

COS 484

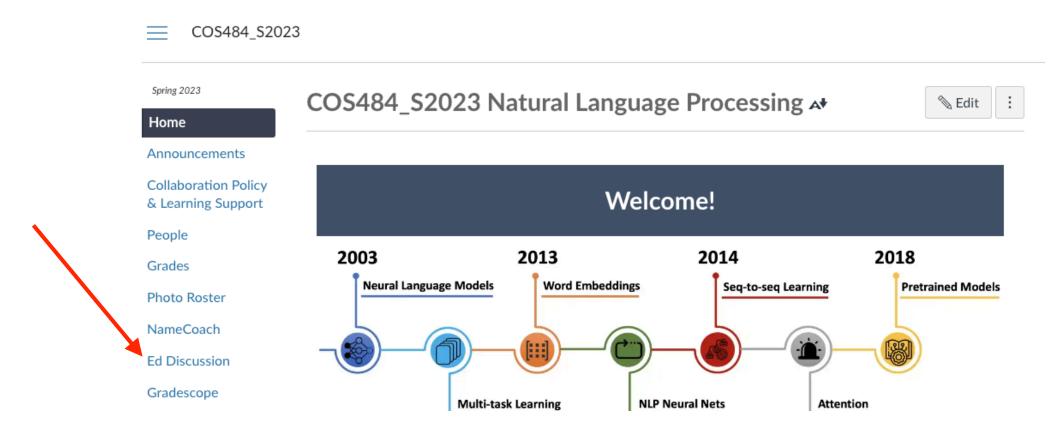
Natural Language Processing

L7: Sequence Models (cont'd)

Spring 2023

Announcements

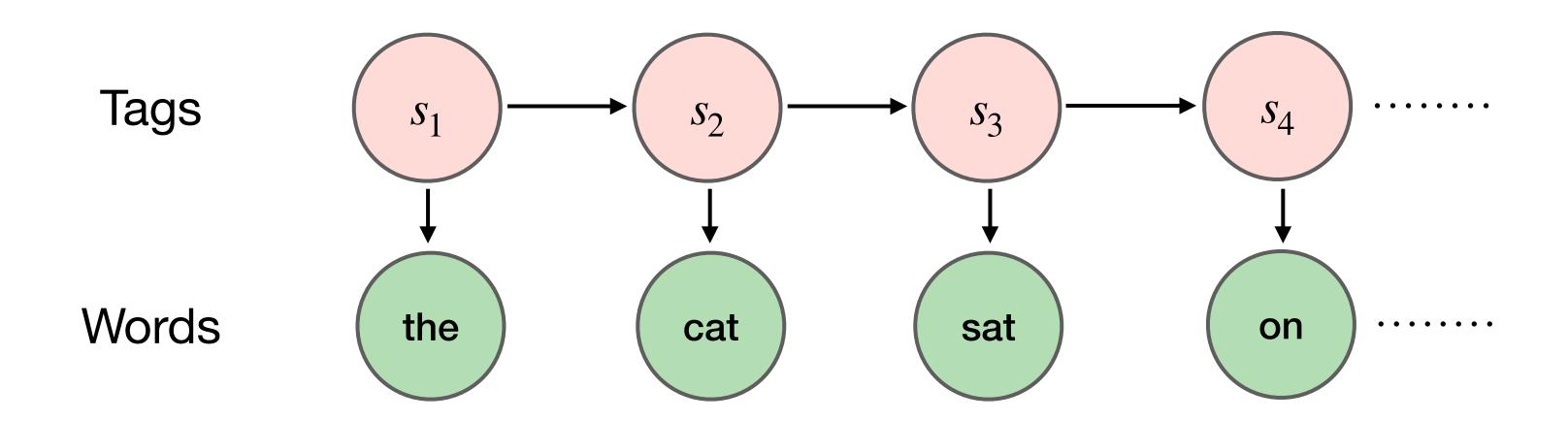
- A1 due today
- A2 will be released later today (due: 3/6)
 - Covering HMMs, MEMMs, parsing (next two lectures)
- If you don't know how to be added to Ed



What do you think of assignment 1?

