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Logistics

• Lecture slides:


• uploaded previous evening/night


• if you want a head start, you can view slides from Spring 2021 (link 

available on class website)


• poll slides may be skipped, updated slides available after class (just re-

download from website)


• Office hours: if you’re unable to make any of the office hours, send us a 

message



Recap: Hidden Markov Models

s1 s2 s3 s4Tags

Words

1. Set of states S = {1, 2, ..., K} and set of observations O


2. Initial state probability distribution 


3. Transition probabilities   (OR  )


4. Emission probabilities   (OR  )

π(s1)

P(st+1 |st) θst → st+1

P(ot |st) ϕst → ot

o1 o2 o3 o4

Strong assumptions



s1 s2 s3 s4Tags

Words

1. Markov assumption: 


                    


2. Output independence: 


                        

P(st+1 |s1, . . . , st) ≈ P(st+1 |st)

P(ot |s1, . . . , st) ≈ P(ot |st)

o1 o2 o3 o4

Recap: Hidden Markov Models

 
1) assumes state sequences do 
not have very strong priors/long-
range dependencies

2) assumes neighboring states 
don’t affect current observation



Recap: Viterbi decoding
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The cat sat on
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M[i, j] = max
k

M[i − 1,k] P(sj |sk) P(oi |sj) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pickmax
k

M[n, k] and backtrack using BBackward:

 stores joint probability of 

most probable sequence of 

states ending with state j at time i

M[i, j]



Maximum Entropy Markov Models



Generative vs Discriminative

• HMM is a generative model


• Can we model  directly?P(s1, . . . , sn |o1, . . . , on)

(No factorization)

Generative Discriminative

Naive Bayes: P(c)P(d |c) Logistic Regression: P(c |d)Text classification

HMM: 
P(s1, . . . , sn)P(o1, . . . , on |s1, . . . , sn)

MEMM: P(s1, . . . , sn |o1, . . . , on)
Sequence prediction



Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly:


• 


• Use features and weights: 

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si = s |oi, si−1) ∝ exp(w ⋅ f(si = s, oi, si−1))

No factorization into

transition, emission

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩



• Use features and weights: 


• Which of the following is the correct way to calculate this probability? 

A)  

B)  

C) 

P(si = s |oi, si−1) ∝ exp(w ⋅ f(si = s, oi, si−1))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s, oi, si−1 = s′￼))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s′￼, oi, si−1))

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑o′￼∈O exp(w ⋅ f(si = s, oi = o′￼, si−1))



Maximum Entropy Markov Model

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• Compute the posterior directly:


• 


• Use features and weights: 

P(S |O) ≈ arg max
S ∏

i

P(si |oi, si−1)

P(si = s |oi, si−1) =
exp(w ⋅ f(si = s, oi, si−1))

∑s′￼∈S exp(w ⋅ f(si = s′￼, oi, si−1))

(Bigram MEMM)

O = ⟨o1, o2, . . . , on⟩



MEMM

DT NN VB IN

The cat sat on

DT NN VB IN

The cat sat on

HMM MEMM

• In general, we can use all observations and all previous states:


 
P(S |O) = arg max
S ∏

i

P(si |on, oi−1, . . . , o1, si−1, . . . , s1)

P(si |si−1, . . . , s1, O) ∝ exp(w ⋅ f(si, si−1, . . . , s1, O)

Q: Why couldn’t we do this with HMMs?



Features in an MEMM

Feature templates

Features (binary)

 = tags (states)

 = words (observations)

ti
wi



Features in an MEMM

DT    NN     VB      DT     NN

The   old    man    the    boat

t = tags

w = words

Which of these feature templates would 
help most to tag ‘old’ correctly? 
A) 

B)  

C) 

D) 

⟨ti, wi, wi−2, wi−1, wi+1⟩
⟨ti, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

DT    JJ     NN     DT     NN

Correct

Incorrect



MEMMs: Decoding

     


• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on

(assume bigram MEMM, i.e. features only on previous time step and current obs)



MEMMs: Decoding

    


• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on



MEMMs: Decoding

    


• Greedy decoding: 

̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

DT NN VBD IN

The cat sat on



MEMMs: Decoding




• Greedy decoding


• Viterbi decoding:


̂S = arg max
S

P(S |O) = arg max
S

ΠiP(si |oi, si−1)

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n (or equivalent 
log form)

(Best sequence ending in )sj



Viterbi decoding for MEMMs

DT

NN

VBD

IN

The cat sat on
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M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

Pickmax
k

M[n, k] and backtrack using BBackward:

 stores joint probability of 

most probable sequence of 

states ending with state j at time i

M[i, j]



MEMMs: Decoding

M[i, j] = max
k

M[i − 1,k] P(sj |oi, sk) 1 ≤ k ≤ K 1 ≤ i ≤ n

How would you compare the computational complexity of Viterbi 

decoding for bigram MEMMs compared to decoding for bigram HMMs? 
A) More operations in MEMM

B) More operations in HMM

C) Equal

D) Depends on number of features in MEMM



MEMM: Learning

• Gradient descent: similar to logistic regression!


