s

COS 484

Natural Language Processing

L9: Dependency Parsing

Spring 2022

Midterm

® Take-home, administered online through Gradescope

® 3 hour exam (can be taken within a period of around 24 hours Thu-Fri)
® Includes grace period for you to scan + upload your answers

® Exact logistics will be announced on Canvas in 1-2 days

® Next Tuesday: Midterm review session

® No precept this Friday

Recap: Constituency parsing

GOld: (1, 10) S), (1) 2, NP)) (3) 9) VP)) (4) 9) VP)) (5) 6, NP)) (7) 9) PP)) (8) 9) NP)) (]‘O)]‘O) NP)

S
NP VP NP
/\ /\
NNS NNS VBD VP NN
| | | g
Sales executives were VBG NP PP yesterday
examining DT NNS IN NP

| | | N
the figures with JJ NN

great care

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

S
//‘///\
NP VP
T Y T
NNS NNS VBD VP PP
Sales executives were VBG NP IN NP
| N |] T

examining DT NNS with JJ NN NN
B o |

the figures great care yesterday

Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)

NP NP

e N

NP CC NP - /\

I I IN NP

Np/\pp and NNS |
P | dogs in /I\
NNS IN NP cats NP CC NP
| | I
dogs mm NNS NNS and NNS
I
houses houses cats

Exactly the same set of context-free rules!

Constituency vs dependency parsing

Constituency structure
Context-free grammar (CFG)

. ® Dependency structure
Probabilistic context-free grammar (PCFG)

Treebanks —
The CKY algorithm

Evaluation
Lexicalized PCFGs

® The Arc-standard algorithm
® Dependency treebanks

® FEvaluation

Constituency vs dependency structure

root
S (oo (dob)
P T
det nmod
NP VP
S~
v \
P1|~o Ve‘rb /NP\ I prefer the morning flight through Denver
I prefer Det Nom

‘ /\ prefer
the /\

Nom PP
/\ /\ I flight
Nom Noun P NP] T~

| ‘ ‘ | the morning Denver

Noun flight through Pro

morning Denver

through

Dependency structure

[root]
/ (dobj | \
det
v v

I preter the morning flight through Denver

Consists of relations between lexical items, normally binary, asymmetric relations (“arrows”)
called dependencies

The arrows are commonly typed with the name of grammatical relations (subject, prepositional
object, apposition, etc)

The arrow connects a head (governor) and a dependent (modifier)

Usually, dependencies form a tree

Dependency relations

Clausal Argument Relations Description

NSUBJ Nominal subject

DOBJ Direct object

IOBJ Indirect object

CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description

NMOD Nominal modifier

AMOD Adjectival modifier
NUMMOD Numeric modifier

APPOS Appositional modifier
DET Determiner

CASE Prepositions, postpositions and other case markers
Other Notable Relations Description

CON]J Conjunct

CC Coordinating conjunction

10T ICBEw] Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

Dependency relations

Relation Examples with head and dependent
NSUBIJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miamu.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.

10T ICEER] Examples of core Universal Dependency relations.

https://universaldependencies.org/

Dependency structure: more examples

Tr—E—
det
[prefer the morning flight through Denver v v

I preter the morning flight through Denver

[root]

@) ———

@
Book me the morning flight ZJ\ [f(andN¢
Y

Book me the morning flight

Zoom poll

Which of the following is the correct dependency structure for “Satellites spot whales from space”?

(b) nmod

dobj

Satellites spot whales from space

(a)

nmod

nsubj dobj case

Satellites spot whales from space

d
(c) dobj (d) nmod
' nmo nsubj dobj
nsubj - m
Satellites spot whales from space Satellites spot whales from space

The answer is (b).

Dependency parsing

Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

Dependency parsing is the task of recognizing a sentence and assigning a dependency structure to it.

