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Syntactic structure: constituency and dependency

Two views of linguistic structure 

• Constituency (today) 

• = phrase structure grammar  

• based on context-free grammars (CFGs) 

• Dependency (next class)

Theme: How do we represent the structure of sentences using (syntax) trees?



Tree structures in the deep learning era

The keys to the cabinet is/are on the table.

(Linzen et al., 2016): Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
(Hewitt and Manning, 2019): A Structural Probe for Finding Syntax in Word Representations



This lecture

• Constituency structure 

• Context-free grammar (CFG) 

• Probabilistic context-free grammar (PCFG) 

• Treebanks 

• The CKY algorithm 

• Evaluation 

• Lexicalized PCFGs 



Constituency structure

• Phrase structure organizes words into nested constituents

• Starting units: words

the, cuddly, cat, by, the, door

• Words combine into phrases

the cuddly cat, by the door

are given a category: part-of-speech tags

Det,  Adj,   Noun,  Prep,  Det,  Noun

NP Det Adj Noun→

with categories

PP  Prep Det Noun→
recursively

NP  NP PP→

• Phrases can combine into bigger phrases
the cuddly cat by the door

NP: noun phrase, PP: prepositional phrase



Syntactic parsing

Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

(Constituency parsing is the task of recognizing a sentence and assigning a constituency structure to it.)

Input Output

Sam thinks Sandy likes the book



Syntactic parsing:  applications

• Grammar checking 
• If a sentence can’t be parsed, it may have grammatical errors (or at least 
hard to read)

• Used as intermediate representations for downstream tasks 
• Machine translation (syntax-based statistical MT) 
• Information extraction 
• Question answering



Syntactic parsing:  applications

Used as intermediate representation for downstream applications

Image credit: http://vas3k.com/blog/machine_translation/

English word order: subject — verb — object
Japanese word order: subject — object — verb

http://vas3k.com/blog/machine_translation/


Image credit: (Zhang et al, 2018)

Used as intermediate representation for downstream applications

Syntactic parsing:  applications



Context-free grammars (CFGs)

• The most widely used formal system for modeling constituency structure in English and other 
natural languages

• A context free grammar  where 

•  is a set of non-terminal symbols 

• Phrasal categories: S, NP, VP, … 

• Parts-of-speech (pre-terminals): DT, NN, Vi, … 

•  is a set of terminal symbols: the, man, sleeps, .. 

•  is a set of rules of the form  for , 
 

• Examples: S  NP VP,  NP  DT NN,  NN  man 

•  is a distinguished start symbol

G = (N, Σ, R, S)
N

Σ
R X → Y1Y2…Yn n ≥ 0
X ∈ N, Yi ∈ (N ∪ Σ)

→ → →
S ∈ N

S:sentence, VP:verb phrase, NP: noun phrase, DT:determiner,  
NN: noun, Vi: intransitive verb…

Not always the sentence non-terminal S



A context-free grammar for English

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, DT:determiner, 
Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition

Grammar Lexicon



(Left-most) Derivations

• Given a CFG , a left-most derivation is a sequence of strings 
, where

G
s1, s2, …, sn

• s1 = S

• : all possible strings made up of words from sn ∈ Σ* Σ

• Each  for  is derived from  by picking the left-most non-
terminal  in  and replacing it by some  where  

si i = 2,…, n si−1
X si−1 β X → β ∈ R

• : yield of the derivationsn



(Left-most) Derivations

• Ss1 =

• NP VPs2 =

• DT NN VPs3 =

• the NN VPs4 =

• the man VPs5 =

• the man Vis6 =
A derivation can be 

represented as a parse tree!

• A string  is in the language defined by the CFG if 
there is at least one derivation whose yield is 

s ∈ Σ*
s

• The set of possible derivations may be finite or infinite

• the man sleepss7 =

Q: Why do we want to replace the leftmost non-terminal every time? 



Ambiguity
Some sentences/phrases may have more than one derivation (i.e. more than one 
parse tree!). 

Q: Which one is the correct parse tree?

Attachment ambiguity (e.g., PP attachment)



Ambiguity
Some sentences/phrases may have more than one derivation (i.e. more than one 
parse tree!). 

Coordination ambiguity

old men and women

old [men and women] [old men] and women

President Kennedy today pushed aside other White House business to devote all his 
time and attention to working on the Berlin crisis address he will deliver tomorrow 
night to the American people over nationwide television and radio.

Q: What ambiguities are there in this sentence?



Sentences can have a large number of parses

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] 
[for $27 a share] [at its monthly meeting].

((ab)c)d     (a(bc))d     (ab)(cd)     a((bc)d)     a(b(cd)) 

Catalan number:  Cn =
1

n + 1 (2n
n )

• Constructing a grammar is difficult— a less constrained grammar can parse more 
sentences but result in more parses for even simple sentences

• There is no way to choose the right parse!



