s

COS 484

Natural Language Processing

L5:Word Embeddings (ll)

Spring 2022

(Some slides adapted from Chris Manning, Dan Jurafsky)

Approaches for representing words

Prediction-based approaches

Count-based h
ount-based approaches (word embeddings)

o :
Used since the 90s ® Formulated as a machine learning problem

® Word2vec (Mikolov et al., 2013)
® GloVe (Pennington et al., 2014)

® Sparse word-context PPMI matrix
® Decomposed with SVD

Underlying theory: The Distributional Hypothesis (Firth, '57)
“Similar words occur in similar contexts”

Word embeddings

® Learned vectors from text for representing words

® Input: a large text corpus, vocabulary V,

vector dimension d —0.224 —0.124
| 0.130 o 0.430
Yeat = | _) 290 dog —0.200
e Text corpora: 0.276 0.329
e Wikipedia + Gigaword 5: 6B tokens
o Twitter: 27B tokens 0.234 [0.290
¢ Common Crawl: 840B tokens Vene = 0.266 v _ | ~0-44
e 0.239 mguage = | ().762
—0.199 \ 0.982

e Output: f:V — R?

Each word is represented by a low-dimensional (e.g., d = 300), real-valued vector

Each coordinate/dimension of the vector doesn’t have a particular interpretation

VWord embeddings

® Basic property: similar words have similar vectors

word = “sweden”

b . e e e e e e e e e

norway
denmark
finland
switzerland
belgium
netherlands
iceland
estonia
slovenia

Cosine distance

B B B B B B B B B B B B B B B B B

. 760124
. 715460
.620022
. 088132
. 985835
.074631
. 062368
.247621
.231408

S oo e ®

cos(u, v) ranges between -1 and 1

Word embeddings

® Basic property: similar words have similar vectors

Nearest words to
frog:

. frogs

. toad

. litoria

. leptodactylidae

. rana

. lizard

. eleutherodactylus

NOO Ol WN

rana eleutherodactylus

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

Word embeddings

® They have some other nice properties too!

A
man
.'~
o) “~* woman
king \\ @
YA
O
gueen
‘>
Male-Female

O

walking

Uman — Uwoman ~ Uking — Uqueen

A
walked
O
swam
O —
swimming
Verb tense

Italy --,‘__~§~§‘\‘§§§~“gadrid
Rome

Germany =
== Berlin
Turkey --.~‘~_~‘~‘--‘~
Ankara
Russia
Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing

Country-Capital

Word embeddings

® They have some other nice properties too!

2 cuatro (four)

Ouno (one
ocinco (five)

Otres (three

U(Cuatro) ~ WU(fOU_I’) »—.4 P —— | | ,__9dos (two)

O caballo (horse)
Jvaca (cow)
pergp (dog)

O cerdo (pig)

w4t O gato (cat)

4 0J ‘ 01 ! 02) o4

(Mikolov et al, 2013): Exploiting Similarities among Languages for Machine Translation

word2vec

o (Miko!

ov et al

e (Miko!

ov et al

20]
20]

|3a): Efficient Estimation of Word Representations in Vector Space

|3b): Distributed Representations of Words and Phrases and their Compositionality

INPUT PROJECTION OUTPUT
INPUT PROJECTION OUTPUT

w(t-2) %;'
w(t-2)

w(t-1)

wi(t-1
SUM (t-1)

| | {
| < B P oWy ——

w(t+1) w(t+1)

w(t+2) w(t+2)

Continuous Bag of Words (CBOW) Skip-gram

Skip-gram
L |
R A classification problem!
® Key idea: Use each word to predict other words in its context

® Assume that we have a large corpus wi, w,, ..., wpr € V

® Context: a fixed window of size 2m (m = 2 in the example)

problems turning banking crises as

|) \)
| 1 \ Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Skip-gram

P(wi_p | we) P(Weyo | We)

P(we—q1 | W) P(Weyq | we)

problems turning banking crises as

\ J \ J
| | \ Y J

outside context words center word outside context words

in window of size 2 at position t in window of size 2
PWe_p | we) PWeyo | W)
P(we_1 | we) P(Wesr | we)
problems turning into crises as

L) J
!)
Y Y Y

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Our goal is to find parameters that can maximize
P(problems | into) X P(turning | into) X P(banking | into) X P(crises | into) X P(turning | banking) X P(into | banking) X P(crises | banking) X P(as | banking)...

Skip-gram: objective function

® For each position t = 1,2,...7, predict context words within context size m,

given center word w:
all the parameters to be optimized

t=1 —m<j<m,j#0

How to define P(w,; | w;; 0)?

® Use two sets of vectors for each word in the vocabulary

u; € Rd : embedding for center word i, Vi € V

\ Rd : embedding for context word 7, Vi'€ V

e Use inner product U; - Vs to measure how likely word 1 appears with context

word 7’
Softmax we learned in multinomial logistic regression!

eXp(uwt ' th—l—j) /

ZkEV eXp(uwt) Vk)

P(wiy; | wy) =

... Vs multinominal logistic regression

For multinomial LR,

P(y =c|x) =

® Essentially a |V|-way classification problem

D ke €XP(Ww, - Vi) o If wefixu, , itisreduced to a multinomial

logistic regression problem.

® However, since we have to learn both u and v
together, the training objective is non-convex.

... Vs multinominal logistic regression

“convex” ‘ “non-convex”

® [t is hard to find a global minimum.

® But can still use stochastic gradient descent to optimize 6:

AUFD =) — V4.7 ()

Poll

How many parameters does this model have (i.e. what is size of §)?

(a) d|V]
(b) 2d|V|

(c) 2m|V| [d = dimension of each vector]

(d) 2md|V|

word2vec formulation

exp(Ww, * Vu,y,)
J(0) = — Z Z lo

s g
T exp(W,,, - Vi
t=1 —m<j<m,j#0 EkEV P(Uw, * V)

Q: Why do we need two vectors for each word?

Q: Which set of vectors are used as word embeddings?

word2vec formulation

T
1 exp (U, * Vi, .)
J(0) = —= log t 2
) g Z }Z o 2_kev €Xp(Uw, - Vi)

t=1 —m<j3<m,5#0

® |n this formulation, we don’t care about the classification task itself like we do for the
logistic regression model we saw previously.

® The key point is that the parameters used to optimize this training objective—when the
training corpus is large enough—can give us very good representations of words
(following the principle of distributional hypothesis)!

How to train this model!?

1 exp(Ww, * Vw,. .
J(0) :——Z log p()
T2 e ey b, Vi)

® To train such a model, we need to compute
the vector gradient v/, J(6) =7

Vaardvark

Uq

® Again, 0 represents all 2d | V| model

parameters, in one vector.
H — Uzebra

Uagardvark
Ua) g

Uzebra

VVarmup:Vectorized gradients

f(x) =x-a %: a

f=x1a1 + 2209+ ...+ THaH

or _or o1 or
Oox 0x1 Oz = 0x,,

Vectorized gradients

Next, we are going to compute gradients with respect to many variables together and
write them in vector/matrix notations.

f.:R" — R™
.f(m) — [fl(zla °"7xn)7f2($17°")xn)7 ---,fm(ﬁl?l, 7$n)]

f(x)=xe€R"
oL Ofi
of a:.cl | 8:f:n %:In E)fz-{l i =
8_;13 — : . : 00X 0x 0 1+
Ofm Ofm

0x1 T 0xnp,

Poll

Let f(x)=Wx, W e R™" x € R" what is the value of % ?
(a) W
(b) WI

() Wx
(d) x

Let’s compute gradients for word2vec

T
1 OXp (Urwt * V’(Ut ,7)

t=1 —m<j<m,j7#0 2 kev €Xp(Ww, - V)

exp(uy - Ve))

Consider one pair of center/context words (t,c): ¥ = —log (Z exp(Uy - Vr)
keV

We need to compute the gradient of y with respect tou, and v,,Vk € V

Let’s compute gradients for word2vec

g (v) 0y _ O(—us-v.) | llog ey explur - vi)
y = — log — = |
Zke\/ exp(u; - Vi) ou, ouy ouy
0 pey exp(ug-vg)
— v I aut
y = —log(exp(uy - v¢)) + log() ~exp(uy - vi)) T > v exp(ug - vi)
keV
— : : odex £V
u - Ve +log(z exp(us - vi)) - I > rer C pgtllt k)
keV — — V¢
ZkEV eXp(ut Vk)
exp(u; - Vi) - V
Recall that = — V¢ Likev P Vi) ' Vi
Zke\/ eXp(ut Vk)
Plwiy; | wy) = eXP(Uw, * Vuy;)
AE D kev €Xp(Uy, - Vi) exp(us - vi)

Gradients for word2vec

What about context vectors?

See assignment 1 :)

Overall algorithm

® Input: text corpus, context size m, embedding size d, vocabulary V
e [nitialize u,, v; randomly

® Run through the training corpus and for each training instance (t, c):

3, 9y _
o Update ug < ug - ”a—i Sy = Vet ;/ P(k | v)vi
0
e Update kavk—nay,Vk‘GV
Vk

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, c¢), you need to update v, with all the
words in the vocabulary! This is very expensive computationally.

