Midterm Review: CFGs, Parsing, and Neural Networks

Linguistic Structure

Constituency

- "Groups of words can behave as single units (constituents)"
- Based on Context Free Grammars (CFGs)

Dependency

• "Syntactic structure of a sentence is described solely in terms of relations between the words"

Constituency Parsing

Context-Free Grammars (CFGs)

A formal system for modeling constituent structure in natural language

Consists of:

- Non-terminals *N*
 - $\circ \quad \text{E.g. } \{\text{S, NP, VP, DT, NN, Vi} \}$
- Terminals Σ
 - E.g. {the, man, sleeps}
- Rules *R* (grammar, lexicon)
 - E.g. {S -> NP VP, NP -> DT NN, VP -> Vi, DT -> the, NN -> man, Vi -> sleeps}
- Start symbol *S* (picked from *N*)
 - E.g. S

Deriving Parses with CFGs

Given a CFG, we want to get from a starting string s' to a target string s

(i.e. we want the **derivation** of s starting from s')

Probabilistic Context-Free Grammars (PCFGs)

 $N = \{ \underline{S, NP, VP, PP, DT, Vi, Vt, NN, IN} \}$ $S = \underline{S}$

 $\Sigma~=$ {sleeps, saw, man, woman, telescope, the, with, in}

D	
к	=
10	

\rightarrow	NP	VP
\rightarrow	Vi	
\rightarrow	Vt	NP
\rightarrow	VP	PP
\rightarrow	DT	NN
\rightarrow	NP	PP
\rightarrow	IN	NP
	$\begin{array}{c} \rightarrow \\ \rightarrow $	$\begin{array}{ccc} \rightarrow & Vi \\ \rightarrow & Vt \\ \rightarrow & VP \\ \rightarrow & DT \\ \rightarrow & NP \end{array}$

Grammar

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Lexicon

S NP VP 1.0 \rightarrow VP 0.3 Vi \rightarrow VP Vt NP 0.5 PP 0.2 VP VP \rightarrow NP DT NN 0.8 \rightarrow NP PP NP 0.2 \rightarrow PP IN NP 1.0 \rightarrow

30 ¹³	Vi	\rightarrow	sleeps	1.0
20	Vt	\rightarrow	saw	1.0
- 8	NN	\rightarrow	man	0.1
	NN	\rightarrow	woman	0.1
	NN	\rightarrow	telescope	0.3
	NN	\rightarrow	dog	0.5
8	DT	\rightarrow	the	1.0
8	IN	\rightarrow	with	0.6
	IN	\rightarrow	in	0.4

The probability of a tree τ is the product of the probabilities of all its rules:

S	\rightarrow NP VP	0.8
S	ightarrow S conj S	0.2
NP	\rightarrow Noun	0.2
NP	ightarrow Det Noun	0.4
NP	\rightarrow NP PP	0.2
NP	ightarrow NP conj NP	0.2
VP	ightarrow Verb	0.4
VP	ightarrow Verb NP	0.3
VP	ightarrow Verb NP NP	0.1
VP	\rightarrow VP PP	0.2
PP	\rightarrow P NP	1.0

R	q(R)
$\mathrm{S} \rightarrow \mathrm{VP}$	1
$VP \rightarrow VB NP$	1
$\text{NP} \rightarrow \text{NP} \text{PP}$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\mathrm{NP} \to \mathrm{NNP}$.1
$\text{PP} \rightarrow \text{IN NP}$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\mathrm{NN} \to \mathrm{train}$.4
$\text{IN} \rightarrow \text{through}$	1
$\mathrm{NNP} \to \mathrm{Houston}$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$\mathrm{DT} \to \mathrm{the}$	1
$\mathrm{VB} \to \mathrm{Book}$	1

R	q(R)
$S \rightarrow VP$	1
$VP \rightarrow VB NP$	1
$NP \rightarrow NP PP$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\rm NP \rightarrow \rm NNP$.1
$PP \rightarrow IN NP$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\mathrm{NN} \to \mathrm{train}$.4
$\text{IN} \rightarrow \text{through}$	1
$NNP \rightarrow Houston$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$DT \rightarrow the$	1
$VB \rightarrow Book$	1

R	q(R)
$\mathrm{S} \rightarrow \mathrm{VP}$	1
$VP \rightarrow VB NP$	1
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\mathrm{NP} \to \mathrm{NNP}$.1
$\text{PP} \rightarrow \text{IN NP}$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\mathrm{NN} \to \mathrm{train}$.4
$\mathrm{IN} \to \mathrm{through}$	1
$\mathrm{NNP} \to \mathrm{Houston}$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$\mathrm{DT} \to \mathrm{the}$	1
$\mathrm{VB} \to \mathrm{Book}$	1

R	q(R)
$S \rightarrow VP$	1
$VP \rightarrow VB NP$	1
$\text{NP} \rightarrow \text{NP} \text{PP}$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\mathrm{NP} \to \mathrm{NNP}$.1
$PP \rightarrow IN NP$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\mathrm{NN} \to \mathrm{train}$.4
$\mathrm{IN} \to \mathrm{through}$	1
$\mathrm{NNP} \to \mathrm{Houston}$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$\mathrm{DT} \to \mathrm{the}$	1
$\mathrm{VB} \to \mathrm{Book}$	1

R	q(R)
$S \rightarrow VP$	1
$VP \rightarrow VB NP$	1
$NP \rightarrow NP PP$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\mathrm{NP} \to \mathrm{NNP}$.1
$PP \rightarrow IN NP$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\rm NN \rightarrow train$.4
$\text{IN} \rightarrow \text{through}$	1
$\mathrm{NNP} \to \mathrm{Houston}$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$DT \rightarrow the$	1
$\mathrm{VB} \to \mathrm{Book}$	1

R	q(R)
$S \rightarrow VP$	1
$VP \rightarrow VB NP$	1
$NP \rightarrow NP PP$.6
$\mathrm{NP} \to \mathrm{DT}~\mathrm{NN}$.3
$\mathrm{NP} \to \mathrm{NNP}$.1
$PP \rightarrow IN NP$.8
$\mathrm{PP} \to \mathrm{VB}~\mathrm{NP}$.2
$NN \rightarrow flight$.6
$\mathrm{NN} \to \mathrm{train}$.4
$\text{IN} \rightarrow \text{through}$	1
$\text{NNP} \rightarrow \text{Houston}$.9
$\mathrm{NNP} \to \mathrm{France}$.1
$DT \rightarrow the$	1
$VB \rightarrow Book$	1

Probability: 0.6 * 0.8 * 0.3 * 0.1 * 0.6 * 0.9 = .0077

Treebanks

Dataset of sentences + associated parse trees

PCFG from Treebank

- 1) Get *N*, Σ, *S*, *R*
 - a) N = All non-terminals
 - b) $\Sigma = All terminals$
 - c) S = Root of trees
 - *d) R* = For each node, get all children
- 2) To construct probabilities q:
 - a) For each non-terminal:
 - i) Count all parent -> children relationship
 - ii) Divide by number of occurrences of the non-terminal

CKY Algorithm

For a string with multiple parses, we want the highest probability one

Inputs:

PCFG given by N, Σ, S, R, q, where R is in CNF (all nodes have either 1 terminal child, or 2 non-terminal children)

• A sentence
$$X = (x_1, x_2, \dots, x_n)$$

Outputs:

• The parse of *X* with highest probability

Sentence: The man slept

R	q(R)
$S \rightarrow NP VP$	1
$\text{NP} \rightarrow \text{DT} \text{ NN}$.6
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{VP}$.4
$\mathrm{DT} \to \mathrm{The}$	1
$\rm NN \to man$	1
$\mathrm{VP} \to \mathrm{slept}$	1

Sentence: The man slept

R	q(R)
$S \rightarrow NP VP$	1
$\text{NP} \rightarrow \text{DT} \text{ NN}$.6
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{VP}$.4
$\mathrm{DT} \to \mathrm{The}$	1
$\rm NN \rightarrow man$	1
$\mathrm{VP} \to \mathrm{slept}$	1

The	man	slept
(1, 1)	(1, 2)	(1, 3)

	The	man	slept
CKY Example			
Sentence: The man slept			
	(1, 1)	(1, 2)	(1, 3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$1,2,,n,$ $q(X \to x_i) \text{if } X \to x_i \in R$ $0 \qquad \qquad \text{otherwise}$		