Input Olltpllt
I prefer the morning flight through Denver (Tor \
Y | ¢

I prefer the morning flight through Denver

Dependency formalisms

Usually a tree structure
® There is only one root
® Every word except for the root has one head (parent)

® Alternatively, we can just add a fake node ROQOT, so each word has exactly one head
® NocyclessA—>B,B—>C,C—> A

[root |
/ (dobj | X
det
A v

I preter the morning flight through Denver

Dependency formalisms

Additional constraint: projectivity

® Definition: there are no crossing dependency arcs when the words are laid out in their
linear order, with all arcs above the words
dObj

det roo mOd od mod
s == AR

I prefer the morning flight through Denver JetBlue canceled our ﬂlght this morning which was already late

projective non-projective
Non-projectivity arises due to long distance Dataset | # Sentences | (%) Projective
dependencies or in languages with flexible word order. English 39,832 09 9
Chinese 16,091 100.0
We will focus on projective parsing Czech 72,319 76.9
German 38,845 72.2

Two families of algorithms

;' Transition-based dependency parsing

® Also called “shift-reduce parsing”

Graph-based dependency parsing

Input buffer

‘ wi ‘ w2 ‘ l ‘ wn |
s1 S =
pendency
- Parser ™ Relations
s2 ———
Oracle]
Stack | {
—_———

The Arc-standard algorithm

® Given: a sentence of Wi, w,, ..., W,

® The parsing process is modeled as a sequence of transitions

® A configuration (state) consists of a stack s, a buffer b and a set of dependency arcs A:

c=1(s,b,A)
e Initially, s = [ROOT], b = [w,wy, ..., w |, A=

e A configuration is terminal if s = [ROOT] and b = &

® Three types of transitions: LEFT-ARC (r), RIGHT-ARC (r), SHIFT

The Arc-standard algorithm

S1, 5, the top 2 words on the stack (s; = good, s, = has);

b,: the first word in the buffer (b; = control)

LEFT-ARC (r): add an arc (s, — s,) to A, remove s, from the stack

i StACK ouffer ...
ROOT has good control
e ,/nsubJ ...
He
o StACK i, buffer ...
ROOT good control
................................ P20 01076 12 R S
has

The Arc-standard algorithm

S1, 5, the top 2 words on the stack (s; = good, s, = has);

b,: the first word in the buffer (b; = control)

RIGHT-ARC (r): add an arc (s, 5 s;) to A, remove s, from the stack

e SEACK e e, buffer ...
ROOT has good control

He‘/HSUbJ ..

e STACK bufter ...
ROOT has control

The Arc-standard algorithm

S1, 5, the top 2 words on the stack (s; = good, s, = has);

b,: the first word in the buffer (b; = control)

SHIFT: move b, from the buffer to the stack

stack buffer

--

“Book me the morning flight”

A running example

stack buffer action added arc

O [ROOT]? 'Book, me, the, morning, flight] SHIFT

1 [ROOT,Book] [me, the, morning, flight] SHIFT
I [ROOT, Book, me] [the, morning, flight] ~ RIGHT-ARC(iobj) ~ (Book, iobj, me)
3 [ROOT,Book] [the, morning, flight] SHIFT
4 ROOT, Book, the] [morning, flight] SHIFT
5 ROOT, Book, the, morning] [flight] SHIFT
6 [ROOT,Book, themomingightt 1 LEFT-ARC(nmod) (flight,nmod, morning)
7 [ROOT, Book, the, flightt [T LEFT-ARC(det) (flightdetthe)
s [ROOT, Book, fight] 1 RIGHT-ARC(dobj) (Book,dobj,flight)
9 [ROOT,Bookil RIGHT-ARC(root) (ROOT,root,Book)

...

Transition-based dependency parsing

4 \ / / \\\
I booked a

//
/

ticket to Google

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Zoom poll

nsubj | dobJ

He likes dogs
Which of the following transition sequences is correct for the sentence “He likes dogs”?

(a) SHIFT, SHIFT, RIGHT-ARC(dobj), SHIFT, LEFT-ARC(nsubj), RIGHT-ARC (root)

(b) SHIFT, SHIFT, SHIFT, RIGHT-ARC(dobj), LEFT-ARC(nsubj), RIGHT-ARC (root)

(¢) SHIFT, SHIFT, LEFT-ARC(nsubj), SHIFT, RIGHT-ARC(dobj), RIGHT-ARC(root)

(d) SHIFT, SHIFT, SHIFT, LEFT-ARC(nsubj), RIGHT-ARC(dobj), RIGHT-ARC (root)

Both (b) and (c) are correct.