W v+ Y Pl v Gy _ JPE[=1)u k=c
o keV OV P(k | t)u k# c

Negative sampling: instead of considering all the words in V, let’s randomly sample
K (5-20) negative examples.

exp(u; - ve)
: = —1
softmax: Y 05 (Zke\/ exp(uy - Vk))

K
NS: Y= — log(a(ut ' Vc)) o Z 4:J'““-’)(u‘) log(a(—ut . Vj))
=1

Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V|-way classification into a set of binary classification tasks.

Every time we get a pair of words (t, c), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, c¢) is a positive pair, and (t, ¢’) is a negative pair for a

small number of sampled c’.

positive examples + negative examples -

t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if

Similar to binary logistic regression, but we need

to optimize u and v together.

y =

Ply=1]tc¢)=oc(us-ve) Py =0lt,c) =c(us - v)

(2) :
O\l) =
1 4 exp(—x)
- B
0.5+
| | 1 1 1 J
-6 -4 - 0 2 4 (3

Poll

y=—log(o(u;-ve)) — Y Ejop)loglo(—u; - v;))
i—1

In skip-gram with negative sampling (SGNS), how many parameters need to be
updated in @ for every (t, c) pair?

(a) Kd

(b) 2Kd

(o) (K+ 1)d
(d) (K+2)d

Skip-gram with negative sampling (SGNS)

K
y = —log(o(u; - ve)) — Z Lj~P(w) log(o(—ut - v;))
i=1

® The gradients can be computed in a similar way but much cheaper!

® P(w): sampling according to the frequency of words

count (w)?
Y . count(w')®

Py (w) =

In practice, a =~ 0.75 gives the best performance because it gives rare words
slightly higher probability

Continuous Bag of Words (CBOW)

INPUT PROJECTION OUTPUT

w(t-2) o . .

w L(O) = [[P (we [{wegs}, —m < j <m.j #0)
w(t-1) =

| \SUM

w(t) 1

; ' ‘ Vi = — Vit
w(t+1) —m<j<m,j#0
w(t+2)

exp(Wy, - Vi)

P o , - p—
(we | {we4;}) D ey exp(ug - vi)

Poll

Let’s compare skip-gram with CBOW. Which of the following is correct?

(a) Skip-gram is a simpler task compared to CBOW
(b) Skip-gram is faster to train than CBOW

(c) Skip-gram handles frequent words better

(d) Skip-gram handles infrequent words better

Skip-gram vs CBOW

® CBOW is comparatively faster to train than skip-gram and better for
frequently occurring words

e Skip-gram is slower but works well for smaller amount of data and works
well for less frequently occurring words

® CBOW is an easier classification problem than Skip-gram because in CBOW
we just need to predict the one center word given many context words.

GloVe: Global Vectors

® Key idea: let’s approximate u; - v; using their co-occurrence counts directly.

o Take the global co-occurrence statistics: X; ;

J(@) — Z f(Xz,]) (ui y Vj —+ bz -+ Ej — log Xiyj)Z

1,7€V

® Training faster

® Scalable to very large corpora -

Q: Why? f ~J

038
0.6
04

0.2

00

(Pennington et al, 2014): GloVe: Global Vectors for Word Representation

Fast Text: Sub-VWord Embeddings

® Similar to Skip-gram, but break words into n-grams withn = 3 to 6
where: 3-grams: <wh, whe, her, ere, re>

4-grams: <whe, wher, here, ere> All the embeddings that we have learned

are also called “static word embeddings”:
there is one fixed vector for every word in
the vocabulary.

5-grams: <wher, where, here>

6-grams: <where, where>

e Replace u; -V, by Z Ug - Vj

gen-grams(w;)

y 3
) A4

® More to come! Contextualized word embeddings

(Bojanowski et al, 2017): Enriching Word Vectors with Subword Information

Trained word embeddings available

e word2vec: https://code.google.com/archive/p/word2vec/

e GloVe: https://nlp.stanford.edu/projects/glove/

e FastText: https://fasttext.cc/

Download pre-trained word vectors

o Pre-trained word vectors. This data is made available under the Public Domain Dedication and License v1.0 whose full text can be found at:
http://www.opendatacommons.org/licenses/pdd|/1.0/.

o Wikipedia 2014 + Gigaword 5 (6B tokens, 400K vocab, uncased, 50d, 100d, 200d, & 300d vectors, 822 MB download): glove.6B.zip

o Common Crawl {A'}_’::J tokens, 1.9M vocab, uncased, BDDU' vectors, 1.75 GB dr_‘/wr“bad). g|o'v'e./12B.SDOU.&Q

QO

O

Common Crawl (8408 tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB download): glove.840B.300d.zip

