Austin Wang, with slides from Howard Chen, Danqi Chen

Midterm Review COS 484 - Part 1

Basics: Probability

 $Pr[A] = P$ (all outcomes in A) $Pr[\bar{A}] = 1 - Pr[A]$

Addition rule: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$

Chain rule: $Pr[AB] = Pr[B] Pr[A|B]$

For k events: $Pr[A_1A_2...A_k] = Pr[A_1] Pr[A_2|A_1] Pr[A_3|A_1A_2]$

Events A, B are independent if $Pr[A \cap B] = Pr$ Independence also implies $Pr[A|B] = Pr[A]$

Bayes rule:
\n
$$
Pr[A | B] = \frac{Pr[B | A] Pr[A]}{Pr[B]}
$$
\nLaw of total Probability:
\n
$$
Pr[B] = \sum_{i} Pr[B | A_i] Pr[A_i]
$$
\nIf
$$
\sum_{i}^{i} Pr[A_i] = 1
$$
\n
$$
A_2] \cdots Pr[A_k | A_1 A_2 \cdots A_{k-1}]
$$
\n[A]
$$
\cdot Pr[B]
$$
\nand
$$
Pr[B | A] = Pr[B]
$$

Basics: Exponents, Logs and Sums

Exponential Laws

Logarithm Laws

∑ *i* $(x_i + y_i) = \sum_{i=1}^{n} (x_i + y_i)$ *i* $x_i + \sum$ *i yi*

∑ *i* ∑ *j* $x_{ij} = \sum$ *j* ∑ *i xij*

-
-
-

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

We can decompose this using the **chain rule**: $P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2) \cdot ... \cdot P(w_n | w_1, ..., w_{n-1})$

Definition: A **language model** is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

- We can decompose this using the **chain rule**: $P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) =$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

$$
v_2) \cdot \ldots \cdot P(w_n | w_1, \ldots, w_{n-1})
$$

n ∏ *i*=1 $P(w_i | w_{i-1})$

- We can decompose this using the **chain rule**: $P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) =$

n ∏ *i*=1 $P(w_i | w_{i-1})$

We set these probabilities to **maximize the probability of the training corpus (MLE).** For trigram:

$$
P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}
$$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

$$
v_2) \cdot \ldots \cdot P(w_n \mid w_1, \ldots, w_{n-1})
$$

- We can decompose this using the **chain rule**: $P(w_1, w_2, ..., w_n) = P(w_1) \cdot P(w_2 | w_1) \cdot P(w_3 | w_1, w_2)$
- To make estimating these probabilities tractable, we use **Markov assumption** (e.g. bigram) $P(w_1, w_2, ..., w_n) \approx P(w_1)P(w_2 | w_1)...P(w_n | w_{n-1}) =$

n ∏ *i*=1 $P(w_i | w_{i-1})$

We evaluate using **perplexity:**

$$
ppl(S) = P(w_1, \dots, w_n)^{-1/n} = \exp\left(-\frac{1}{n}\sum_{i=1}^n \log P(w_i | w_1, \dots, w_{i-1})\right)
$$

Definition: A language model is a probabilistic model over sequences of words (tokens). $P(w_1, w_2, ..., w_n)$

$$
v_2) \cdot \ldots \cdot P(w_n \mid w_1, \ldots, w_{n-1})
$$

We set these probabilities to **maximize the probability of the training corpus (MLE).** For trigram:

$$
P(w_3 | w_1, w_2) \leftarrow \frac{\text{Count}(w_1, w_2, w_3)}{\text{Count}(w_1, w_2)}
$$

Smoothing

We want our models to accurately describe our languages. But, languages have a **long tail** and we have **finite data** → **Not all n-grams will be observed in the training data!**

Smoothing

We want our models to accurately describe our languages. But, languages have a **long tail** and we have **finite data** → **Not all n-grams will be observed in the training data!**

How can we help our models compensate for this sparsity? **Smoothing!**

- Additive
- Discounting
- Back-off
- Interpolation

Additive smoothing (Laplace): add a small count to each n-gram

-
- Max likelihood estimate for bigrams: \bullet

$$
P(w_i|w_{i-1})
$$

• After smoothing:

$$
P(w_i \vert w_{i-1})
$$

• Simplest form of smoothing: Just add α to all counts and renormalize!

$$
= \frac{C(w_{i-1},w_i)}{C(w_{i-1})}
$$

$$
\frac{C(w_{i-1}, w_i) \mid + \alpha}{C(w_{i-1}) \mid + \alpha|V|}
$$

Smoothing

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c\,|\,d).$

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c | d)$.
- **2.** We don't know $P(c\,|\,d)$, but we know how to estimate $P(d\,|\,c)$ using a simple LM! \rightarrow we can get $P(c|d)$ using Bayes' rule!
	- **1.** $P(c|d) \propto P(d|c)P(c)$

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c | d)$.
- **2.** We don't know $P(c\,|\,d)$, but we know how to estimate $P(d\,|\,c)$ using a simple LM! \rightarrow we can get $P(c | d)$ using Bayes' rule!

1. $P(c|d) \propto P(d|c)P(c)$

that are class *c*

3. Bayes rule requires us to estimate $P(c)$, we can do this just by counting the proportion of documents

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c | d)$.
- **2.** We don't know $P(c\,|\,d)$, but we know how to estimate $P(d\,|\,c)$ using a simple LM! \rightarrow we can get $P(c | d)$ using Bayes' rule!

1. $P(c|d) \propto P(d|c)P(c)$

- that are class *c*
- **4.** To estimate $P(d\,|\, c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each word is independent - the unigram

3. Bayes rule requires us to estimate $P(c)$, we can do this just by counting the proportion of documents

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c | d)$.
- **2.** We don't know $P(c\,|\,d)$, but we know how to estimate $P(d\,|\,c)$ using a simple LM! \rightarrow we can get $P(c | d)$ using Bayes' rule!

1. $P(c|d) \propto P(d|c)P(c)$

- **3.** Bayes rule requires us to estimate $P(c)$, we can do this just by counting the proportion of documents that are class *c*
- **4.** To estimate $P(d\,|\, c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each word is independent - the unigram
- **5.** Combine 3 + 4 and you can find the MAP estimate: $c_{MAP} = \arg \max_{\alpha \in \mathcal{C}} P(d \,|\, c) P(c)$

c∈*C*

Logistic Regression: Intuition

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

Logistic Regression: Intuition

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

Logistic Regression: Intuition

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

Logistic Regression: Features

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

Logistic Regression: Features

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

Logistic Regression: LR Model

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

1. Convert the features to a number. The higher the number, the more confident we are that the document

belongs to a class. We call these numbers **logits.**

Logistic Regression: LR Model

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

1. Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the $m > 2$ generalization of sigmoid

- belongs to a class. We call these numbers **logits.**
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.
	-

Logistic Regression: LR Model

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

1. Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the $m > 2$ generalization of sigmoid

- belongs to a class. We call these numbers **logits.**
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.
	- (multinomial logistic regression)

 $P(c | d) =$

Logistic Regression: LR Model

Given a document $d = w_1, \dots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \dots, c_m\}$, we want to find the class c_i that maximizes $P(c\,|\,d)$

$$
\frac{\exp(w_c \cdot x_d + b_c)}{\sum_{c' \in Y} \exp(w_{c'} \cdot x_d + b_{c'})}
$$

Logistic Regression: Summary

Logistic Regression: Summary

maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly.

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that

-
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
	- **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
	- **2.** We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly.

Logistic Regression: Summary

Logistic Regression: Summary

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly.
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
	- **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
	- **2.** We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c | d)$ is a single number.
	- **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

Logistic Regression: Summary

-
- maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly. **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
	- **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
	- **2.** We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c | d)$ is a single number. **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in $[0,1]$, so we normalize using sigmoid: $\sigma(x) = (1+e^{-x})^{-1}$
	- **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

2. For stability and convenience we can take the \log to minimize $\sum \log P(c_i|d_i)$ this is CE loss *i*

Logistic Regression: Summary

- maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly.
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
	- **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
	-
- **3.** Somehow we need to turn x into a single number, because $P(c | d)$ is a single number.
	- **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in $[0,1]$, so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
	- **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- **5.** Given our model, we can estimate the probability of a train set under the model $P(\mathscr{D})$
	- **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)
	-

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

e log to minimize
$$
-\sum_{i} \log P(c_i|d_i)
$$
 this is CE loss

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

Logistic Regression: Summary

-
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
	- **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
	-
- **3.** Somehow we need to turn x into a single number, because $P(c | d)$ is a single number.
	- **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in $[0,1]$, so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
	- **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- **5.** Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
	- **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)
	- **2.** For stability and convenience we can take the
-

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c\,|\,d).$ Let's say we estimating $P(d\,|\,c)$ reliably is hard, we will need to estimate $P(c\,|\,d)$ directly.

Agenda

- HMM
- Viterbi Algorithm
- MEMM

Agenda

• HMM

• Viterbi Algorithm

• MEMM

Text classification

> Sequence prediction

Generative

Naive Bayes: $P(c)P(d|c)$

HMM: $P(s_1, ..., s_n)P(o_1, ..., o_n | s_1, ..., s_n)$

 $c_{\text{MAP}} = \text{argmax}_{c \in C} P(c | d)$

 \hat{S} = arg max $P(S | O)$

 $c_{\text{MAP}} = \text{argmax}_{c \in C} P(c | d)$

$= {\rm argmax}_{c \in C} \frac{P(d \mid c) P(c)}{P(d)}$ $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

 $c_{\text{MAP}} = \text{argmax}_{c \in C} P(c | d)$ $= \text{argmax}_{c \in C} \frac{P(d \mid c) P(c)}{P(d)}$

 $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

$= \operatorname{argmax}_{c \in C} P(c) \prod P(w_i | c)$ $i=1$

 $c_{\text{MAP}} = \text{argmax}_{c \in C} P(c | d)$ $= \text{argmax}_{c \in C} \frac{P(d \mid c) P(c)}{P(d)}$

 $= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$

$= \operatorname{argmax}_{c \in C} P(c) \prod P(w_i | c)$

Agenda

- Viterbi Algorithm
- MEMM

The final tags should be: <Z, Y, Z>

How do we know the path? Answer: use a backtracking matrix

The backtracking matrix keeps track of the best node from the previous step.

Agenda

- HMM
- Viterbi Algorithm
- MEMM

Generative

Naive Bayes: $P(c)P(d|c)$

Text classification

> **Sequence** prediction

HMM: $P(s_1, ..., s_n)P(o_1, ..., o_n | s_1, ..., s_n)$

MEMM

MEMM

Discriminative

Logistic Regression: $P(c|d)$

MEMM: $P(s_1, ..., s_n | o_1, ..., o_n)$

LR VS MEMM

 $P(c | d) =$ $\frac{\exp(w_c \cdot x_d + b_c)}{\sum_{c' \in Y} \exp(w_{c'} \cdot x_d + b_{c'})}$

 $P(s_i = s \mid s_{i-1}, O) =$ $exp(w \cdot f(s_i = s, s_{i-1}, O, i))$

 $\sum_{s'=1}^{K} \exp(w \cdot f(s_i = s', s_{i-1}, O, i))$

- To predict the red node, the 4-gram MEMM conditions on the "prior tags" (DT, NN, VBD, IN) and the observations in the window (The, cat, sat, on)
- Prior tags and observations will be transformed into features (some sort of vector representation)

MEMM

We can design feature templates:

- $o_{i}-2$ = animal & s_{$_{i}-1$} = VBD
- s_{i} = NN & s₁ $(i-1)$ = VBD
- $s_{i} = 3$ = NNP

For predicting the IN tag position, the feature vector would be [1, 1, 0]. In practice, the final feature vector might be more complicated than this — the prior tags might be represented as one-hot vectors in addition to the template feature vectors.

MEMM

Word Vectors

-
-
-
-
-
-
-

Word Vectors

The big idea: model of meaning focusing on similarity

Each word $=$ a vector

$$
v_{\rm cat} = \begin{pmatrix} -0.224 \\ 0.130 \\ -0.290 \\ 0.276 \end{pmatrix} \qquad v_{\rm dog} = \begin{pmatrix} -0.124 \\ 0.430 \\ -0.200 \\ 0.329 \end{pmatrix}
$$

$$
v_{\rm the} = \begin{pmatrix} 0.234 \\ 0.266 \\ 0.239 \\ -0.199 \end{pmatrix} \quad v_{\rm language} = \begin{pmatrix} 0.290 \\ -0.441 \\ 0.762 \\ 0.982 \end{pmatrix}
$$

Similar words are "nearby in the vector space"

(Bandyopadhyay et al. 2022)

Word Vectors: Counts

First solution: Let's use word-word co-occurrence counts to represent the meaning of words!

Each word is represented by the corresponding row vector

Most entries are $0s \implies$ sparse vectors

context words:

4 words to the left $+$ 4 words to the right
Word Vectors: PPMI

• But overly frequent words like "the", "it", or "they" also appear a lot near "cherry". They are not very informative about the context.

Solution: use a weighted function instead of raw counts! **Pointwise Mutual Information (PMI):** Do events x and y co-occur more or less than if they were independent?

$$
PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)}
$$
PMI(

 $(w = \text{cherry}, c = \text{pie}) = \log_2 \frac{P(w = \text{cherry}, c = \text{pie})}{P(w = \text{cherry})P(c = \text{pie})}$

Word Vectors: Dense Vectors

Why dense vectors?

- Short vectors are easier to use as **features** in ML systems • Dense vectors generalize better than explicit counts (points in real space
- vs points in integer space)
- Sparse vectors can't capture higher-order co-occurrence
	- w_1 co-occurs with "car", w_2 co-occurs with "automobile"
	- They should be similar but they aren't because "car" and "automobile" are distinct dimensions
- In practice, they work better!

-
- \bullet
- \bullet

• Assume that we have a large corpus $w_1, w_2, ..., w_T \in V$ **Key idea:** Use each word to **predict** other words in its context Context: a fixed window of size $2m$ (m = 2 in the example)

• For each position $t=1,2,...T$, predict context words within context size m, given center word W_t :

$$
\mathcal{L}(\theta) = \prod_{t=1}^T \prod_{-m \leq j \leq m, j \neq
$$

$$
P(w_{t+j} \mid w_t; \theta)
$$

40

It is equivalent as minimizing the (average) negative log likelihood: \bullet

$$
J(\theta) = -\frac{1}{T} \log \mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^T \sum_{-m \leq j \leq m, j \neq 0} \log P(w_{t+j} | w_t; \theta)
$$

• Use inner product $\mathbf{u}_a \cdot \mathbf{v}_b$ to measure how likely word a appears with context word b

$$
P(w_{t+j} | w_t) = \frac{\exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_{w_{t+j}})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}
$$

Softmax we have seen in multinomial logistic regression!

Recall that $P(\cdot | a)$ is a probability distribution defined over V...

• Use inner product $\mathbf{u}_a \cdot \mathbf{v}_b$ to measure how likely word a appears with context word b

$$
P(w_{t+j} | w_t) = \frac{\exp(\mathbf{u}_{w_t})}{\sum_{k \in V} \exp(\mathbf{u}_{w_t})}
$$

Problem: every time you get one pair of (t, c) , you need to update v_k with all the words in the vocabulary! This is very expensive computationally.

Softmax we have seen in multinomial logistic regression!

 $\frac{v_t \cdot \mathbf{v}_{w_{t+j}}}{p(\mathbf{u}_{w_t} \cdot \mathbf{v}_k)}$

Recall that $P(\cdot | a)$ is a probability distribution defined over V...

(5-20) negative examples.

 $y = -\log \left(\frac{\exp(v)}{\sum_{k \in V} \exp(v)} \right)$ softmax:

Negative sampling: $y = -\log(\sigma(\mathbf{u}_t \cdot \mathbf{v}_c))$ -

- Problem: every time you get one pair of (t, c) , you need to update \mathbf{v}_k with all the words in the vocabulary! This is very expensive computationally.
- **Negative sampling:** instead of considering all the words in V, let's randomly sample K

$$
\frac{(\mathbf{u}_t \cdot \mathbf{v}_c)}{\exp(\mathbf{u}_t \cdot \mathbf{v}_k)}\bigg)
$$

$$
-\sum_{i=1}^{K} \mathbb{E}_{j \sim P(w)} \log(\sigma(-\mathbf{u}_t \cdot \mathbf{v}_j))
$$

Word Vectors: Evaluation

Extrinsic vs intrinsic evaluation

Extrinsic evaluation

- Let's plug these word embeddings into a real NLP system and see whether this improves performance
- Could take a long time but still the most important \bullet evaluation metric

Intrinsic evaluation

- Evaluate on a specific/intermediate subtask
- **Fast to compute** \bullet
- Not clear if it really helps downstream tasks