Transition-based dependency parsing

Given: a sentence of wy, w,, ..., W,

Q: How many transitions are needed? How many times of SHIFT?

Correctness [advanced]

® For every complete transition sequence, the
resulting graph is a projective dependency forest (root) (mod)

(soundness) o / \m \ —
asubi) / et \ et fease) | [fadv) \
® For every projective dependency tree G, there is " j.\

JetBlue canceled our flight this morning which was already late
a transition SEqucInce that generates G
(completeness)

However, one parse tree can have multiple valid transition sequences.

How to decide which transitions to take!?

Key idea: we can learn a statistical machine learning model from dependency treebanks!

e English dependency treebank: converted from Penn Treebank using rule-based
algorithms

® (De Marnetfe et al, 2006): Generating typed dependency parses from phrase structure parses

® (Johansson and Nugues, 2007): Extended Constituent-to-dependency Conversion for English

® Universal Dependencies: nearly 200 treebanks in 100 languages were collected since 2016

/' Universal Dependencies

Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological features, and syntactic
dependencies) across different human languages. UD is an open community effort with over 300 contributors producing nearly 200 treebanks in
over 100 languages. If you're new to UD, you should start by reading the first part of the Short Introduction and then browsing the annotation

guidelines.

https://universaldependencies.org/

Current UD Languages

Universal Dependencies

Information about language families (and genera for families with multiple branches) is mostly taken from WALS Online (IE = Indo-European).

i B L

A
v

Hgnexgae

[

A dYEEFT T T

Abaza
Afrikaans
Akkadian
Akuntsu
Albanian
Ambharic
Ancient Greek
Apurina
Arabic
Armenian
Assyrian
Bambara
Basque
Belarusian
Bhojpuri
Breton
Bulgarian
Buryat
Cantonese
Catalan
Chinese
Chukchi
Classical Chinese
Coptic
Croatian
Czech
Danish
Dutch
English

WO N N U e et et et U] et et ot ot ot N et ot ot et i W et N e e e N e e

<1K
49K
23K
<1K
<1K
10K
416K
<1K
1,042K
52K
<1K
13K
121K
275K
6K
10K
156K
10K
13K
531K
285K
6K
233K
48K
199K
2,227K
100K
306K
648K

=3
(LEEOW
O

(i)

&850
EAW

8425000\

'=/iEH i o>
EIW

= EE /2 NEOCNOQW

Northwest Caucasian
IE, Germanic
Afro-Asiatic, Semitic
Tupian, Tupari

IE, Albanian
Afro-Asiatic, Semitic
IE, Greek

Arawakan
Afro-Asiatic, Semitic
IE, Armenian
Afro-Asiatic, Semitic
Mande

Basque

IE, Slavic

IE, Indic

IE, Celtic

IE, Slavic

Mongolic
Sino-Tibetan

IE, Romance
Sino-Tibetan
Chukotko-Kamchatkan
Sino-Tibetan
Afro-Asiatic, Egyptian
IE, Slavic

IE, Slavic

IE, Germanic

IE, Germanic

IE, Germanic

https://universaldependencies.org/

https://universaldependencies.org/

Train a classifier to predict transitions

® Given{ux;, y;} where x; is a sentence and y, is a dependency parse

® For each x; with n words, we can construct a transition sequence of length 2n which

generates y;, SO we can generate 2n training examples: {(c;, ;) }
;. configuration, #: transition

® “shortest stack” strategy: prefer LEFT-ARC over SHIFT.

® The goal becomes to learn a classifier that predicts #, from ¢, as input

stack SUffer o |
ROOT h ... d t l e LEFT-ARC(r) (2|R| + 1) -way classification!
i goo ~Ontro - ERlGHT'ARC(r)E R: dependency labels

Train a classifier to predict transitions

During testing, we use the classifier to repeat predicting the transition, until we
reach a terminal configuration

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration

while state not final
t < Classifier (state) ; choose a transition operator to apply
state <— APPLY(%, state) ; apply it, creating a new state

return state

Feature extraction

stack Uffer s
e 2 e g . classifier ELEFT_ARC(r)E
ROOT has gOOd control . —_— ERIGHT—ARC(r)E
..................................... / -

® Extract features from the configuration

e Use your favorite classifier: logistic regression, SVM, FFNNS, ...