- A) Very easy B) Easy
- C) Moderate
- D) Somewhat hard E) Hard

Recap: Hidden Markov models

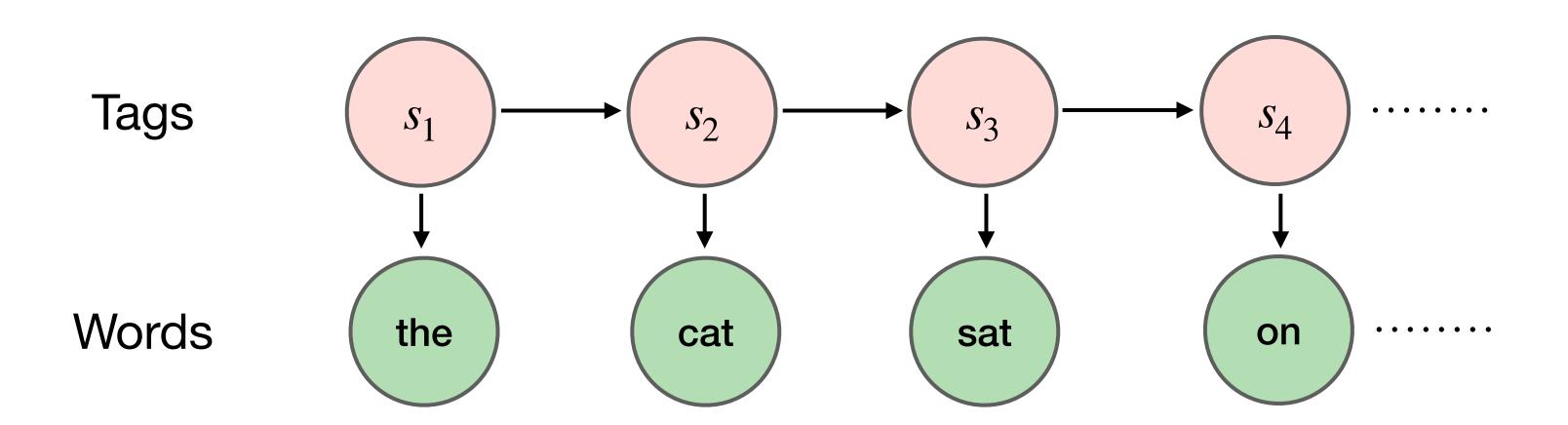


- 1. Set of states $S = \{1, 2, ..., K\}$ and set of observations $O = \{o_1, ..., o_n\}$
- 2. Initial state probability distribution $\pi(s_1)$
- 3. Transition probabilities $P(s_{t+1} | s_t)$

