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Basics: Probability

Pr[A] = P(all outcomesin A) Bayes rule:

Pr{A] =1 — Pr[A] Pr[B|A] Pr[A]
Pr[A | B] =

Addition rule: Pr[B]

Pr|A U B] = Pr|A]| + Pr|B]| — Pr|A N B] Law of total Probability:

Chain rule: PrlB| = Z Pr[B|A;] Pr[A;]

Pr[AB] = Pr[B] Pr[A | B] If Zl Pr[A.] = 1

For k events:
Pr[AlAz. . Ak] — PI‘[AI] PI‘[A2 ‘Al] PI‘[A3 IAIAZ]“. PI‘[Ak|A1A2. . ’Ak—l]

~vents A, B are independent if Pr|A N B] = Pr|A] - Pr|B]
Independence also implies Pr[A |B] = Pr[A] and Pr[B|A] = Pr[B]



Basics: Exponents, Logs and Sums

Exponential Laws

Logarithm Laws
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Language Models

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w;, w,, ..., w, )

n

We can decompose this using the chain rule:
Pwi,wy, ...ow,) = P(w;) - Pw, |w;) - Pwg|wi,wy) - ... - Pw, |wy,...,w,_1)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

PWi, Wy, ..., w ) & Pw)Pw, | wy)...P(w, |w, _) = HP(wl- lw._1)
i=1

We set these probabilities to maximize the probability of the training corpus (MLE). For trigram:

Count(wy, w,, )

Pw: | wi,w,) <
(w3 1wy, ) Count(wy, w,)

We evaluate using perplexity:

1 n
=1



Smoothing

We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data — Not all n-grams will be observed In the training data!
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Smoothing

We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data — Not all n-grams will be observed In the training data!

How can we help our models compensate for this sparsity? Smoothing!
* Additive
* Discounting
* Back-off

* Interpolation
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Smoothing

Additive smoothing (Laplace): add a small count to each n-gram

« Simplest form of smoothing: Just add a to all counts and renormalize!

» Max likelihood estimate for bigrams:

C(wz’—la wz)

P(wi\wi_l) — C('w,,;_l)

» After smoothing:

P(w-|w- ) _ C(w’i—lﬂw??)
e C(w;_1 H a|V|
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Naive Bayes: Summary

1. Given a documentd = wy, ..., wg and a set of classes ¢ = {cy,...,C,,}, we want to find the class ¢

that maximizes P(c | d).

2. We don’t know P(c|d), but we know how to estimate P(d | ¢) using a simple LM! — we can get
P(c|d) using Bayes’ rule!

1. P(c|d) «x P(d|c)P(c)

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents
that are class ¢

4. To estimate P(d| c) let’s be lazy and choose the simplest possible LM that assume (Naively) that each
word is independent - the unigram

5. Combine 3 + 4 and you can find the MAP estimate: ¢;,,» = arg max P(d | ¢)P(c)
ceC
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Logistic Regression: Features

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢

that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c |d) given a set of

features constructed from the input document d.

Document

Var Definition

X count(positive lexicon) € doc)

X9 count(negative lexicon) € doc)

(1 if “no” € doc

| 0 otherwise

x4  count(Ist and 2nd pronouns € doc)
(1 if “!I” € doc

4 :

| 0 otherwise

X6 log(word count of doc) In(64) =4.15

X3 4

This is the feature vector x; for some input
document d




Logistic Regression: Features

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢

that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c |d) given a set of

features constructed from the input document d.

D t

Var Definition Value
X count(positive lexicon) € doc) 3
X2 count(negative lexicon) € doc) . The features to use is a design decision. A
_ | 1if “no” € doc .
31 0 otherwise | natural default is to use a vector x; & RV
X4 count(1st and 2nd pronouns € doc) 3 : :

(1 if 4 € doc i where each dim is the counts of one word
X5 < . .
® 10 otherwise in the vocabulary. (BOW)

X6 log(word count of doc) In(64) =4.15



Logistic Regression: LR Model

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢

that maximizes P(c | d)

Now given some feature vector x, how do we turn this to a probability?

