
Sequence Models - 2

Spring 2022

COS 484

Logistics

• Lecture slides:

• uploaded previous evening/night

• if you want a head start, you can view slides from Spring 2021 (link

available on class website)

• poll slides may be skipped, updated slides available after class (just re-

download from website)

• Office hours: if you’re unable to make any of the office hours, send us a

message

Recap: Hidden Markov Models

s1 s2 s3 s4Tags

Words

1. Set of states S = {1, 2, ..., K} and set of observations O

2. Initial state probability distribution

3. Transition probabilities (OR)

4. Emission probabilities (OR)

π(s1)

P(st+1 |st) θst → st+1

P(ot |st) ϕst → ot

o1 o2 o3 o4

Strong assumptions

s1 s2 s3 s4Tags

Words

1. Markov assumption:

2. Output independence:

P(st+1 |s1, . . . , st) ≈ P(st+1 |st)

P(ot |s1, . . . , st) ≈ P(ot |st)

o1 o2 o3 o4

Recap: Hidden Markov Models

 
1) assumes state sequences do
not have very strong priors/long-
range dependencies

2) assumes neighboring states
don’t affect current observation

Recap: Viterbi decoding

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pickmax
k

M[n, k] and backtrack using BBackward:

 stores joint probability of

most probable sequence of

states ending with state j at time i

M[i, j]

Maximum Entropy Markov Models

Generative vs Discriminative

• HMM is a generative model

• Can we model directly?P(s1, . . . , sn |o1, . . . , on)

(No factorization)

Generative Discriminative

Naive Bayes: P(c)P(d |c) Logistic Regression: P(c |d)Text classification

HMM:
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM: P(s1, . . . , sn |o1, . . . , on)
Sequence prediction

Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly:

•

• Use features and weights:

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si = s |oi, si−1) ∝ exp(w ⋅ f(si = s, oi, si−1))

No factorization into

transition, emission

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩

• Use features and weights:

• Which of the following is the correct way to calculate this probability? 

A)  

B)  

C)

P(si = s |oi, si−1) ∝ exp(w ⋅ f(si = s, oi, si−1))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s, oi, si−1 = s′￼))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s′￼, oi, si−1))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑o′￼∈O exp(w ⋅ f(si = s, oi = o′￼, si−1))

Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly:

•

• Use features and weights:

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s′￼, oi, si−1))

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩

MEMM

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states:

P(S |O) = arg max
S ∏

i

P(si |on, oi−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)

Q: Why couldn’t we do this with HMMs?

Features in an MEMM

Feature templates

Features (binary)

 = tags (states)

 = words (observations)

ti
wi

Features in an MEMM

DT NN VB DT NN

The old man the boat

t = tags

w = words

Which of these feature templates would
help most to tag ‘old’ correctly? 
A)

B)

C)

D)

⟨ti, wi, wi−2, wi−1, wi+1⟩
⟨ti, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT JJ NN DT NN

Correct

Incorrect

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

(assume bigram MEMM, i.e. features only on previous time step and current obs)

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

MEMMs: Decoding

• Greedy decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

MEMMs: Decoding

• Greedy decoding

• Viterbi decoding:

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n (or equivalent
log form)

(Best sequence ending in)sj

Viterbi decoding for MEMMs

DT

NN

VBD

IN

The cat sat on

DT

NN

VBD

IN

DT

NN

VBD

IN

DT

NN

VBD

IN

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pickmax
k

M[n, k] and backtrack using BBackward:

 stores joint probability of

most probable sequence of

states ending with state j at time i

M[i, j]

MEMMs: Decoding

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

How would you compare the computational complexity of Viterbi

decoding for bigram MEMMs compared to decoding for bigram HMMs? 
A) More operations in MEMM

B) More operations in HMM

C) Equal

D) Depends on number of features in MEMM

MEMM: Learning

• Gradient descent: similar to logistic regression!