	The	man	slept
CKY Example			
Sentence: The man slept	π(1,1,DT)=1		
	(1, 1)	(1, 2)	(1, 3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\dots, n,$ $\rightarrow x_i) \text{if } X \rightarrow x_i \in R$ otherwise	π(2,2,NN)=1	
			π(3,3,VP)=1

The	man	slept
<i>π</i> (1,1,DT)=1		
(1, 1)	(1, 2)	(1, 3)
1,2,, <i>n</i> ,	π(2.2.NN)=1	
$a(X \to x)$ if $X \to x \in R$		
$\begin{array}{c} 0 \\ 0 \\ \end{array} \text{otherwise} \end{array}$		
n that $1 \le i < j \le n$ for all	$X \in N$,	
$\max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi$	$(i, k, Y) \times \pi(k+1, j, Z)$	π(3,3,VP)=1
	$\pi(1,1,DT)=1$ (1, 1) $(1, 1)$ $1,2,,n,$ $q(X \to x_i) \text{if } X \to x_i \in R$ 0 otherwise 0otherwise $1 \leq i < j \leq n \text{ for all}$	π(1,1,DT)=1 (1,1) (1,2)

				The	man	slept
CKY E	xamp	ole				
Sentence:	The man	slept		<i>π</i> (1,1,DT)=1	π(1, 2, NP)=.6	
				need to consider k =	(1, 2)	(1, 3)
$\frac{R}{G}$	q(R)		1 (i.e. π(1	1,1,Y) and π(2,2,Z))		
$\frac{S \rightarrow NP \ VP}{NP \rightarrow DT \ NN}$.6	Initially, for	π(1,2, S)	= 0		
$NP \rightarrow NP VP$.0		π(1, 2, N	P) = .6	<i>π</i> (2,2,NN)=1	
$\mathrm{DT} \to \mathrm{The}$	1	$\pi(i, i, X)$	= { 4(**	$\frac{1}{1} \frac{1}{1} \frac{1}$		
$\rm NN \rightarrow man$	1		lo	otherwise		
$VP \rightarrow slept$	1					
		For all (i, j)	such tha	t $1 \le i < j \le n$ for all	$X \in N$,	
		$\pi(i, j, Z)$	$X) = \underset{X \to YZ \in \mathbb{R}}{\text{m}}$	$\max_{i \in R, i \leq k < j} q(X \to YZ) \times \pi($	$(i, k, Y) \times \pi(k+1, j, Z)$	π(3,3,VP)=1

			The	man		slept
CKY E	xamp	le				
Sentence:	The man s	slept	<i>π</i> (1,1,DT)=1	<i>π</i> (1, 2, Ι	NP)=.6	
			Add	(1, 2)		(1, 3)
R	q(R)		backreferences			
$S \rightarrow NP VP$	1					
$NP \rightarrow DT NN$.6	Initially, for $i = 1, 2,$, <i>n</i> ,	π(2,2,N	N)=1	
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{VP}$.4		· · C • · · · · · · · · · · · · · · · ·		•••	
$\mathrm{DT} \to \mathrm{The}$	1	$\pi(i, i, X) = \begin{cases} q(X) \\ q(X) \end{cases}$	$(\rightarrow x_i)$ if $X \to x_i \in R$ otherwise			
$NN \rightarrow man$	1		otherwise			
$VP \rightarrow slept$	1		,			
		For all (i, j) such that	t $1 \le i < j \le n$ for all 2	$X \in N$,		
		$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$				π(3,3,VP)=1

Sentence: The man slept

R	q(R)
$S \rightarrow NP VP$	1
$\text{NP} \rightarrow \text{DT} \text{ NN}$.6
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{VP}$.4
$\mathrm{DT} \to \mathrm{The}$	1
$\rm NN \rightarrow man$	1
$\mathrm{VP} \to \mathrm{slept}$	1