D t
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Logistic Regression: LR Model

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢
that maximizes P(c | d)

Now given some feature vector x, how do we turn this to a probability?

1. Convert the features to a number. The higher the number, the more confident we are that the document
belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.
1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

m
wex;+b
I—U(W Xd+b)



Logistic Regression: LR Model

Given a document d = wy, ..., Wy and a set of classes ¢ = {cy,..., ¢, }, we want to find the class ¢
that maximizes P(c | d)

Now given some feature vector x, how do we turn this to a probability?

1. Convert the features to a number. The higher the number, the more confident we are that the document
belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid
(multinomial logistic regression)

exp(w,.-x;+ b.)

Pcld)y=——""——"—
€l d) 2.y EXPWe - X4+ D)
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2. Want to turn d into a vector x because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in x € R!Vis the # of times a word in V appears
2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
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Given a document d = wy, ..., Wg and a set of classes ¢ = {cy,..., ¢, }, we want to find the c
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Logistic Regression: Summary

1. Given adocumentd = w,...,wg and a set of classes ¢ = {cy,...,C,,}, we want to find the class c that

maximizes P(c|d). Let’s say we estimating P(d | ¢) reliably is hard, we will need to estimate P(c | d) directly.
2. Want to turn d into a vector x because then we can operate on it more conveniently.

1. We can use a BOW, where eachdiminx & R!Vl'is the # of times a word in V appears
2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn X into a single number, because P(c|d) is a single number.
1. Let’s be as lazy as possible and just take a linear combination of the features: w - x + b
4. Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: o(x) = (1 + ¢™)~!
1. The probability for one class is o(w - x 4+ b), so the other class must have prob 1 — o(w - x + b)
5. Given our model, we can estimate the probability of a train set under the model P(&)
1. We will set w, b so that P(2) = IL.P(c;|d.) is maximal (MLE principle)
2. For stability and convenience we can take the log to minimize — Z log P(c;|d;) thisis CE loss

l

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.
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NB vs HMM
- @_,Q_,Q , ........
¢ B B B

Generative

Text Naive Bayes:

classification P(c)P(d| c)
Sequence HMM:

rediction
P P(sy,...,8,)P01,...,0,|81,...,5,)



NB vs HMM

A

CMAP — argmaxcecP(c | d) S = argm?xP(S | 0)



NB vs HMM

A

CMAP — argmaxcecP(c | d) S = argm?xP(S | 0)
B P(d | c)P(c) P(O | S)P(S)
— argmaxcec P ( d) = arg m;lx P(O)



NB vs HMM

P(d|c)P
= argmaX,. o ( 1‘3 (CC;) “ o P(Oll(sgf(g
= argmax ..o P(d | ¢)P(c) = argmax P(O | S)P(S)



NB vs HMM

= argmax ..o P(d | ¢)P(c) = argmax P(O | S)P(S)
S

12 n
_ a,rgmaxcecP(c) H P(wi ‘ C) = arg anaf HP(Si | s;_1)P(0; | s)
1=1

" =1



NB vs HMM

= argmax,..oP(d | ¢)P(c) = argmax P(O | S)P(S)
— arg max HP(S | s;_1)P(0; | s;)
= argmax,..~P(c) H P(w; | z—l

Viterbi Algorithm
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SIONORO.

Viterbi Algorithm

OIONORO.

H® O E

X Y Z
S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
Z 0.6 0.2 0.2

I like | cats
X 0.2 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




Viterbi Algorithm

0.1x0.2

OO T

0.1 0.2 0.7

0.2 0.5 0.3

0.4 0.4 0.2

N | < | X | ®

0.6 0.2 0.2

like cats

0.2 0.1 0.7

OIONO
OIONO.



