claws, and a

barking, howling, or whining voice.



Overview

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)
4. Optimization algorithm
* Train phase: Learn the parameters of the model to minimize loss function

* Test phase: Apply parameters to predict class given a new input x



e Input observation: x

® Feature vector: [x|,Xx5,...,x;] =X

e Feature | of

iInput

|. Feature representation

x
J

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. l've seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

)

i m
Hfairy always love, "t
T whimsical it
and  seen ' anyone
f”e”ﬁappy dialogue
adventure "€commend

who |t Mmovie 1t
it ' but rgtmantlc |

several y
again j the humor
the  “seen would
to scentehs | the manages
fun | € times 5ng

and about

whenever while

_ have
. conventions
<:f§x\Nﬂh

Bag of words

it 6
I 5
the 4
to 3
and 3
seen 2
yet 1
would 1
1
1
1
1
1
1
1
1
1
1

whimsical
) e

sweet
satirical
adventure
genre
fairy
humor
have
great

[ X1, X9, oy XS]



2. Classification function

Given: Input feature vector X = [x,X,, ..., X,]

Output: P(y = 1|x) and P(y = 0|x)

(binary classitfication)
Require a function, F RY - [0,1]

Sigmoid:

7)) = — =
A e g




Weights and Biases

Which features are important and how much?

Learn a vector of weights and a bias

Weights: Vector of real numbers, w = [w, w,, ...

Bias: Scalar intercept, b

Given input features X, :

Therefore, f(w - X+ b) =

Z=W-X+0b

ew-x+b




Putting it together

o Compute probabilities: P(y = 1 |x) =
1l +e*

Py=1l=ow-x+0) =1 s

Py=0)=1—-0o(w-x+b)

1 e —(W-x+Db)

— 1 — p—
] + e—(Wx+b) ] + e—(Wx+b)

5= {1 if P(y =1]|x) > 0.5

o Decision boundary:
0 otherwise



Example: Sentiment classification

- X 3 =1 TTe-—o___
It's @There are virtually @Surprises , and the writing isGecond-rate.

So why was it so@my@ For one thing , the cast is
Anotheouch 1s the music G).was overcome with the urge to get off

[t sucked@m ,\Qnd 1t'll do the same 1o to_ou) .

the co\wh and start,dancing .
h /

~N
N

\ -
~ -
\\ -

|/

) x1=3 x5=0 x6=4. 15 X4_3

Var Definition Value 1n Fig. 5.2
X1 count(positive lexicon) € doc) 3

xp  count(negative lexicon) € doc) 2

. { 1 1if “no” € doc 1

0 otherwise )
x4  count(lst and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
: 0 otherwise
x¢  log(word count of doc) In(64) =4.15

Remember that t
values make up t
feature vector!

ne

ne



Example: Sentiment classification

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { 1 if “no” € doc |
) 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢  log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1
p(+|x) =P(Y = 1|x) c(w-x+Db)
= o([2.5,-5.0,—1.2,0.5,2.0,0.7] -(3,2,1,3,0,4.15| +0.1)
= 0/(.805)
= 0.69
p(—|x)=P(Y =0|x) = 1—oc(w-x+Db)
= 0.31



Designing features

e Most important rule: Data is e Feature templates

key!

* Sparse representations, hash

* Linguistic intuition (e.g. part only seen features into index

of speech tags, parse trees)
e Ex. Trigram(logistic regression
e Complex combinations

classifier) = Feature #78

if “Case(w;) = Lower” * Advanced: Representation

otherwise . . .
learning (we will see this later!)