Strong assumptions

4. Emission probabilities $P(o_t | s_t)$

Recap: Hidden Markov models



1. Markov assumption:

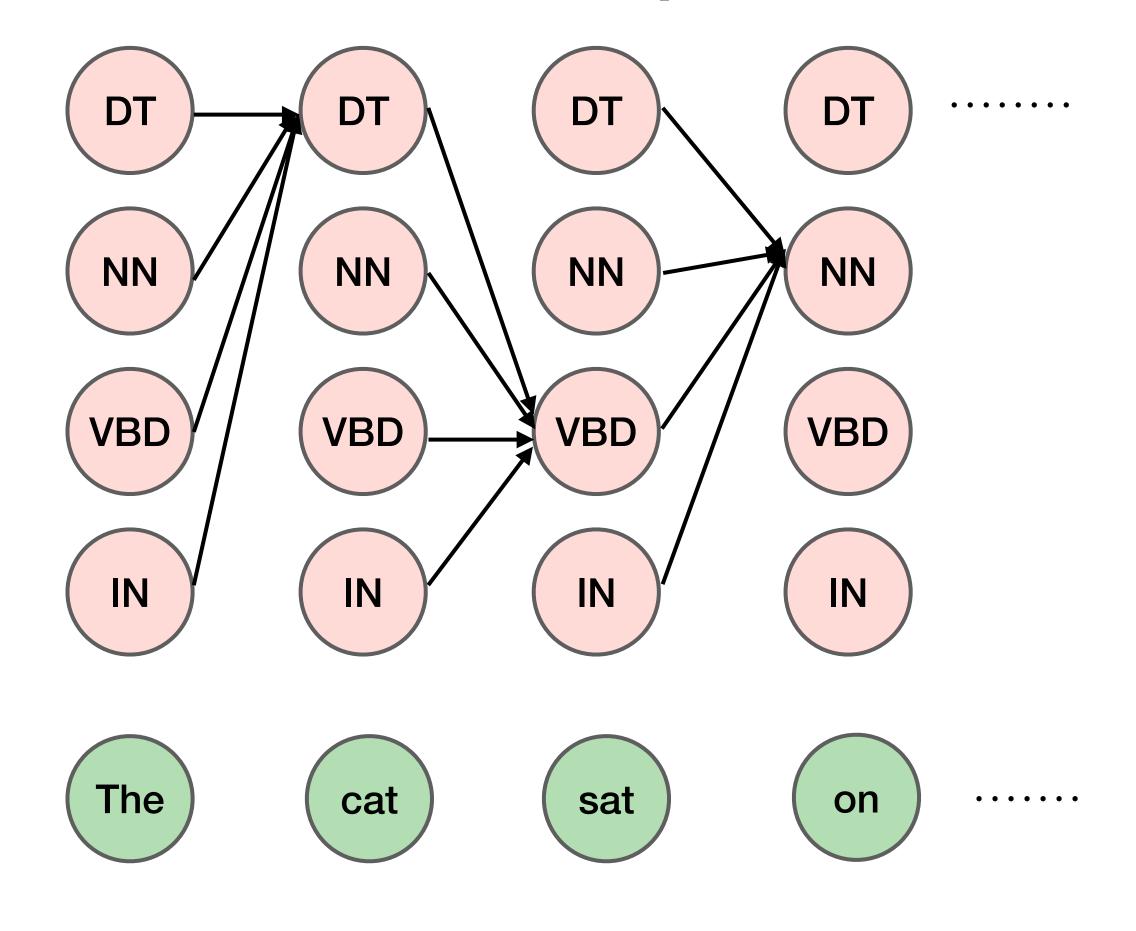
$$P(s_{t+1} | s_1, ..., s_t) \approx P(s_{t+1} | s_t)$$

2. Output independence:

$$P(o_t | s_1, \ldots, s_t) \approx P(o_t | s_t)$$

- 1) assumes state sequences do not have very strong priors/long-range dependencies
- 2) assumes neighboring states don't affect current observation

Recap: Viterbi decoding



M[i,j] stores joint probability of most probable sequence of states ending with state j at time i

$$M[i,j] = \max_{k} M[i-1,k] P(s_{j}|s_{k}) P(o_{i}|s_{j}) \quad 1 \le k \le K \quad 1 \le i \le n$$

Backward: Pick $\max_{k} M[n, k]$ and backtrack using B

Trigram hidden Markov models

What we have seen so far is also called bigram HMM Can be extended to trigram, 4-gram etc.

$$P(S, O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, s_{i-2}) P(o_i \mid s_i)$$

MLE estimate:
$$P(s_i | s_{i-1}, s_{i-2}) = \frac{Count(s_i, s_{i-1}, s_{i-2})}{Count(s_{i-1}, s_{i-2})}$$

Can add smoothing techniques to avoid zero probabilities!

Viterbi:
$$M[i,j,k] = \max_{r} M[i-1,k,r] \ P(s_j | s_k, s_r) \ P(o_i | s_j) \ 1 \le j,k,r \le K \ 1 \le i \le n$$

most probable sequence of states ending with state *j* at time *i*, and state *k* at *i-1*

Time complexity: $O(nK^3)$

Maximum Entropy Markov Models (MEMMs)

ICML 2000

Maximum Entropy Markov Models for Information Extraction and Segmentation

Andrew McCallum Dayne Freitag

Just Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

Fernando Pereira

AT&T Labs - Research, 180 Park Ave, Florham Park, NJ 07932 USA

MCCALLUM@JUSTRESEARCH.COM DAYNE@JUSTRESEARCH.COM

PEREIRA@RESEARCH.ATT.COM

Generative vs discriminative models

• HMM is a generative model

Sequence

prediction

• Can we model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly?