Probabilistic context-free grammars (PCFGs)

A probabilistic context-free grammar (PCFG) consists of:

• A context-free grammar: G = (N, Σ, R, S)

• For each rule , there is a parameter (probability) . 
For any ,

α → β ∈ R q(α → β) ≥ 0
X ∈ N

∑
α→β:α=X

q(α → β) = 1



Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules: 
, the probability of the parse is:α1 → β1, α2 → β2, …, αl → βl

l

∏
i=1

q(αi → βi)

P(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the)

× q(NN → man) × q(VP → Vi) × q(Vi → sleeps)

= 1.0 × 0.8 × 1.0 × 0.1 × 0.3 × 1.0 = 0.024

Q: Why do we want ?∑
α→β:α=X

q(α → β) = 1



Which parse tree has a higher probability?

q(VP → Vt NP) × q(NP → NP PP) = 0.5 × 0.2 = 0.1

q(VP → VP PP) × q(VP → Vt NP) = 0.2 × 0.5 = 0.1

This PCFG can’t identify the correct parse tree!



The rise of annotated data

• Learning from data: treebanks

• Adding probabilities to the rules: probabilistic CFGs

Treebanks: a collection of sentences paired with their annotated parse trees

The Penn Treebank Project (Marcus et al, 1993)



Penn Treebank

Standard setup 

• 40,000 sentences for training 

• 1,700 for development 

• 2,400 for testing

Phrasal categories



Penn Treebank
Part-of-speech tagset



Zoom poll

Which of the following statements is incorrect?

(a) A treebank can provide us frequencies and distributional information 
(b) A treebank provides us a way to evaluate systems 
(c) The treebank data can be biased to the selection of sentences/documents 
(d) It is easy to scale up a treebank to multiple domains and languages

The answer is (d).



Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG : 

•  is the set of all non-terminals seen in the trees 

•  is the set of all words seen in the trees 

•  is taken to be S. 

•  is taken to be the set of all rules  seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β



Deriving a PCFG from a treebank



Deriving a PCFG from a treebank

A sample of the CFG grammar rules and lexical entries that would 
be extracted from the three treebank sentences



Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG : 

•  is the set of all non-terminals seen in the trees 

•  is the set of all words seen in the trees 

•  is taken to be S. 

•  is taken to be the set of all rules  seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

• The maximum-likelihood parameter estimates are:

qML(α → β) =
Count(α → β)

Count(α)

If we have seen the rule  105 times, and the the non-terminal  1000 
times, 

VP → Vt NP VP
q(VP → Vt NP) = 0.105



Parsing with PCFGs

• Given a sentence  and a PCFG, how to find the highest scoring parse tree for ?s s

• The CKY algorithm: applies to a restricted type of PCFG— a PCFG in Chomsky 
normal form (CNF) 

• CKY = the Cocke-Kasami-Younger algorithm

• Chomsky Normal Form (CNF): all the rules take one of the two following forms:

•  where  

•  where 

X → Y1Y2 X ∈ N, Y1 ∈ N, Y2 ∈ N
X → Y X ∈ N, Y ∈ Σ

• It is possible to convert any PCFG into an equivalent grammar in CNF! 

• However, the trees will look different; It is possible to do “reverse transformation”

argmaxt∈𝒯(s)P(t)



Converting PCFGs into a CNF grammar

• -ary rules ( ): n n > 2 NP → DT NNP VBG NN

• Unary rules: VP → Vi, Vi → sleeps

• Eliminate all the unary rules recursively by adding VP → sleeps



The CKY algorithm

• Dynamic programming

• Given a sentence , denote  as the highest score for any parse 
tree that dominates words  and has non-terminal  as its root.

x1, x2, …, xn π(i, j, X)
xi, …, xj X ∈ N

• Output: π(1,n, S)

• Initially, for , i = 1,2,…, n

π(i, i, X) = {q(X → xi) if X → xi ∈ R
0 otherwise



The CKY algorithm

• For all  such that  for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree



The CKY algorithm

Q: Running time?

O(n3 |R | )



Evaluating constituency parsing

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP) 

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP) 



Evaluating constituency parsing

• Recall: (# correct constituents in candidate) / (# constituents in gold tree) 

• Precision: (# correct constituents in candidate) / (# constituents in candidate) 

• Labeled precision/recall require getting the non-terminal label correct 

• F1 is the harmonic mean of precision and recall = (2 * precision * recall) / (precision + recall) 

• Part-of-speech tagging accuracy is evaluated separately



Zoom poll

What are the labeled precision (P) / recall (R) in the above example?

(a) P = 3/8, R = 3/7 
(b) P = 3/7, R = 3/8 
(c) P = 1/2, R = 1/2 
(d) P = 1, R = 1

The answer is (b). F1 = 40%, tagging accuracy = 100%

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP) 

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP) 



Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)

The only difference between these two parses:

 vs q(VP → VP PP) q(NP → NP PP)
… without looking at the words!



Weaknesses of PCFGs

Exactly the same set of context-free rules!

Lack of sensitivity to lexical information (words)



Lexicalized PCFGs

• Key idea: add headwords to trees

• Each context-free rule has one special child that is the head of the rule (a 
core idea in syntax)



Lexicalized PCFGs

The heads are decided by rules:



Lexicalized PCFGs

• Further reading: Michael Collins. 2003. Head-Driven Statistical Models for Natural 
Language Parsing. 

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision


