
Midterm Review: CFGs,
Parsing, and Neural

Networks

Linguistic Structure
Constituency

● “Groups of words can behave as single units (constituents)”
● Based on Context Free Grammars (CFGs)

Dependency
● “Syntactic structure of a sentence is described solely in terms

of relations between the words”

Constituency Parsing

A formal system for modeling constituent structure in natural language

Consists of:

● Non-terminals N
○ E.g. {S, NP, VP, DT, NN, Vi}

● Terminals Σ
○ E.g. {the, man, sleeps}

● Rules R (grammar, lexicon)
○ E.g. {S -> NP VP, NP -> DT NN, VP -> Vi, DT -> the,

NN -> man, Vi -> sleeps}
● Start symbol S (picked from N)

○ E.g. S

Context-Free Grammars (CFGs)

Deriving Parses with CFGs
Given a CFG, we want to get from a starting string s’ to a target string s

(i.e. we want the derivation of s starting from s’)

Represented as parse tree

+

Probabilistic Context-Free Grammars (PCFGs)

CFG Probabilities for each rule

Calculating Probability of a Parse Tree

Calculating Probability of a Parse Tree

Calculating Probability of a Parse Tree

P(S -> VP) = 1

P(VP -> VB NP) = 1

Calculating Probability of a Parse Tree

P(S -> VP) = 1

P(VP -> VB NP) = 1

P(NP -> NP PP) = 0.6P(VB -> Book) = 1

Calculating Probability of a Parse Tree

P(S -> VP) = 1

P(VP -> VB NP) = 1

P(NP -> NP PP) = 0.6P(VB -> Book) = 1

P(PP -> IN NP) = 0.8P(NP -> DT NN) = 0.3

Calculating Probability of a Parse Tree

P(S -> VP) = 1

P(VP -> VB NP) = 1

P(NP -> NP PP) = 0.6P(VB -> Book) = 1

P(PP -> IN NP) = 0.8P(NP -> DT NN) = 0.3

P(NNP -> Houston) = 0.9

P(NP -> NNP) = 0.1
P(DT -> the) = 1

P(NN -> flight) = 0.6 P(IN -> through) = 1

Calculating Probability of a Parse Tree

P(S -> VP) = 1

P(VP -> VB NP) = 1

P(NP -> NP PP) = 0.6P(VB -> Book) = 1

P(PP -> IN NP) = 0.8P(NP -> DT NN) = 0.3

P(NNP -> Houston) = 0.9

P(NP -> NNP) = 0.1
P(DT -> the) = 1

P(NN -> flight) = 0.6 P(IN -> through) = 1

Probability: 0.6 * 0.8 * 0.3 * 0.1 * 0.6 * 0.9 = .0077

Treebanks
Dataset of sentences + associated parse trees

PCFG from Treebank
1) Get N, Σ, S, R

a) N = All non-terminals
b) Σ = All terminals
c) S = Root of trees
d) R = For each node, get all children

2) To construct probabilities q:
a) For each non-terminal:

i) Count all parent -> children relationship
ii) Divide by number of occurrences of the

non-terminal

CKY Algorithm
For a string with multiple parses, we want the highest probability one

Inputs:

● PCFG given by N, Σ, S, R, q, where R is in CNF (all nodes have either 1
terminal child, or 2 non-terminal children)

● A sentence X = (x1 , x2 , … , xn)

Outputs:

● The parse of X with highest probability

CKY Example
Sentence: The man slept

PCFG:

CKY Example
Sentence: The man slept

PCFG:

(1, 1) (1, 2) (1, 3)

The man slept

CKY Example
Sentence: The man slept

PCFG:

(1, 1) (1, 2) (1, 3)

The man slept

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1

π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1

π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6

π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

We only need to consider k =
1 (i.e. π(1,1,Y) and π(2,2,Z))

π(1,2, S) = 0
π(1, 2, NP) = .6

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6

π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

Add
backreferences

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6

π(2, 3, X) = 0π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

We only need to consider k =
2 (i.e. π(2,2,Y) and π(3,3,Z))

π(2, 3, S) = 0
π(2, 3, NP) = 0

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6 π(1, 3, S)=.6

π(2, 3, X) = 0π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

We now must consider k=1,2

π(1, 3, S) = max{
q(S -> NP VP) π(1,1,NP) π(2, 3, VP) = 0,
q(S -> NP VP) π(1,2,NP) π(3, 3, VP) = .6

}

π(1, 3, NP) = max{
q(NP -> NP VP) π(1,1,NP) π(2, 3, VP) = 0,
q(NP -> NP VP) π(1,2,NP) π(3, 3, VP) = .24,
q(NP -> DT NN) π(1,1,DT) π(2, 3, NN) = 0,
q(NP -> NP VP) π(1,2,DT) π(3, 3, NN) = 0,

}

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6 π(1, 3, S)=.6

π(2, 3, X) = 0π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

Add backreferences; in
practice, only care
about π(1,3,S)

CKY Example
Sentence: The man slept

PCFG:

π(1,1,DT)=1 π(1, 2, NP)=.6 π(1, 3, S)=.6

π(2, 3, X) = 0π(2,2,NN)=1

π(3,3,VP)=1

(1, 1) (1, 2) (1, 3)

The man slept

Construct parse tree by
starting at π(1, 3, S)
and working
backwards

Dependency Parsing

Arc-standard

Want to build a dependency parse for a sentence

Arc-standard

Want to build a dependency parse for a sentence

Neural Networks

Feed forward neural networks

Feed forward neural networks

Feed forward neural networks

Q: Suppose your input is of
dimensionality N, hidden state is size H,
and you are classifying for C classes.
Suppose that your network has L
hidden layers (all of size H). How many
parameters does the model have?

Feed forward neural networks

Q: Suppose your input is of
dimensionality N, hidden state is size H,
and you are classifying for C classes.
Suppose that your network has L
hidden layers (all of size H). How many
parameters does the model have?

A: NH + H + (L-1)(H^2 + H) + CH

Neural bag-of-words models for text classification
● Want to train a feed forward network to classify text
● We need a way to get a feature vector x given a sentence w1, …, wn
● Solutions:

○ Extract features manually from sentence
○ Use word embeddings to embed each word, and pool

Feedforward Neural Language Model
● Recap:

● N-gram models suffer from many issues:
○ Exponential scaling with context size
○ Sparse probabilities as context size increases

Feedforward Neural Language Model
● Solution: Can treat language modelling as V way classification task

