Midterm Review COS 484 - Part 1

Austin Wang, with slides from Howard Chen, Danqi Chen

Basics: Probability

 $\Pr[A] = P(\text{all outcomes in } A)$ $\Pr[\overline{A}] = 1 - \Pr[A]$

Addition rule: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Chain rule: Pr[AB] = Pr[B] Pr[A | B]

For k events: $\Pr[A_1A_2...A_k] = \Pr[A_1]\Pr[A_2|A_1]\Pr[A_3|A_1A_1]$

Events A, B are independent if $Pr[A \cap B] = Pr[$ Independence also implies Pr[A | B] = Pr[A] a

Bayes rule:

$$Pr[A | B] = \frac{Pr[B | A] Pr[A]}{Pr[B]}$$
Law of total Probability:

$$Pr[B] = \sum_{i} Pr[B | A_i] Pr[A_i]$$
If $\sum_{i}^{i} Pr[A_i] = 1$

$$A_2] \cdots Pr[A_k | A_1 A_2 \dots A_{k-1}]$$

$$[A] \cdot Pr[B]$$
and $Pr[B | A] = Pr[B]$

Basics: Exponents, Logs and Sums

Exponential Laws

Logarithm Laws

 $\sum_{i} (x_i + y_i) = \sum_{i} x_i + \sum_{i} y_i$

 $\sum_{i} \sum_{j} x_{ij} = \sum_{j} \sum_{i} x_{ij}$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the **chain rule**: $P(w_1, w_2, \dots, w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot \dots \cdot P(w_n | w_1, \dots, w_{n-1})$

- We can decompose this using the **chain rule**: $P(w_1, w_2, \dots, w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_n)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, \dots, w_n) \approx P(w_1) P(w_2 | w_1) \dots P(w_n | w_{n-1}) = \prod^n P(w_i | w_{i-1})$

$$w_2$$
) · ... · $P(w_n | w_1, ..., w_{n-1})$

- We can decompose this using the **chain rule**: $P(w_1, w_2, \dots, w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_n)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, \dots, w_n) \approx P(w_1) P(w_2 | w_1) \dots P(w_n | w_{n-1}) = \prod^n P(w_i | w_{i-1})$

We set these probabilities to maximize the probability of the training corpus (MLE). For trigram:

$$P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}$$

$$w_2$$
) · ... · $P(w_n | w_1, ..., w_{n-1})$

- We can decompose this using the **chain rule**: $P(w_1, w_2, \dots, w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_n)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, \dots, w_n) \approx P(w_1) P(w_2 | w_1) \dots P(w_n | w_{n-1}) = \prod P(w_i | w_{i-1})$

We set these probabilities to **maximize the probability of the training corpus (MLE).** For trigram:

$$P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}$$

We evaluate using **perplexity**:

$$ppl(S) = P(w_1, \dots, w_n)^{-1/n} = \exp\left(-\frac{1}{n}\sum_{i=1}^n \log P(w_i | w_1, \dots, w_{i-1})\right)$$

$$w_2$$
) · ... · $P(w_n | w_1, ..., w_{n-1})$

Smoothing

We want our models to accurately describe our languages. But, languages have a long tail and we have finite data \rightarrow Not all n-grams will be observed in the training data!

Smoothing

We want our models to accurately describe our languages. But, languages have a long tail and we have finite data \rightarrow Not all n-grams will be observed in the training data!

How can we help our models compensate for this sparsity? **Smoothing!**

- Additive
- Discounting
- Back-off
- Interpolation

Smoothing

Additive smoothing (Laplace): add a small count to each n-gram

- Max likelihood estimate for bigrams: •

$$P(w_i|w_{i-1})$$

• After smoothing:

$$P(w_i|w_{i-1})$$

• Simplest form of smoothing: Just add α to all counts and renormalize!

$$=\frac{C(w_{i-1},w_i)}{C(w_{i-1})}$$

$$\frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}$$

1. Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!
 - **1.** $P(c | d) \propto P(d | c)P(c)$

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes P(c | d).
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

3. Bayes rule requires us to estimate P(c), we cathat are class c

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

- **3.** Bayes rule requires us to estimate P(c), we cathat are class c
- **4.** To estimate $P(d \mid c)$ let's be lazy and choose th word is independent the unigram

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

4. To estimate $P(d \mid c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each

- that maximizes $P(c \mid d)$.
- $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

- that are class *c*
- word is independent the unigram
- **5.** Combine 3 + 4 and you can find the MAP estimate: $c_{MAP} = \arg \max P(d | c)P(c)$

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

4. To estimate $P(d \mid c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each

 $c \in C$

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of class that maximizes $P(c \mid d)$

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Var	Definition
x_1	$count(positive lexicon) \in doc)$
x_2	$count(negative \ lexicon) \in doc)$
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_6	log(word count of doc)

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Compared to NB, with LR we take a more direct approach: directly compute $P(c \mid d)$ given a set of features constructed from the input document d.