• Given: annotated pairs of

Loss for one sequence,

• Compute gradients with respect to weights and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = −
n

∑
i=1

log P(si |s1, . . . , si−1, O)

w

P(si = s |s1, . . . , si−1, O) =
exp(w ⋅ f(s1, . . . , si−1, si = s, O))

∑s′￼
exp(w ⋅ f(s1, . . . , si−1, si = s′￼, O))

MEMM vs HMM

• HMM models the joint while MEMM models the required

prediction

• MEMM has more expressivity

• accounts for dependencies between neighboring states and entire

observation sequence

• allows for more flexible features

• HMM may hold an advantage if the dataset is small

P(S, O)
P(S |O)

Label bias

The/? old/? man/? the/? boat/?

P(JJ |DT) P(old |JJ) P(NN |JJ) P(man |NN) P(DT |NN)

P(NN |DT) P(old |NN) P(VB |NN) P(man |VB) P(DT |VB)

DT JJ NN DT

The old man the

Low entropy transitions (e.g. JJ -> NN) between labels may override the effect of observations

Solution?

Conditional Random Fields

Conditional Random Fields

Conditional Random Field

• Model directly

• No Markov assumption

• Map entire sequence of states S and observations O to a

global feature vector

• Normalize over entire sequences

P(s1, . . . , sn |o1, . . . , on)

Conditional Random Field

P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)

DT NN VB IN

The cat sat on

Features

DT NN VB IN

The cat sat on

• Each in is a global feature function

• Can be computed as a combination of local

features (linear chain CRF)

•

• each local feature only depends on

previous and current states (outputs)

Fk f

Fk =
n

∑
i=1

fk(si−1, si, O, i)

P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)

Features

• Each in is a global feature function

• Can be computed as a combination of local

features (linear chain CRF)

•

• Training: Optimize weights using supervised

data similar to logistic regression

Fk f

Fk =
n

∑
i=1

fk(si−1, si, O, i)

Inference

•

  

 (for linear chain CRF)

• Use Viterbi similar to HMM and MEMM

̂S = arg max
S

P(S |O) = arg max
S

exp(w ⋅ f(S, O))
Z(O)

= arg max
S

exp(w ⋅ f(S, O))

= arg max
S

exp(
K

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i))

CRF vs MEMM

• MEMM models the required prediction using the

Markov assumption, while the CRF does not

• CRF uses global features while MEMM features are

localized

• Feature design is flexible in both models

• CRF is computationally more complex

P(S |O)

History of CRFs

• Lafferty, McCallum, Pereria (2001):
introduced CRFs for sequence modeling

• Mitigates the label bias problem (in
HMMs/MEMMs)

• Better empirical performance compared
to HMMs/MEMMs

• Parameter estimation not straightforward

History of CRFs

• Very popular in the 2000s

• Wide variety of applications:

• Information extraction

• Summarization

• Image labeling/segmentation

History of CRFs

• Very popular in the 2000s

• Wide variety of applications:

• Information extraction

• Summarization

• Image labeling/segmentation

Empirical performance

Sha and Pereira (2003)

https://www.aclweb.org/anthology/N03-1028.pdf

CRFs in deep learning era

• Use CRFs on top of neural
representations (instead of features
and weights)

• Joint sequence prediction without
the need for defining features!

• Recent architectures such as seq2seq
w/ attention or Transformer may
implicitly do the job

Preview: Recurrent neural networks (RNNs)
How can we model sequences using neural networks?

• Recurrent neural networks = A class of neural networks used to model sequences,
allowing to handle variable length inputs

• Very crucial in NLP problems (different from images) because sentences/paragraphs are
variable-length, sequential inputs

Preview: Recurrent neural networks (RNNs)

A family of neural networks allowing to handle variable length inputs

A function: where y = RNN(x1, x2, …, xn) ∈ ℝh x1, …, xn ∈ ℝd

Preview: Recurrent neural networks (RNNs)

Proven to be an highly effective approach to language modeling, sequence tagging as well as
text classification tasks:

Language modeling Sequence tagging

The movie sucks .

👎

Text classification

the students opened their …exams

…