The man slept
The man slept

$$\mathbf{P}_{\text{opt}}$$
Initially, for $i = 1, 2, ..., n$,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{other} \end{cases}$$

$$\pi(2, 2, NN) = 1$$

$$\pi(2, 3, X) = 0$$
We only need to consider k = 2 (i.e. $\pi(2, 2, Y)$ and $\pi(3, 3, Z)$)
For all (i, j) such that $1 \le i < j \le \pi(2, 3, NP) = 0$

$$\pi(3, 3, VP) = 1$$

man

slept

The	man	slept
π(1,1,DT)=1	π(1, 2, NP)=.6	$\pi(1, 3, S) = .6$
Ve now must consider k=1,2	(1.5)	(1, 3)
q(S -> NP VP) π(1,2,NP (1, 3, NP) = max{) π(3, 3, VP) = .6	π(2, 3, X) = 0
q(NP -> NP VP) π(1,2,N q(NP -> DT NN) π(1,1,D	P) $\pi(3, 3, VP) = .24,$ T) $\pi(2, 3, NN) = 0,$	π(3,3,VP)=1
	$\pi(1,1,DT)=1$ (1 1) Ve now must consider k=1,2 $T(1, 3, S) = \max\{$ $q(S -> NP VP) \pi(1,1,NP)$ $q(S -> NP VP) \pi(1,2,NP)$ $T(1, 3, NP) = \max\{$ $q(NP -> NP VP) \pi(1,1,N)$ $q(NP -> NP VP) \pi(1,2,N)$ $q(NP -> DT NN) \pi(1,1,D)$	$\pi(1,1,DT)=1 \qquad \pi(1,2,NP)=.6$ (1,1) We now must consider k=1,2 $\pi(1,3,S) = \max\{ q(S -> NP VP) \pi(1,1,NP) \pi(2,3,VP) = 0, q(S -> NP VP) \pi(1,2,NP) \pi(3,3,VP) = .6$

Sentence: The man slept

R	q(R)
$S \rightarrow NP VP$	1
$\text{NP} \rightarrow \text{DT} \text{ NN}$.6
$\mathrm{NP} \to \mathrm{NP} \ \mathrm{VP}$.4
$\mathrm{DT} \to \mathrm{The}$	1
$\rm NN \to man$	1
$\mathrm{VP} \to \mathrm{slept}$	1

	The	n	nan		S	slept	t
е			_				
ept	<i>π</i> (1,1,DT)=1	<i>π</i> (1	, 2, N	NP)=.6	<i>π</i> (1,	3, 8	6)=.6
	(1, 1)	(1	l, 2)		(1, 3	3)	
Initially, for $i = 1, 2,, n$, $\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$			$\pi(2 \text{ Add backreferences; in } \\ \text{practice, only care} \\ \text{about } \pi(1,3,S) \\ 3, X) = 0$			X) = 0	
For all (i, j) such that $1 \le i < j \le n$ for all $X \in N$, $\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$					π(3,	3,V	P)=1

Sentence: The man slept

Dependency Parsing

The Arc-standard algorithm

- Given: a sentence of w_1, w_2, \ldots, w_n
- The parsing process is modeled as a sequence of transitions
- A configuration (current state of parse) consists of a stack s, a buffer b and a set of dependency arcs A: c = (s, b, A)
- Initially, $s = [\text{ROOT}], b = [w_1, w_2, ..., w_n], A = \emptyset$
- A configuration is terminal if s = [ROOT] and $b = \emptyset$
- Three types of transitions: SHIFT, LEFT-ARC (*l*), RIGHT-ARC (*r*)

Arc-standard

Want to build a dependency parse for a sentence

• Three types of transitions: SHIFT, LEFT-ARC (r), RIGHT-ARC (r)

Arc-standard system: three operations

6

"Book me the morning flight" A running example

	stack	buffer	action	added arc
0	[ROOT]	[Book, me, the, morning, flight]	SHIFT	
1	[ROOT, Book]	[me, the, morning, flight]	SHIFT	
2	[ROOT, Book, me]	[the, morning, flight]	RIGHT-ARC(iobj)	(Book, iobj, me)
3	[ROOT, Book]	[the, morning, flight]	SHIFT	
4	[ROOT, Book, the]	[morning, flight]	SHIFT	
5	[ROOT, Book, the, morning]	[flight]	SHIFT	
6	[ROOT, Book, the,morning,flight]	[]	LEFT-ARC(nmod)	(flight,nmod,morning)
7	[ROOT, Book, the, flight]	0	LEFT-ARC(det)	(flight,det,the)
8	[ROOT, Book, flight]	0	RIGHT-ARC(dobj)	(Book,dobj,flight)
9	[ROOT, Book]	0	RIGHT-ARC(root)	(ROOT,root,Book)
10	[ROOT]	[]		

Neural Networks

Feed-forward NNs

- The units are connected with no cycles
- The outputs from units in each layer are passed to units in the next higher layer
- No outputs are passed back to lower layers

Fully-connected (FC) layers:

All the units from one layer are fully connected to every unit of the next layer.