• Given: annotated pairs of 


Loss for one sequence, 


• Compute gradients with respect to weights  and update

(S, O) where each S = ⟨s1, s2, . . . , sn⟩

L = −
n

∑
i=1

log P(si |s1, . . . , si−1, O)

w

P(si = s |s1, . . . , si−1, O) =
exp(w ⋅ f(s1, . . . , si−1, si = s, O))

∑s′￼
exp(w ⋅ f(s1, . . . , si−1, si = s′￼, O))



MEMM vs HMM

• HMM models the joint  while MEMM models the required 

prediction 


• MEMM has more expressivity 


• accounts for dependencies between neighboring states and entire 

observation sequence


• allows for more flexible features


• HMM may hold an advantage if the dataset is small

P(S, O)
P(S |O)



Label bias

The/? old/? man/? the/? boat/?

P(JJ |DT) P(old |JJ) P(NN |JJ) P(man |NN) P(DT |NN)

P(NN |DT) P(old |NN) P(VB |NN) P(man |VB) P(DT |VB)

DT JJ NN DT

The old man the

Low entropy transitions (e.g. JJ -> NN) between labels may override the effect of observations



Solution?            

Conditional Random Fields 



Conditional Random Fields



Conditional Random Field

• Model  directly 


• No Markov assumption


• Map entire sequence of states S and observations O to a 

global feature vector


• Normalize over entire sequences

P(s1, . . . , sn |o1, . . . , on)



Conditional Random Field


P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)

DT NN VB IN

The cat sat on



Features

DT NN VB IN

The cat sat on

• Each  in  is a global feature function


• Can be computed as a combination of local 

features (linear chain CRF)


•     


• each local feature only depends on 

previous and current states (outputs)

Fk f

Fk =
n

∑
i=1

fk(si−1, si, O, i)


P(S |O) =
exp(w ⋅ f(S, O))

∑S′￼
exp(w ⋅ f(S′￼, O))

=
exp(w ⋅ f(S, O))

Z(O)



Features

• Each  in  is a global feature function


• Can be computed as a combination of local 

features (linear chain CRF)


•     


• Training: Optimize weights using supervised 

data similar to logistic regression 

Fk f

Fk =
n

∑
i=1

fk(si−1, si, O, i)



Inference

• 


                                       


                                          

                                                 (for linear chain CRF)


• Use Viterbi similar to HMM and MEMM

̂S = arg max
S

P(S |O) = arg max
S

exp(w ⋅ f(S, O))
Z(O)

= arg max
S

exp(w ⋅ f(S, O))

= arg max
S

exp(
K

∑
k=1

n

∑
i=1

wk fk(si−1, si, O, i))



CRF vs MEMM

• MEMM models the required prediction  using the 

Markov assumption, while the CRF does not


• CRF uses global features while MEMM features are 

localized


• Feature design is flexible in both models


• CRF is computationally more complex

P(S |O)



History of CRFs

• Lafferty, McCallum, Pereria (2001): 
introduced CRFs for sequence modeling


• Mitigates the label bias problem (in 
HMMs/MEMMs)


• Better empirical performance compared 
to HMMs/MEMMs


• Parameter estimation not straightforward



History of CRFs

• Very popular in the 2000s


• Wide variety of applications:


• Information extraction


• Summarization


• Image labeling/segmentation



History of CRFs

• Very popular in the 2000s


• Wide variety of applications:


• Information extraction


• Summarization


• Image labeling/segmentation



Empirical performance

Sha and Pereira (2003)

https://www.aclweb.org/anthology/N03-1028.pdf


CRFs in deep learning era

• Use CRFs on top of neural 
representations (instead of features 
and weights)


• Joint sequence prediction without 
the need for defining features!


• Recent architectures such as seq2seq 
w/ attention or Transformer may 
implicitly do the job



Preview: Recurrent neural networks (RNNs)
How can we model sequences using neural networks?

• Recurrent neural networks = A class of neural networks used to model sequences, 
allowing to handle variable length inputs

• Very crucial in NLP problems (different from images) because sentences/paragraphs are 
variable-length, sequential inputs



Preview: Recurrent neural networks (RNNs)

A family of neural networks allowing to handle variable length inputs

A function:  where y = RNN(x1, x2, …, xn) ∈ ℝh x1, …, xn ∈ ℝd



Preview: Recurrent neural networks (RNNs)

Proven to be an highly effective approach to language modeling, sequence tagging as well as 
text classification tasks:

Language modeling Sequence tagging

The movie sucks .

👎

Text classification

the students opened their …exams

…