Text Naive Bayes: Logistic Regression: $P(c)P(d \mid c)$ $P(c \mid d)$

HMM:

 $P(s_1, \ldots, s_n) P(o_1, \ldots, o_n | s_1, \ldots, s_n)$

MEMM:

 $P(s_1,\ldots,s_n\,|\,o_1,\ldots,o_n)$

Maximum entropy Markov model (MEMM)



$$P(S \mid O) = \prod_{i=1}^{n} P(s_i \mid s_{i-1}, s_{i-2}, ..., s_1, O)$$

$$= \prod_{i=1}^{n} P(s_i \mid s_{i-1}, O)$$

$$P(s_i = s \mid s_{i-1}, O) \propto \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$$
weights features

Important: you can define features over entire word sequence O!

Use features and weights:

$$P(s_i = s | s_{i-1}, O) \propto \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))$$

Which of the following is the correct way to calculate this probability?

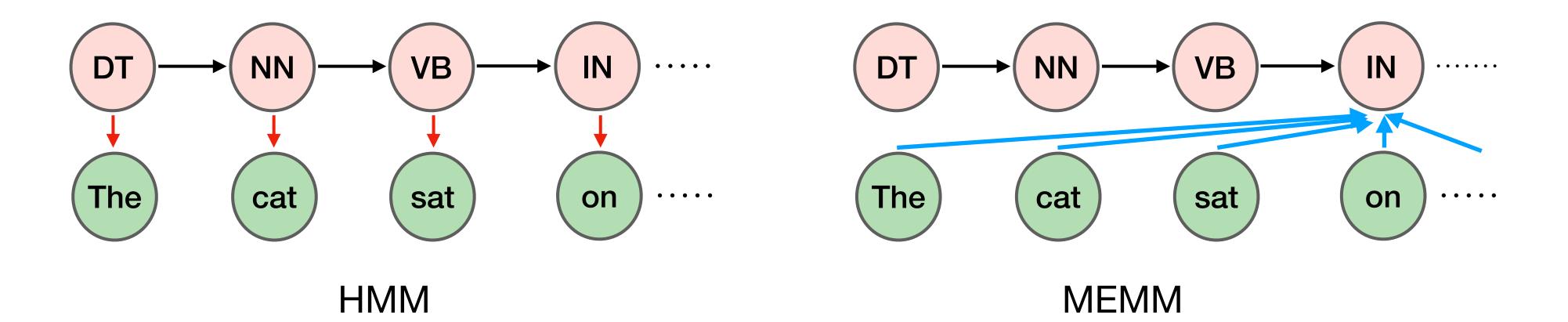
A)
$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1} = s', O, i))}$$

B)
$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))}$$

C)
$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{O'} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O', i))}$$

The answer is (B)

Maximum entropy Markov model (MEMM)



Bigram MEMM:

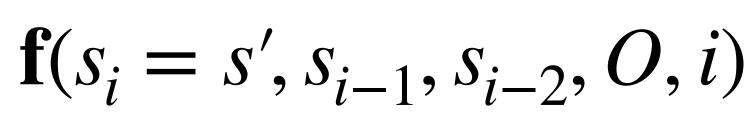
$$O = \langle o_1, o_2, \dots, o_n \rangle$$

