
Austin Wang, with slides from Howard Chen, Danqi Chen 

Midterm Review
COS 484 - Part 1



Basics



Basics: Probability

Pr[A |B] =
Pr[B |A] Pr[A]

Pr[B]

Bayes rule:

Law of total Probability: 
 

 If 

Pr[B] = ∑
i

Pr[B |Ai] Pr[Ai]

∑
i

Pr[Ai] = 1



Basics: Exponents, Logs and Sums

∑
i

(xi + yi) = ∑
i

xi + ∑
i

yi

∑
i

∑
j

xij = ∑
j

∑
i

xij

n

∑
i=1

xi = ∑
i odd

xi + ∑
i even

xi

eloge x = x



Language Models
Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)



Language Models

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)



Language Models

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)


P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)



Language Models

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)


P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

We set these probabilities to maximize the probability of the training corpus (MLE). For trigram:


P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)



Language Models

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

We evaluate using perplexity:


ppl(S) = P(w1, . . . , wn)−1/n = exp( −
1
n

n

∑
i=1

log P(wi |w1, …, wi−1))

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)


P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

We set these probabilities to maximize the probability of the training corpus (MLE). For trigram:


P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)



Smoothing
We want our models to accurately describe our languages. But, languages have a long tail 
and we have finite data  Not all n-grams will be observed in the training data! →



Smoothing
We want our models to accurately describe our languages. But, languages have a long tail 
and we have finite data  Not all n-grams will be observed in the training data! →

How can we help our models compensate for this sparsity? Smoothing! 
• Additive

• Discounting

• Back-off

• Interpolation 



Additive smoothing (Laplace): add a small count to each n-gram

Smoothing



Naive Bayes: Summary



Naive Bayes: Summary
1. Given a document  and a set of classes , we want to find the class  

that maximizes .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c

P(c |d)



Naive Bayes: Summary
1. Given a document  and a set of classes , we want to find the class  

that maximizes .


2. We don’t know , but we know how to estimate  using a simple LM!  we can get 
 using Bayes’ rule!


1.  

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)



Naive Bayes: Summary
1. Given a document  and a set of classes , we want to find the class  

that maximizes .


2. We don’t know , but we know how to estimate  using a simple LM!  we can get 
 using Bayes’ rule!


1.  


3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents 
that are class 


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c



Naive Bayes: Summary
1. Given a document  and a set of classes , we want to find the class  

that maximizes .


2. We don’t know , but we know how to estimate  using a simple LM!  we can get 
 using Bayes’ rule!


1.  


3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents 
that are class 


4. To estimate  let’s be lazy and choose the simplest possible LM that assume (Naively) that each 
word is independent - the unigram 


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c

P(d |c)



Naive Bayes: Summary
1. Given a document  and a set of classes , we want to find the class  

that maximizes .


2. We don’t know , but we know how to estimate  using a simple LM!  we can get 
 using Bayes’ rule!


1.  


3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents 
that are class 


4. To estimate  let’s be lazy and choose the simplest possible LM that assume (Naively) that each 
word is independent - the unigram 


5. Combine 3 + 4 and you can find the MAP estimate: 


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c

P(d |c)

cMAP = arg max
c∈C

P(d |c)P(c)



Logistic Regression: Intuition
Given a document  and a set of classes , we want to find the class  
that maximizes  


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)



Logistic Regression: Intuition
Given a document  and a set of classes , we want to find the class  
that maximizes  


Compared to NB, with LR we take a more direct approach: directly compute  given a set of 
features constructed from the input document .


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d



Logistic Regression: Intuition
Given a document  and a set of classes , we want to find the class  
that maximizes  


Compared to NB, with LR we take a more direct approach: directly compute  given a set of 
features constructed from the input document .


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Document

d Features LR Model P(c |d)



Given a document  and a set of classes , we want to find the class  
that maximizes  


Compared to NB, with LR we take a more direct approach: directly compute  given a set of 
features constructed from the input document .