Twitter (28 tweets, 278 take'ws, 1.2M vocab, ur“cased, 250', SOd. 100d, & 200d vectors, 1.42 GB do'v*.'r"n|oauj; g|';)'-.'e.?_'~,-.-1116!.2?3.: D

e Ruby script for preprocessing Twitter data

Differ in algorithms, text corpora, dimensions, cased/uncased...
Applied to many other languages

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Easy to use!

gensim.models KeyedVectors

model KeyedVectors. load_word2vec_format('data/GoogleGoogleNews-vectors-negative300.bin', binary-True)

vector model['easy']

In [17): model.similarity('straightforward’', 'easy’)
Out[1l7]: 0.5717043285477517
In [18]): model.similarity('simple’, 'impossible')

Out[l8]: 0.29156160264633707

In [19]: model.most similar('simple’)

Out[19]: [('straightforward', 0.7460169196128845),
('Simple’, 0.7108174562454224),
('uncomplicated’, 0.6297484636306763),
('simplest’, 0.6171397566795349),

('easy’, 0.5990299582481384),

('fairly straightforward', 0.5893306732177734),
('deceptively simple’', 0.5743066072463989),
('simpler’, 0.5537199378013611),

('simplistic’, 0.5516539216041565),
('disarmingly simple', 0.5365327000617981)]

Evaluating VWord Embeddings

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

® Let’s plug these word embeddings into a real NLP
system and see whether this improves performance

® Could take a long time but still the most important
evaluation metric

Intrinsic evaluation
e Evaluate on a specific/intermediate subtask
® Fast to compute

® Not clear if it really helps downstream tasks

(

| S—

| —

| —
o
\

f
[ML model j
) (o) (en) (Sone) (139)
IT dorI’t likTe thTis moTVie

Extrinsic evaluation

[ML model j

(Soas) (o) (603) (So38) (139)
bt

I dont like this movie

A straightforward solution: given an input sentence £1,42,.-.,dn
Instead of using a bag-of-words model, we can compute vec(z) = e(x1) +e(z2) + ... +e(zy,)

And then train a logistic regression classifier on vec(x) as we did before!

Intrinsic evaluation: word similarity

Word similarity

Example dataset: wordsim-353
353 pairs of words with human judgement

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

tiger

tiger tlger
book paper
computer internet
plane car
professor doctor
stock phone
stock CD
stock jaguar

7.35
10

7.46
7.58
5.77
6.62
1.62
1.31
0.92

Cosine similarity:

u,f-u,-

CoOSluw;.u;) = .
os(ui Us) = 1 X Nl

Metric: Spearman rank correlation

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word similarity

Model Size |[WS353 MC RG SCWS RW
SVD 6B | 353 35.1 425 383 256
SVD-S 6B | 565 71.5 71.0 53.6 34.7
SVD-LL 6B | 65.7 727 75.1 56.5 37.0
CBOW' 6B | 572 656 682 57.0 325
SG" 6B | 628 652 69.7 58.1 372
GloVe 6B | 65.8 727 77.8 539 38.1
SVD-LL 42B| 740 764 74.1 58.3 399
GloVe 42B| 759 83.6 829 59.6 47.8
CBOW* 100B| 684 79.6 75.4 59.4 455

SG: Skip-gram

Intrinsic evaluation: word analogy

Word analogy

man: woman = Kking: ?

arg max (cos(u;, up — u, + u.))
(/

semantic syntactic
Chicago:Illinois~Philadelphia: ? bad:worst &~ cool: ?

More examples at

http://download.tensorflow.org/data/questions-words.txt

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

Intrinsic evaluation: word analogy

Model Dim. Size | Sem. Syn. Tot.
ivLBL 100 1.5B | 559 50.1 532
HPCA 100 1.6B | 42 164 10.8
GloVe 100 1.6B | 67.5 54.3 60.3
SG 300 1B 61 61 61
CBOW 300 1.6B | 16.1 52.6 36.1
vLBL 300 15B | 542 64.8 60.0
ivLBL 300 1.5B | 65.2 63.0 64.0
GloVe 300 1.6B | 80.8 61.5 703
SVD 300 6B 6.3 8.1 7.3
SVD-S 300 6B | 36.7 46.6 42.1
SVD-L 300 6B | 56.6 63.0 60.1
CBOW' 300 6B | 63.6 674 65.7
SGT 300 6B | 73.0 66.0 69.1
Glove 300 6B | 774 67.0 71.7
CBOW 1000 6B | 573 689 63.7
SG 1000 6B | 66.1 65.1 65.6
SVD-L 300 42B | 384 58.2 492
GloVe 300 42B | 81.9 69.3 75.0

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/