Viterbi Algorithm

0.1x0.2x0.2x0.1

0.2 X | 0.2x0.1x0.4x0.1
0.7x0.4x0.6x0.1 X Y /

0.1 s | 01 | 02 | 07

X 02 | 05 | 0.3

Y 04 | 04 | 0.2

0.8 Z 06 | 02 | 0.2

I like | cats

33 X 02 | 01 | 0.7




Viterbi Algorithm

0.1x0.2x0.2x0.1

0.2 X | 0.2x0.1x0.4x0.1
0.7x0.4x0.6x0.1 X Y /

0.1 s | 01 | 02 | 07

X 02 | 05 | 0.3

Y 04 | 04 | 0.2

0.8 Z 06 | 02 | 0.2

I like | cats

33 X 02 | 01 | 0.7




Viterbi Algorithm

7x0.4x0.6x0.1 |

0. 0.
0.2
X | Y | z
. 0.1

0.1 0.2 0.7

0.2 0.5 0.3

0.4 0.4 0.2

N | < | X | ®

0.8 06 | 02 | 0.2

I I like cats




Viterbi Algorithm

0.1x0.2 0.7x0.4x0.6x0.1 |

0-1 0.1 0.2 0.7

0.1x0.2x0.5x0.8 0.2 0.5 0.3

Y | 0.2x0.1x0.4x0.8
0.7x0.4x0.2x0.8

0.4 0.4 0.2

N | < | X | ®

0.6 0.2 0.2

I like cats

0.8
0.3



0.5

Viterbi Algorithm

:\ 0.7x0.4x0.6x0.1 |
n 0.7x0.4x0.2x0.8
0.8

(2
O

X Y Z
S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
Z 0.6 0.2 0.2

I like | cats
X 0.2 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




0.3

Viterbi Algorithm

: \ 0.7x0.4x0.6x0.1 |
0.1

@.7x0.4x0.2x0.8
0.8

0.1x0.2x0.3x0.3
Z | 0.2x0.1x0.2x0.3
0.7x0.4x0.2x0.3

0.3

X Y Z
S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
Z 0.6 0.2 0.2

I like | cats
X 0.2 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




0.3

Viterbi Algorithm

:707x04x06x01 |

0.1

@.7x0.4x0.2x0.8

0.8

.7x0.4x0.2x0.3 |

X Y Z
S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
Z 0.6 0.2 0.2

I like | cats
X 0.2 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3
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7x0.4x0.6x0.1 |

: ‘ 0.
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X Y Z
S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
Z 0.6 0.2 0.2

I like | cats
X 0.2 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3
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0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z
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Z 0.4 0.3 0.3
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7x0.4x0.6x0.1
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O
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0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z

S 0.1 0.2 0.7
X 0.2 0.5 0.3
Y 0.4 0.4 0.2
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I like | cats
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Y 0.1 0.8 0.1
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Viterbi Algorithm

0.7x0.4x0.6x0.1 |

0.7x0.4x0.2x0.8

DG

0.7

: 0.1
O.7x0.4x0.2x0.3@
0.3

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z

S 0.1 0.2 0.7

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009 |p 5 0.3
0.7x0.4x0.2x0.8x0.4x0.1 =0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003 [0-4 | 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3




0.1x0.2

0.2x0.1

0.7x0.4

0

Viterbi Algorithm

7x0.4x0.6x0.1

7x0.4x0.2x0.8

0.
0.

0

7x0.4x0.2x0.3

O
O
@
O

(=

0.7

(=

0.1

()

0.3

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z

S 0.1 0.2 0.7

0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009 |p 5 0.3
0.7x0.4x0.2x0.8x0.4x0.1 =0.0179

0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003 [0-4 | 0.2

Z 0.6 0.2 0.2

I like cats

X 0.2 0.1 0.7

Y 0.1 0.8 0.1

Z 0.4 0.3 0.3




0

Viterbi Algorithm

0.1x0.2 : ‘ 0.7x0.4x0.6x0.1

7x0.4x0.2x0.8

0.2x0.1 : ‘ 0

7x0.4x0.2x0.3

0.7x0.4 0
Z

0.2

0.3

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z
S 0.1 0.2 0.7
0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009 |p 5 0.3
0.7x0.4x0.2x0.8x0.4x0.1 =0.0179
0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003 [0-4 | 0.2
Z 0.6 0.2 0.2
0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015
0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269 like cats
0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100
X U.2Z 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




0.1x0.2

0.2x0.1

0

Viterbi Algorithm

0.7x0.4x0.2x0.8

: ‘ 0.7x0.4x0.6x0.1

0.7x0.4 0.7x0.4x0.2x0.3 |
Z

OIONORO:

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z
S 0.1 0.2 0.7
0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009 |p 5 0.3
0.7x0.4x0.2x0.8x0.4x0.1 =0.0179
0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003 [0-4 | 0.2
Z 0.6 0.2 0.2
0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015
0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269 like cats
0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100
X U.2Z 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




0.1x0.2

0.2x0.1

0

Viterbi Algorithm

0.7x0.4x0.2x0.8

: ‘ 0.7x0.4x0.6x0.1

0.7x0.4 0.7x0.4x0.2x0.3 |
Z

OIONORO:

0.7x0.4x0.6x0.1x0.2x0.7 = 0.0023
0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125
0.7x0.4x0.2x0.3x0.6x0.7 = 0.0070

Y Z
S 0.1 0.2 0.7
0.7x0.4x0.6x0.1x0.5x0.1 = 0.0009 |p 5 0.3
0.7x0.4x0.2x0.8x0.4x0.1 =0.0179
0.7x0.4x0.2x0.3x0.2x0.1 = 0.0003 [0-4 | 0.2
Z 0.6 0.2 0.2
0.7x0.4x0.6x0.1x0.3x0.3 = 0.0015
0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269 like cats
0.7x0.4x0.2x0.3x0.2x0.3 = 0.0100
X U.2Z 0.1 0.7
Y 0.1 0.8 0.1
Z 0.4 0.3 0.3




Viterbi Algorithm

E ° ° @ The final tags should be: <2, Y, Z>

How do we know the path?

° @ Answer: use a backtracking matrix



Viterbi Algorithm

0.1x0.2 : ‘ 0.7x0.4x0.6x0.4 0.7x0.4x0.2x0.8x0.4x0.7 = 0.0125

0.2x0.1

0.7x0.4x0.2x0.8 0.7x0.4x0.2x0.8x0.4x0.1 =0.0179

| 0.7x0.4x0.2x0.8x0.2x0.3 = 0.0269 |

0.7x0.4 0.7x0.4x0.2x0.3 |
Z

OIONORO
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Vlterbl Algorithm

The backtracking matrix keeps
track of the best node from the
previous step.

pofofo}



Agenda

e HMM
* Viterbi Algorithm
 MEMM



Generative Discriminative

Text Naive Bayes: Logistic Regression:
classification P(c)P(d| c) P(c|d)
Sequence HMM:- MEMM:

prediction e R e PR T (TR A SRR



LR vs MEMM

£
.....
MEMM
P(c | d) = P(s;= 5| 5;_1,0) =
exp(w,. - x,+ b,) exp(w - (s, = s,5,_1,0,1))

2 ey EXPWe - X4+ by) > exp(w - f(s; = 5, 5,1, 0, )



* o predict the red node, the 4-gram MEMM conditions on the “prior tags”™
(DT, NN, VBD, IN) and the observations in the window (The, cat, sat, on)

* Prior tags and observations will be transformed into features (some sort of
vector representation)



We can design feature templates:
o_{i-2} = animal & s_{i-1} = VBD
s_{i-2} = NN & s_{i-1} = VBD
s_{i-3} = NNP

For predicting the IN tag position, the feature vector would be [1, 1, O]. In practice, the final feature vector

might be more complicated than this — the prior tags might be represented as one-hot vectors in
addition to the template feature vectors.



Word Vectors



Word Vectors

The big idea: model of meaning focusing on similarity

Similar words are “nearby in

=ach word = a vector the vector space”
- 0 . 224 —O 124 J © — wo:mn
0.130 v p— 0.430 07 fat:er kl:g husband : q“if’”
et = | o200 | e T | —0.200
0.276 0.329 'EO ¢ CO”f’Uter .
L
sonboy girl
0.234 0290 ”eme%prmce ° .
0.266 —0.441 02 * . ddligﬁﬁeﬁ ts ~(.)[? )
Uthe — 0.939 VUlanguage — 0.769 Nz 8 66%%(9//
—0.199 0.982 @ o [;end 15 5 b 08

(Bandyopadhyay et al. 2022)



Word Vectors: Counts

First solution: Let’s use word-word co-occurrence counts to context words:

represent the meaning of words! 4 words to the left +

Each word is represented by the corresponding row vector 4 words to the right

aardvark .. computer data result pie  sugar
cherry 0 2 8 9 442 ey
strawberry 0 0 0 1 60 19
digta
information 0 3325 3982 378 5 13

Most entries are 0s = sparse vectors



Word Vectors: PPMI

 But overly frequent words like “the”, “it", or “they” also appear a lot
near “cherry”. They are not very informative about the context.