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Logistic Regression: Features

Document

d Features LR Model P(c |d)

This is the feature vector  for some input 
document 

xd
d



Given a document  and a set of classes , we want to find the class  
that maximizes  


Compared to NB, with LR we take a more direct approach: directly compute  given a set of 
features constructed from the input document .


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Logistic Regression: Features

Document

d Features LR Model P(c |d)

The features to use is a design decision. A 
natural default is to use a vector 
where each dim is the counts of one word 
in the vocabulary. (BOW)

xd ∈ ℝ|V|



Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
xd

Logistic Regression: LR Model

Document

d Features LR Model P(c |d)



Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
xd

Logistic Regression: LR Model

Document

d Features LR Model P(c |d)

w ⋅ xd + b



Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.


1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
xd

Logistic Regression: LR Model

Document

d Features LR Model P(c |d)

w ⋅ xd + b
σ(w ⋅ xd + b)

1 − σ(w ⋅ xd + b)



Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.


1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid 
(multinomial logistic regression)

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
xd

Logistic Regression: LR Model

P(c ∣ d) =
exp(wc ⋅ xd + bc)

∑c′￼∈Y exp(wc′￼
⋅ xd + bc′￼

)



Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)


3. Somehow we need to turn  into a single number, because  is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features: 

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)


3. Somehow we need to turn  into a single number, because  is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features: 


4. Oh no! The linear combination might not be in , so we normalize using sigmoid: 

1. The probability for one class is , so the other class must have prob  

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)

Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)


3. Somehow we need to turn  into a single number, because  is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features: 


4. Oh no! The linear combination might not be in , so we normalize using sigmoid: 

1. The probability for one class is , so the other class must have prob  


5. Given our model, we can estimate the probability of a train set under the model 

1. We will set  so that  =  is maximal (MLE principle) 


2. For stability and convenience we can take the  to minimize   this is CE loss

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)
P(𝒟)

w, b P(𝒟) ΠiP(ci |di)
log −∑

i

log P(ci |di)

Logistic Regression: Summary



1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)


3. Somehow we need to turn  into a single number, because  is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features: 


4. Oh no! The linear combination might not be in , so we normalize using sigmoid: 

1. The probability for one class is , so the other class must have prob  


5. Given our model, we can estimate the probability of a train set under the model 

1. We will set  so that  =  is maximal (MLE principle) 


2. For stability and convenience we can take the  to minimize   this is CE loss


6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)
P(𝒟)

w, b P(𝒟) ΠiP(ci |di)
log −∑

i

log P(ci |di)