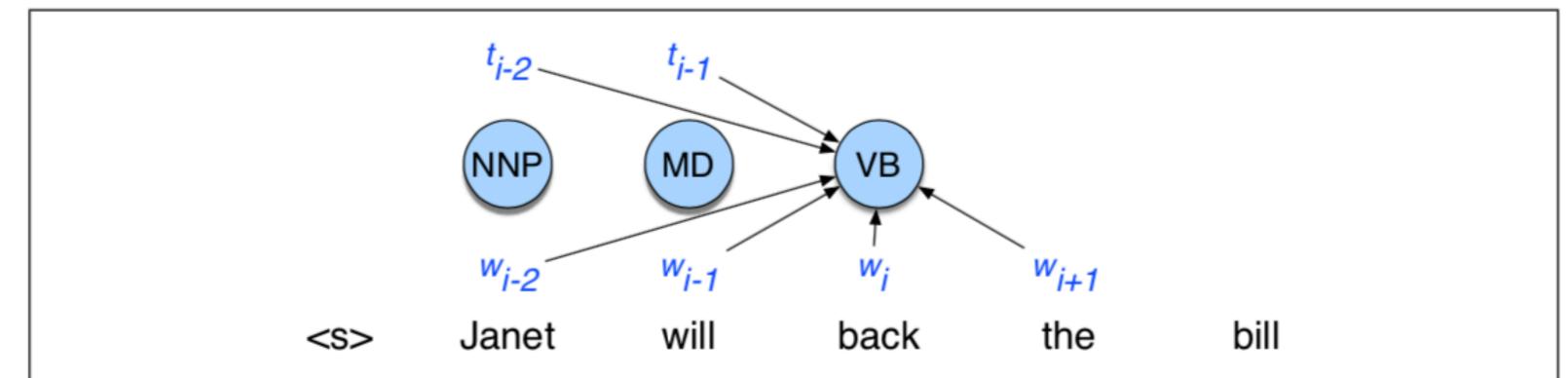
$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))}$$

Can be easily extended to trigram MEMM, 4-gram MEMM...

$$P(s_i = s \mid s_{i-1}, s_{i-2}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, s_{i-2}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, s_{i-2}, O, i))}$$

How to define features?





 t_i = tags (states) w_i = words (observations)

$$\langle t_i, w_{i-2} \rangle, \langle t_i, w_{i-1} \rangle, \langle t_i, w_i \rangle, \langle t_i, w_{i+1} \rangle, \langle t_i, w_{i+2} \rangle$$

$$\langle t_i, t_{i-1} \rangle, \langle t_i, t_{i-2}, t_{i-1} \rangle,$$

$$\langle t_i, t_{i-1}, w_i \rangle, \langle t_i, w_{i-1}, w_i \rangle \langle t_i, w_i, w_{i+1} \rangle,$$

Feature templates

$$t_i$$
 = VB and w_{i-2} = Janet
 t_i = VB and w_{i-1} = will
 t_i = VB and w_i = back
 t_i = VB and w_{i+1} = the
 t_i = VB and w_{i+2} = bill
 t_i = VB and t_{i-1} = MD
 t_i = VB and t_{i-1} = MD and t_{i-2} = NNP
 t_i = VB and w_i = back and w_{i+1} = the

Features (binary)

Features in an MEMM

Incorrect DT JJ NN DT NN

Correct DT NN VB DT NN

The old man the boat

$$w_{i-1}$$
 w_i w_{i+1} w_{i+2} w_{i+3}

Which of these feature templates would help most to tag 'old' correctly?

A)
$$\langle t_i, t_{i-1}, w_i, w_{i-1}, w_{i+1} \rangle$$

B)
$$\langle t_i, t_{i-1}, w_i, w_{i-1} \rangle$$

C)
$$\langle t_i, w_i, w_{i-1}, w_{i+1} \rangle$$

D)
$$\langle t_i, w_i, w_{i-1}, w_{i+1}, w_{i+2} \rangle$$

$$t_i$$
 = tags (states)
 w_i = words (observations)