Solution: use a weighted function instead of raw counts!

Pointwise Mutual Information (PMI):
Do events x and y co-occur more or less than if they were independent?

P(x,y) P(w = cherry, ¢ = pie)

PMI(z, y) = log,

PMI(w = cherry, ¢ = pie) = log,

P(z)P(y) P(w = cherry)P(c = pie)



Word Vectors: Dense Vectors

Why dense vectors!

 Short vectors are easier to use as features in ML systems

e Dense vectors generalize better than explicit counts (points in real space
VS points in integer space)

e Sparse vectors can’t capture higher-order co-occurrence
e W; co-occurs with “car”, w, co-occurs with “automobile”

 They should be similar but they aren’t because “car” and
“automobile” are distinct dimensions

e |n practice, they work better!



Word Vectors: Skip-Gram

» Assume that we have a large corpus wi{, w,, ..., wr- € V

e Key idea: Use each word to predict other words in its context
e (Context: a fixed window of size 2m (m = 2 in the example)

P(We_p | W) P(Wesz | W)

P(We—q | W) P(Wesr | we)

problems  turning banking crises as

\ ) \ J
I Y \ Y )

outside context words center word outside context words
in window of size 2 at positiont in window of size 2



Word Vectors: Skip-Gram

P(We_z | W) P(Wesa [We)

problems  turning banking crises as

\ ) \ J
| | 1 \ Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

e For each positiont = 1,2,...7, predict context words within context size m,

given center word w;:
all the parameters to be optimized

coy=1|] | P(wiyj | wy; 6)




Word Vectors: Skip-Gram

P(We_z | W) P(Wesa [We)

problems  turning banking crises as

\ ) L J
| | 1 \ Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

e |tis equivalent as minimizing the (average) negative log likelihood:

1
J(9):—Tlog£ — TZ S g 00

=1 —m<5<m,j#0



Word Vectors: Skip-Gram

P(We_z | W) P(Wesa | We)

P(We—q | W) P(Wesq | we)

problems  turning banking crises as

\ ) \ J
| | \ Y J

outside context words center word outside context words
in window of size 2 at positiont in window of size 2

o Use inner product u, - v, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

eXp(uwt ' th+j) /

Zkev eXp(u’wt : Vk')

P(wgtj | we) =

Recall that P( - | a) is a probability
distribution defined over V...



Word Vectors: Skip-Gram

Problem: every time you get one pair of (t, c), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

e Use inner product u, - v, to measure how likely word a appears with context word b

Softmax we have seen in multinomial logistic regression!

eXp(u’wt ' V’wt—l—j) /

Recall that P( - | a) is a probability
distribution defined over V...



Word Vectors: Skip-Gram

Problem: every time you get one pair of (t, c), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

Negative sampling: instead of considering all the words in V, let’s randomly sample K
(5-20) negative examples.

o(@) =
( exp(ug - Vi) ) + exp(—z)
y = — log .
) _kev €Xp(ut - Vi)

softmax:

0.5+

K
Negative sampling: y = —log(o(u; - v.)) — Z i P(w)log(o(—ug - v;))
i=1




Word Vectors: Evaluation

Extrinsic vs intrinsic evaluation

Extrinsic evaluation !
e |et’s plug these word embeddings into a real NLP [ ML model J
system and see whether this improves performance
| | | (_0.31 )(_0.01 ) (1.87) (:3.17> (1.23)
e Could take a long time but still the most important T‘”g ?'9‘ Of03 ?"8 ‘T59
evaluation metric I don’t like this movie

Intrinsic evaluation

e Evaluate on a specific/intermediate subtask

e Fast to compute

 Not clear if it really helps downstream tasks