Logistic Regression: Summary



Agenda

• HMM


• Viterbi Algorithm


• MEMM



Agenda

• HMM


• Viterbi Algorithm


• MEMM



NB vs HMM



NB vs HMM



NB vs HMM



NB vs HMM



NB vs HMM



NB vs HMM

Viterbi Algorithm



Agenda

• HMM


• Viterbi Algorithm


• MEMM



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

X

Y

Z

cats



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

0.1

0.2

0.7

0.2

0.1

0.4

0.1x0.2

0.2x0.1

0.7x0.4

X

Y

Z

cats



X

Y

Z

cats

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.2

0.4

0.6

0.1x0.2x0.2x0.1

0.2x0.1x0.4x0.1

0.7x0.4x0.6x0.1

0.1

0.8

0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



X

Y

Z

cats

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.2

0.4

0.6

0.1x0.2x0.2x0.1

0.2x0.1x0.4x0.1

0.7x0.4x0.6x0.1

0.1

0.8

0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

0.1x0.2

0.2x0.1

0.7x0.4

0.2

0.4

0.6

0.7x0.4x0.6x0.1

0.1

0.8

0.3

X

Y

Z

cats



X

Y

Z

cats

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.1

0.8

0.3

0.5

0.4

0.2

0.1x0.2x0.5x0.8

0.2x0.1x0.4x0.8

0.7x0.4x0.2x0.8

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.1

0.8

0.3

0.5

0.4

0.2

0.7x0.4x0.2x0.8

X

Y

Z

cats

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



X

Y

Z

cats

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.1

0.8

0.3

0.3

0.2

0.2

0.7x0.4x0.2x0.8

0.1x0.2x0.3x0.3

0.2x0.1x0.2x0.3

0.7x0.4x0.2x0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.1

0.8

0.3

0.3

0.2

0.2

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

X

Y

Z

cats

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



X

Y

Z

cats

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



0.2

0.4

0.6

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

0.7

0.1

0.3

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3



0.2

0.4

0.6

Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.1

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

0.7

0.1

0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

0.7

0.1

0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

0.7x0.4x0.6x0.1 0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7

0.1

0.3

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009

0.7x0.4x0.2x0.8x0.4x0.1 = 0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003

0.5

0.4

0.2

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

0.7x0.4x0.6x0.1 0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2S

0.1x0.2

0.2x0.1

0.7x0.4

0.7

0.1

0.3

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

0.7x0.4x0.6x0.1

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009

0.7x0.4x0.2x0.8x0.4x0.1 = 0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

0.1x0.2

0.2x0.1

0.7x0.4

0.7

0.1

0.3

0.3

0.2

0.2

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3 0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015

0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269

0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100

0.7x0.4x0.6x0.1

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009

0.7x0.4x0.2x0.8x0.4x0.1 = 0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

0.7x0.4x0.6x0.1

0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015

0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269

0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009

0.7x0.4x0.2x0.8x0.4x0.1 = 0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

X Y Z

S 0.1 0.2 0.7

X 0.2 0.5 0.3

Y 0.4 0.4 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3

S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3

0.7x0.4x0.6x0.1

0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015

0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269

0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009

0.7x0.4x0.2x0.8x0.4x0.1 = 0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023

0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

S
The final tags should be: <Z, Y, Z>


How do we know the path?

Answer: use a backtracking matrix



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

S

0.1x0.2

0.2x0.1

0.7x0.4

0.7x0.4x0.6x0.4 0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.7x0.4x0.2x0.8x0.4x0.1 = 0.01790.7x0.4x0.2x0.8

0.7x0.4x0.2x0.3 0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269



Viterbi Algorithm

X

Y

Z

I

X

Y

Z

like

X

Y

Z

cats

S

S

S

S

Z Y

YZ

Z Y

The backtracking matrix keeps

track of the best node from the

previous step.



Agenda

• HMM


• Viterbi Algorithm


• MEMM



MEMM



LR vs MEMM

P(c ∣ d) =

exp(wc ⋅ xd + bc)
∑c′￼∈Y exp(wc′￼

⋅ xd + bc′￼
)



MEMM

• To predict the red node, the 4-gram MEMM conditions on the “prior tags” 
(DT, NN, VBD, IN) and the observations in the window (The, cat, sat, on)


• Prior tags and observations will be transformed into features (some sort of 
vector representation)



MEMM

We can design feature templates:


o_{i-2} = animal & s_{i-1} = VBD


s_{i-2} = NN & s_{i-1} = VBD


s_{i-3} = NNP


For predicting the IN tag position, the feature vector would be [1, 1, 0]. In practice, the final feature vector 
might be more complicated than this — the prior tags might be represented as one-hot vectors in 
addition to the template feature vectors.



Word Vectors



Word Vectors



Word Vectors: Counts



Word Vectors: PPMI



Word Vectors: Dense Vectors



Word Vectors: Skip-Gram



Word Vectors: Skip-Gram



Word Vectors: Skip-Gram



Word Vectors: Skip-Gram



Word Vectors: Skip-Gram



Word Vectors: Skip-Gram



Word Vectors: Evaluation