Var	Definition
x_1	$count(positive lexicon) \in doc)$
x_2	$count(negative \ lexicon) \in doc)$
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> 5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \\ \log(\text{word count of doc}) \end{cases}$
л6	log(word count of doc)

Value	
3	
2	The features to use is a design decision. A
1	natural default is to use a vector $x_d \in \mathbb{R}^{ V }$
3	where each dim is the counts of one word
0	
ln(64) = 4.15	$\frac{1}{1}$

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes $P(c \mid d)$

Now given some feature vector x_d how do we turn this to a probability?

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x_d how do we turn this to a probability?

belongs to a class. We call these numbers logits.

Convert the features to a number. The higher the number, the more confident we are that the document

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x_d how do we turn this to a probability?

- belongs to a class. We call these numbers logits.
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.

Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x_d how do we turn this to a probability?

- belongs to a class. We call these numbers **logits**.
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.
 - (multinomial logistic regression)

 $P(c \mid d) = \frac{e}{\sum_{c' \epsilon}}$

1. Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

$$\exp(w_c \cdot x_d + b_c)$$

$$\in Y \exp(w_{c'} \cdot x_d + b_{c'})$$

maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

- maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly. **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number. **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

2. For stability and convenience we can take the log to minimize $-\sum \log P(c_i | d_i)$ this is CE loss

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)
 - 2. For stability and convenience we can take the

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

e log to minimize –
$$\sum_{i} \log P(c_i | d_i)$$
 this is CE loss

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

Agenda

- HMM
- Viterbi Algorithm
- MEMM

Agenda

• HMM

Viterbi Algorithm

• MEMM

Text classification

> Sequence prediction

Generative

Naive Bayes: $P(c)P(d \mid c)$

HMM: $P(s_1,\ldots,s_n)P(o_1,\ldots,o_n\,|\,s_1,\ldots,s_n)$

 $c_{\mathrm{MAP}} = \mathrm{argmax}_{c \in C} P(c \mid d)$

 $\hat{S} = \arg\max_{S} P(S \mid O)$

 $c_{\text{MAP}} = \operatorname{argmax}_{c \in C} P(c \mid d)$

$= \operatorname{argmax}_{c \in C} \frac{P(d \mid c)P(c)}{P(d)}$ $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

NB vs HMM

 $= \arg \max_{S} P(O \mid S) P(S)$

 $c_{\text{MAP}} = \operatorname{argmax}_{c \in C} P(c \mid d)$ $= \operatorname{argmax}_{c \in C} \frac{P(d \mid c)P(c)}{P(d)}$

 $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

$= \operatorname{argmax}_{c \in C} P(c) \prod P(w_i \mid c)$ i=1

 $c_{\text{MAP}} = \operatorname{argmax}_{c \in C} P(c \mid d)$ $= \operatorname{argmax}_{c \in C} \frac{P(d \mid c)P(c)}{P(d)}$

 $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

$= \operatorname{argmax}_{c \in C} P(c) \prod P(w_i \mid c)$

- Viterbi Algorithm
- MEMM

Agenda

	X	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	X	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	Х	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	X	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	Х	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	Х	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Υ	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	X	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

	X	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Z	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Ζ	0.4	0.3	0.

	Х	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
X	0.2	0.1	0.
Y	0.1	0.8	0.
Ζ	0.4	0.3	0.

	Х	Y	Z
S	0.1	0.2	0.
X	0.2	0.5	0.
Y	0.4	0.4	0.
Ζ	0.6	0.2	0.

		like	ca
Х	0.2	0.1	0.
Y	0.1	0.8	0.
Z	0.4	0.3	0.