*: f is applied element-wise

 $f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)]$

C: number of classes d: input dimension, d_1, d_2 : hidden dimensions

- Input layer: $\mathbf{x} \in \mathbb{R}^d$
- Hidden layer 1: $\mathbf{h}_1 = f(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) \in \mathbb{R}^{d_1}$ $\mathbf{W}^{(1)} \in \mathbb{R}^{d_1 \times d}, \mathbf{b}^{(1)} \in \mathbb{R}^{d_1}$
- Hidden layer 2: $\begin{aligned} \mathbf{h}_2 &= f(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)}) \in \mathbb{R}^{d_2} \\ \mathbf{W}^{(2)} &\in \mathbb{R}^{d_2 \times d_1}, \mathbf{b}^{(2)} \in \mathbb{R}^{d_2} \end{aligned}$
- Output layer:

$$\mathbf{y} = \mathbf{W}^{(o)}\mathbf{h}_2, \mathbf{W}^{(o)} \in \mathbb{R}^{C \times d_2}$$

$$h = \sigma(Wx + b)$$
$$z = Uh$$
$$y = softmax(z)$$

 $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$ $\mathbf{z} = \mathbf{U}\mathbf{h}$

$$\mathbf{y} = \operatorname{softmax}(\mathbf{z})$$

Q: Suppose your input is of dimensionality *N*, hidden state is size *H*, and you are classifying for C classes. Suppose that your network has L hidden layers (all of size H). How many parameters does the model have?

 $\mathbf{h} = \boldsymbol{\sigma}(\mathbf{W}\mathbf{x} + \mathbf{b})$ $\mathbf{z} = \mathbf{U}\mathbf{h}$

$$\mathbf{y} = \operatorname{softmax}(\mathbf{z})$$

Q: Suppose your input is of dimensionality *N*, hidden state is size *H*, and you are classifying for C classes. Suppose that your network has L hidden layers (all of size H). How many parameters does the model have?

A: $NH + H + (L-1)(H^{2} + H) + CH$

Neural bag-of-words models for text classification

- Want to train a feed forward network to classify text
- We need a way to get a feature vector x given a sentence w₁, ..., w_n
- Solutions:
 - Extract features manually from sentence
 - Use word embeddings to embed each word, and pool

How to train this model?

- Training data: $\{(d^{(1)}, y^{(1)}), \dots, (d^{(m)}, y^{(m)})\}$
- Parameters: $\{W, b, U\}$
- Optimize these parameters using gradient descent!
- Word embeddings can be treated as parameters too!

 $\mathbf{E} \in \mathbb{R}^{|V| \times d}$

•
$$\mathbf{x} = \frac{1}{K} \sum_{i=1}^{K} e(w_i)$$

- $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b})$
- $\mathbf{y} = \mathbf{U}\mathbf{h}$
- $\hat{\mathbf{y}} = \operatorname{softmax}(\mathbf{y})$

Feedforward Neural Language Model

• Recap:

Language models: Given $x_1, x_2, \dots, x_n \in V$, the goal is to model: $P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i \mid x_1, \dots, x_{i-1})$

- N-gram models suffer from many issues:
 - Exponential scaling with context size
 - Sparse probabilities as context size increases

Feedforward Neural Language Model

- Solution: Can treat language modelling as V way classification task
 - Input layer (m= 5):
 - $\mathbf{x} = [e(\text{the}); e(\text{cat}); e(\text{sat}); e(\text{on}); e(\text{the})] \in \mathbb{R}^{md}$
 - Hidden layer:
 - $\mathbf{h} = \tanh(\mathbf{W}\mathbf{x} + \mathbf{b}) \in \mathbb{R}^h$
 - Output layer

 $\mathbf{z} = \mathbf{U}\mathbf{h} \in \mathbb{R}^{|V|}$

 $\begin{aligned} P(w = i \mid \text{the cat sat on the}) \\ = \text{softmax}_i(\mathbf{z}) = \frac{e^{z_i}}{\sum_k e^{z_k}} \end{aligned}$