Source Feature templates
One word s;.w S1.t S1.wit
§2.W 57.1 §2. Wi
by.w by.w bo.wt
Two word s;.wos>.w s1.1 085).1 si.toby.w
§1.1 052 .wt S1.WOS2.WOs2.f §1.WwOS|.t0S8).1
S1.WOS1.[085).1 S1.wos.0

w: word, t: part-of-speech tag

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

https://universaldependencies.org/

Feature extraction

Stack Buffer
| ROOT hasVBz good l) i controlNN - w: words, t: part-of-speech tags
/nsubj
He_PRP
Feature templates Features
Sy . Wos,.t Sy.w=hases,.t =VBZ
S;.Wos;.teb; . W s;.w=goodes;.t=JJeob,.w = control

These days, we can use neural networks to automatically extract features!

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing

https://universaldependencies.org/

Evaluating dependency parsing

® Unlabeled attachment score (UAS)

= percentage of words that have been assigned the correct head

® [abeled attachment score (LAS)

= percentage of words that have been assigned the correct head & label

10b]

\ 2

nmod
\
\)

Book me the flight through Houston

Reference

det [
v

nmod

=)

Book me the flight through Houston

System

UAS = 5/6

LAS = 2/3

Evaluating dependency parsing

Test
Parser UAS LAS
(Chen and Manning, 2014) 01.8 89.6
(Dyer et al., 2015) 93.1 90.9
(Ballesteros et al., 2016) 903.56 9241
(Weiss et al., 2015) 90426 91.42
(Andor et al., 2016) 94.61 92.79
(Ma et al., 2018) § 05.87 94.19
(Kiperwasser and Goldberg, 2016a) § 93.0 90.9
(Kiperwasser and Goldberg, 2016b) 93.1 91.0
(Wang and Chang, 2016) 94.08 91.82
(Cheng et al., 2016) 04,10 91.49
(Kuncoro et al., 2016) 9426 92.06
(Zheng, 2017) § 95.53 93.94
(Dozat and Manning, 2017) 05.74 94.08

T: transition-based / G: graph-based

Advantages of dependency structure

® More suitable for free word order languages

S
N
NIP/ / VP\Nlp

sbj vg obj
|

H l PFIRP VIB VBN PFIQP
hon har sett honom hon har sett honom
(she) (has) (seen) (him) (she) (has) (seen) (him)

obj S

\
vg /VP\NP
sbj NP
|) I \
| J PF|2P VB PRP VI|3N
honvom har hon sétt honom har hon sett

(him) (has) (she) (seen) (him) (has) (she) (seen)

Advantages of dependency structure

® More suitable for free word order languages

® The predicate-argument structure is more useful for some applications

Relation: per:city of death Relation: per:-employee of Relation: org.:founded by

Benoit B. Mandelbrot, a maverick In a career that spanned seven decades, Ginzburg Anil Kumar, a former director at the consulting
mathematician who developed an innovative authored several groundbreaking studies in various firm McKinsey & Co, pleaded guilty on
theory of roughness and applied it to physics, fields -- such as quantum theory, astrophysics, Thursday to providing inside information to
biology, finance and many other fields, died radio-astronomy and diffusion of cosmic radiation , the founder of the Galleon Group,
Thursday in , Mass. in the Earth's atmosphere -- that were of “Nobel in exchange for payments of at least $ 175

Prize caliber,” said Gennady Mesyats, the director million from 2004 through 2009.

of the in Moscow, where

died Ginzburg worked . Rajaratnam

. 4%\
/R 4%1"”’&’ to Raj founder

Mandelbrot Thursday Cambridge o O\

/\ /\ of the Lebedev Physics Mos%ked the Group

Benoit B. in Mass where Ginzburg of the Galleon