0.1 X	0.7x0.4x0.6x0.1x0. 0.7x0.4x0.2x0.8x0.				
	0.7x0.4x0.2x0.3x0.	6x0.7 =	0.0070	Υ	Z
0.7		S	0.1	0.2	0.
0.8	0.7x0.4x0.6x0.1x0.	5x0.1 =	0.0009	0.5	0.3
\rightarrow Y	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	4x0.1 = 2x0.1 =	0.0179 0.0003	0.4	0.2
0.1		Z	0.6	0.2	0.2
0.3					
(Z)				like	cat

	I	like	ca
Х	0.2	0.1	0.
Y	0.1	0.8	0.
Ζ	0.4	0.3	0.3

		like	ca
Х	0.2	0.1	0.
Y	0.1	0.8	0.
Ζ	0.4	0.3	0.3

-					
0.1 X	0.7x0.4x0.6x0.1x0. 0.7x0.4x0.2x0.8x0.	2x0.7 = 4x0.7 =	0.0023 0.0125		
	0.7x0.4x0.2x0.3x0.	$6 \times 0.7 =$	0.0070	Y	Z
0.7		S	0.1	0.2	0.
0.8	0.7x0.4x0.6x0.1x0.	5x0.1 =	0.0009	0.5	0.
→ (Y)	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	4x0.1 = 2x0.1 =	0.0179 0.0003	0.4	0.2
0.1		Z	0.6	0.2	0.2
	0.7x0.4x0.6x0.1x0.	3x0.3 =	0.0015		
→(Z)	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	2x0.3 = 2x0.3 =	0.0269 0.0100	like	ca
0.3		X	0.2	0.1	0.
		Y	0.1	0.8	0.
(cats)		Z	0.4	0.3	0.

_					
0.1 X	0.7x0.4x0.6x0.1x0. 0.7x0.4x0.2x0.8x0.	2x0.7 = 4x0.7 =	0.0023 0.0125		
	0.7x0.4x0.2x0.3x0.	Y	Z		
		S	0.1	0.2	0.
0.8	0.7x0.4x0.6x0.1x0.	5x0.1 =	0.0009	0.5	0.
·-⇒(Y)	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	4x0.1 = 2x0.1 =	0.0179 0.0003	0.4	0.2
		Z	0.6	0.2	0.
	0.7x0.4x0.6x0.1x0.	3x0.3 =	0.0015		
(Z)	$0.7 \times 0.4 \times 0.2 \times 0.8 \times 0.000$	like	ca		
		X	0.0100	0.1	0.
		Y	0.1	0.8	0.
(cats)		Z	0.4	0.3	0.

0.1 X	0.7x0.4x0.6x0.1x0. 0.7x0.4x0.2x0.8x0.	2x0.7 = 4x0.7 =	0.0023 0.0125		
	0.7x0.4x0.2x0.3x0.	Υ	Z		
		S	0.1	0.2	0.
0.8	0.7x0.4x0.6x0.1x0.	5x0.1 =	0.0009	0.5	0.
·->(Y)	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	4x0.1 = 2x0.1 =	0.0179 0.0003	0.4	0.
		Z	0.6	0.2	0.
	0.7x0.4x0.6x0.1x0.	3x0.3 =	0.0015		
(Z)	0.7x0.4x0.2x0.8x0. 0.7x0.4x0.2x0.3x0.	like	ca		
		X	0.2	0.1	0.
		Y	0.1	0.8	0.
(cats)		Z	0.4	0.3	0.

The final tags should be: <Z, Y, Z>

How do we know the path? Answer: use a backtracking matrix

The backtracking matrix keeps track of the best node from the previous step.

Agenda

- HMM
- Viterbi Algorithm
- MEMM

Generative

Naive Bayes: $P(c)P(d \mid c)$

Text classification

> Sequence prediction

HMM: $P(s_1,\ldots,s_n)P(o_1,\ldots,o_n\,|\,s_1,\ldots,s_n)$

MEMM

MEMM

Discriminative

Logistic Regression: $P(c \mid d)$

MEMM: $P(s_1,\ldots,s_n | o_1,\ldots,o_n)$

LR vs MEMM

 $P(c \mid d) =$ $\frac{\exp(w_c \cdot x_d + b_c)}{\sum_{c' \in Y} \exp(w_{c'} \cdot x_d + b_{c'})}$

 $P(s_i = s \mid s_{i-1}, O) =$ $\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$ $\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))$

- To predict the red node, the 4-gram MEMM conditions on the "prior tags" (DT, NN, VBD, IN) and the observations in the window (The, cat, sat, on)
- Prior tags and observations will be transformed into features (some sort of vector representation)

MEMM

We can design feature templates:

$$o_{i-2} = animal \& s_{i-1} = VBD$$

$$s_{i-3} = NNP$$

For predicting the IN tag position, the feature vector would be [1, 1, 0]. In practice, the final feature vector might be more complicated than this — the prior tags might be represented as one-hot vectors in addition to the template feature vectors.