\N /7

if “w; € AcronymDict”

otherwise

if “w; = St. & Case(w;_1) = Cap”
otherwise

\N /7




Logistic Regression: what’s good and what’s not

e More freedom in designing features
* No strong independence assumptions like Naive Bayes

e More robust to correlated features (“San Francisco” vs “Boston”)

—LR is likely to work better than NB
e Can even have the same feature twice! (why?)
* May not work well on small datasets (compared to Naive Bayes)

* Interpreting learned weights can be challenging



3. Learning

e We have our classification function - how to assign

weights and bias?
e (Goal: prediction y as close as possible to actual label y

e Distance metric/Loss function between predicted y and

true y: L(y,y)

e Optimization algorithm for updating weights



Loss function

e Assume y = o(W : X + D)
e [L(y,y) = Measure of difterence between y and y. But what form?
e Maximum likelihood estimation (conditional):

e Choose w and b such that log P(y | x) is maximized for true labels y paired with

Input x
e Similar to language models!

e where we chose parameters to maximize log P(w,|w,_.,...,w,_|) given a corpus



Cross Entropy loss for a single instance

Assume a single data point (x, y) and two possible classes to choose from

Classifier probability: P(y|x) = $ 7(1 — )™

Log probability: log P(y|x) = log[37(1 — $)' ]
= ylogy + (I —y)log(l —y)

Loss: —log P(y|x) = — [ylogy + (1 — y)log(1l — V]

e y=1 = —logy, and y=0 = —log(l — V)

(compact notation)

(maximize this)

(minimize this)



Cross Entropy loss

e For n data points (x®, yWy

o Classifier probability: IT_,P(y|[x) = IT'_ (1 — )

, Loss: —logHP(y\x) = — Z log P(y | x)
i=1 i=1

Log=— ) [ylog9+ (1 — y)log(l - $)]
=1



Example: Computing CE Loss

Var Definition Value
X1 count(positive lexicon) € doc) 3
xp  count(negative lexicon) € doc) 2
- { I if “no” € doc |
’ 0 otherwise
x4  count(1st and 2nd pronouns € doc) 3
. { 1 if “!” € doc 0
. 0 otherwise
x¢  log(word count of doc) In(64) =4.15

e Assume weights w = [2.5, — 5.0, — 1.2,0.5,2.0,0.7] and bias b = 0.1
e |ty =1 (positive sentiment), L-r = —10g(0.69) = 0.37

e |ty =0 (negative sentiment), L-r = —10g(0.31) = 1.17



Il

Properties of CE Loss

o Lep=— ), [y"log§? + (1 = yMlog(1 — 3]
=1

e \What values can this loss take?

A) O to oo B) —oc0 to o0 C)—o0toO D) 1 to o©



Properties of CE Loss

Lep=— ) [y?log$? + (1 — yD)log(l — )]
=1

Ranges from O (pertect predictions) to oo

Lower the value, better the classifier

Cross-entropy between the true distribution P(y | x) in the
data and predicted distribution P(y | x)



4. Optimization

e \\e have our classification function and loss function - how do we find the best w and b?

0 = [w; b]

n | N
6 = arg min — Z LCE(y(’), xW: 0)
o N

e (Gradient descent:

e Find direction of steepest slope

* Move in the opposite direction



Gradient descent (1-D)

Cost

Learning step

Minimum

Random W W
initial value

d
9t+1 — 9" — p— X;Q
rzdgf( )



Gradient descent for LR

e Cross entropy loss for logistic regression is convex (i.e. has

only one global minimum)
* No local minima to get stuck in
* Deep neural networks are not so easy

® NOH-COHVGX Local Maxima

LocallMaxima
Local Maxima

Local Minima

Local Minima




Learning Rate

¢ UpdateS: 9t+1 — Ht _%f(xa H) fiw) fiw)

e Magnitude of movement along gradient

e Higher/taster learning rate = larger

w' w w’ W
Too small: converge Too big: overshoot and

u pdates to pa rameters very slowly even diverge



Recap: Logistic regression

* |[nputs:
1. Classification instance in a feature representation
2. Classification function to compute y using P(y | x)
3. Loss function (for learning)

4. Optimization algorithm

* Train phase: Learn the parameters of the model to minimize loss function

* Test phase: Apply parameters to predict class given a new input x



Gradient descent with vector weights

 |n LR: weight w is a vector

* Express slope as a partial derivative of loss
w.r.t each weight:

3o L(f(x;6),)
°L(f(x:6).y)

dwn

VGL(f(x; 9),)’)) —

ai;n L(f(x’ 9),)’)

e Updates: 0tV = @' — y VL(f(x;0), )



Gradient for logistic regression

o Lop=— Z [y?log o(w - XV + b) + (1 — yD)log(l — a(w - x¥ + b))]
=1

dL (W, b) L

, Gradient, — Z [o(W - x() 4 b) — y(i)]xj(i)
dW] o .
p«% bm@mlw 3
0w, 617\19&““&‘0‘/\ /
dLep(W,b) _ § (i (i " put
o ” =izzl[a(w-x + b) — yY] ]\(\P



Stochastic Gradient Descent

* Online optimization

e Compute loss and

minimize after each

training example

jv\ Q}G\V\ (R
LoSS

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L 1s the loss function

# f 1s a function parameterized by 6

# X 18 the set of training inputs x(l) x(2) e x(”)

# y is the set of training outputs (labels) y() 32 yn)
00

repeat til done # see caption
For each training tuple (x (). )) (in random order)

I. Optional (for reportlng) # How are we doing on this tuple?
Compute y p) = f ( 0) # What is our estimated output y?
> Compute the loss L(( ) y( )) # How far off is $(!)) from the true output y(9?
2. g VoL(f(x\); 9),y(’)) # How should we move 6 to maximize loss?
3.0—-60 —ng # Go the other way instead

return 6



Stochastic Gradient Descent

* Online optimization

e Compute loss and
minimize after each

training example

Gradient Descent ~—



Regularization

Training objective: 0 = arg max Z log P(yW | x)
0

This might fit the training set too well! (including noisy features)

=1

Poor generalization to the unseen test set — Overfitting

Regularization helps prevent overtitting f Pe;\m\\gk
_ JLQ%UQ

0

n | l
_ (D) | @)y — :
= argmax [lzzl log P(y|x") — aR(0)| e

Z\\\+§



L2 regularization

d
L RO=11017=) 67
j=1

e Euclidean distance of weight vector 8 from origin

e |2 reqularized objective:

L d
0



L1 Regularization

d
. RO =110]],= )10
j=1

e Manhattan distance of weight vector 8 from origin

e |1 reqularized objective:

n d
6 = arg max [Z log PYW | xV) — az \6’]-\]
0



L2 vs LI regularization

® |2 is easier to optimize - simpler derivation

A L1 regularization B L2 regularization

e | 1is complex since the derivative of |0] is

not continuous at O

e |2 leads to many small weights (due to % term)

e |1 prefers sparse weight vectors with many

weights set to O (i.e. far fewer features used)



Multinomial Logistic Regression

* What if we have more than 2 classes? (e.g. Part of speech

tagging, named entity recognition)
e Needtomodel P(y=c|x) VceC

e Generalize sigmoid function to softmax

<
softmax(z;) = - 1 <i<k

ko, =
2 € o
& \\l 0 3\W\O\\ \SO\_hoﬂ




Softmax

e Similar to sigmoid, softmax squashes values towards O or 1
o [fz=10,1,2,3,4], then
e softmax(z) = ([0.0117,0.0317,0.0861,0.2341,0.6364])

e For multinomial LR,

W. - X+b

C

P(y =c|x) =

I.C eV X+b;
J=1



Features in multinomial LR

* Features need to include both input (x) and class (c)

* There were implicit in binary case

Var Definition Wt

1 1if “!” € doc
f1(0,x) otherwise —4.

0

1 1if “!” € doc
fi(+,x) 0 otherwise 2.0

1

0

if <! € doc

otherwise 1.3

fl(_vx)



Learning

e (Generalize binary loss to multinomial CE loss: Binary CE Loss:
Lcp(3,y) = — i [{y = cHog P(y = c|x) ~log P(y| x) = — [[ylog § + (1 — y)log(1 — )]
— _ CZ:;| Iy = cilog ZJ;;I J—

e (Gradient:
dL
= =—(l{y=c} —P(y=clx)x
dw.
ewc-x+bc
= — l{y — C} P ewj-x+bj X

j=1