MEMM

Word Vectors

Word Vectors

The big idea: model of meaning focusing on similarity

Each word = a vector

$$v_{\text{cat}} = \begin{pmatrix} -0.224\\ 0.130\\ -0.290\\ 0.276 \end{pmatrix} \quad v_{\text{dog}} = \begin{pmatrix} -0.124\\ 0.430\\ -0.200\\ 0.329 \end{pmatrix}$$
$$v_{\text{the}} = \begin{pmatrix} 0.234\\ 0.266\\ 0.239\\ -0.199 \end{pmatrix} \quad v_{\text{language}} = \begin{pmatrix} 0.290\\ -0.441\\ 0.762\\ 0.982 \end{pmatrix}$$

Similar words are "nearby in the vector space"

(Bandyopadhyay et al. 2022)

Word Vectors: Counts

First solution: Let's use word-word co-occurrence counts to represent the meaning of words!

Each word is represented by the corresponding row vector

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Most entries are $0s \implies$ sparse vectors

context words: 4 words to the left +

4 words to the right
Word Vectors: PPMI

 But overly frequent words like "the", "it", or "they" also appear a lot near "cherry". They are not very informative about the context.

Solution: use a weighted function instead of raw counts! **Pointwise Mutual Information (PMI):** Do events x and y co-occur more or less than if they were independent?

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}$$
 $PMI(x)$

 $(w = \text{cherry}, c = \text{pie}) = \log_2 \frac{P(w = \text{cherry}, c = \text{pie})}{P(w = \text{cherry})P(c = \text{pie})}$

Word Vectors: Dense Vectors

Why dense vectors?

- Short vectors are easier to use as *features* in ML systems
 Dense vectors generalize better than explicit counts (points in real space)
- Dense vectors generalize better than e vs points in integer space)
- Sparse vectors can't capture higher-order co-occurrence
 - w₁ co-occurs with "car", w₂ co-occurs with "automobile"
 - They should be similar but they aren't because "car" and "automobile" are distinct dimensions
- In practice, they work better!

- •

• Assume that we have a large corpus $w_1, w_2, \ldots, w_T \in V$ Key idea: Use each word to predict other words in its context Context: a fixed window of size 2m (m = 2 in the example)

• For each position t = 1, 2, ..., T, predict context words within context size m, given center word w_t :

$$\mathcal{L}(heta) = \prod_{t=1}^T \prod_{-m \leq j \leq m, j
eq}$$

$$P(w_{t+j} \mid w_t; \theta)$$

40

It is equivalent as minimizing the (average) negative log likelihood: ٠

$$J(\theta) = -\frac{1}{T} \log \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0}^{T} \log P(w_{t+j} \mid w_t; \theta)$$

• Use inner product $\mathbf{u}_a \cdot \mathbf{v}_b$ to measure how likely word *a* appears with context word *b*

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$$

Softmax we have seen in multinomial logistic regression!

Recall that $P(\cdot | a)$ is a probability distribution defined over V...

• Use inner product $\mathbf{u}_a \cdot \mathbf{v}_b$ to measure how likely word a appears with context word b

$$P(w_{t+j} \mid w_t) = \frac{\exp(\mathbf{u}_{w_t})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t})}$$

Problem: every time you get one pair of (t, c), you need to update \mathbf{v}_k with all the words in the vocabulary! This is very expensive computationally.

Softmax we have seen in multinomial logistic regression!

 $\frac{\mathbf{v}_t \cdot \mathbf{v}_{w_{t+j}}}{\mathbf{p}(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$

Recall that $P(\cdot \mid a)$ is a probability distribution defined over V...

(5-20) negative examples.

 $y = -\log\left(\frac{\exp(\iota)}{\sum_{k \in V} \exp(\iota)}\right)$ softmax:

 $y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c)) -$ Negative sampling:

- **Problem:** every time you get one pair of (t, c), you need to update \mathbf{v}_k with all the words in the vocabulary! This is very expensive computationally.
- **Negative sampling:** instead of considering all the words in V, let's randomly sample K

$$\left(\frac{\mathbf{u}_t \cdot \mathbf{v}_c}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)} \right)$$

$$-\sum_{i=1}^{K} \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))$$

Word Vectors: Evaluation

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

- Let's plug these word embeddings into a real NLP system and see whether this improves performance
- Could take a long time but still the most important • evaluation metric

Intrinsic evaluation

- Evaluate on a specific/intermediate subtask
- Fast to compute •
- Not clear if it really helps downstream tasks