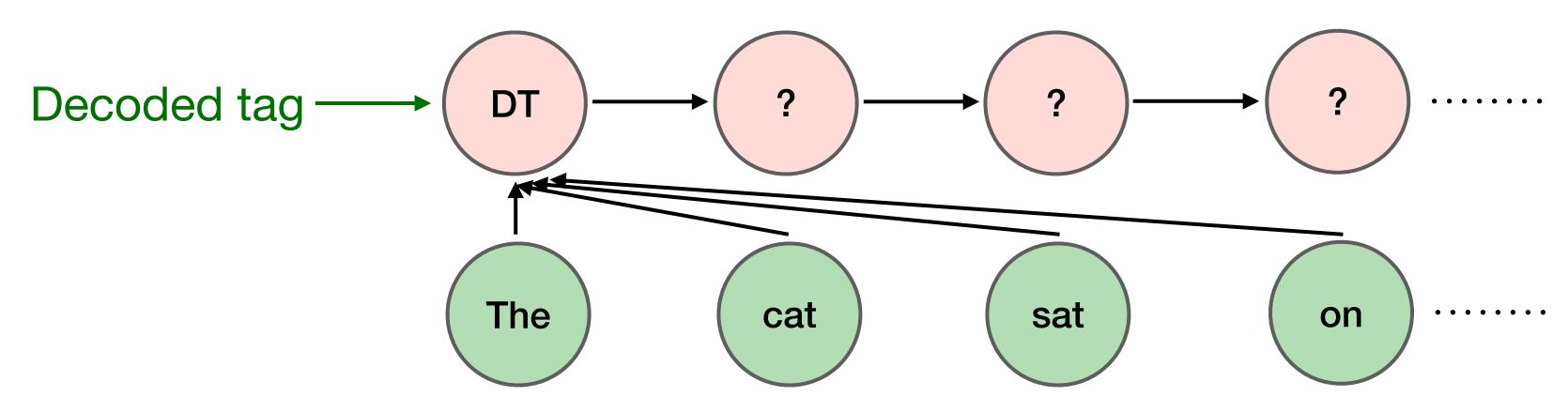
The answer is (D)

MEMMs: Decoding

Bigram MEMM:

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid s_{i-1}, O)$$

Greedy decoding:



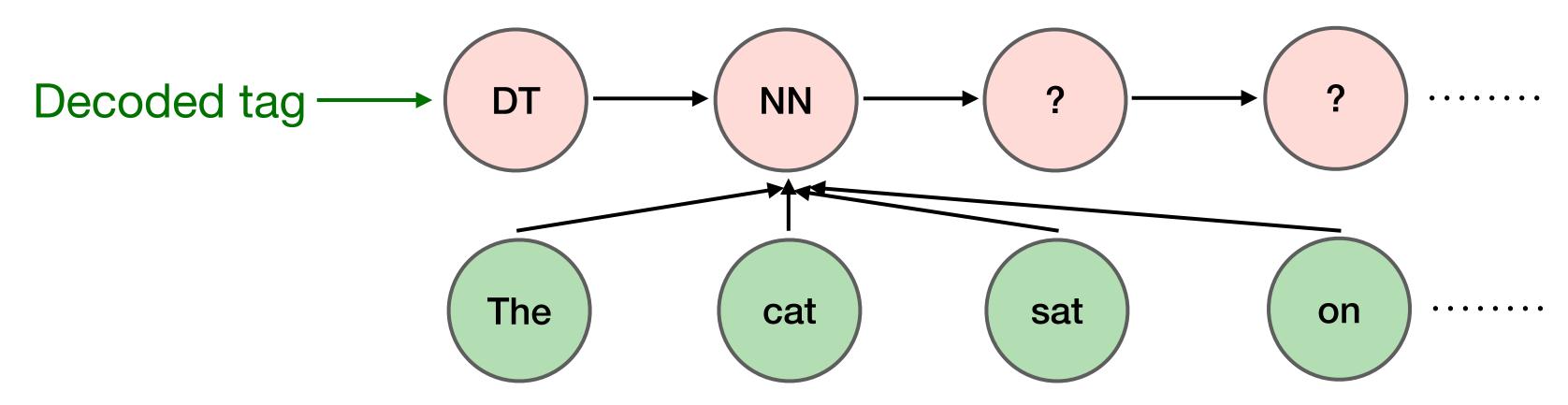
$$\hat{s}_1 = \arg\max_s P(s_i = s \mid \emptyset, O) = \arg\max_s \mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1} = \emptyset, O) = DT$$

MEMMs: Decoding

Bigram MEMM:

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid s_{i-1}, O)$$

Greedy decoding:



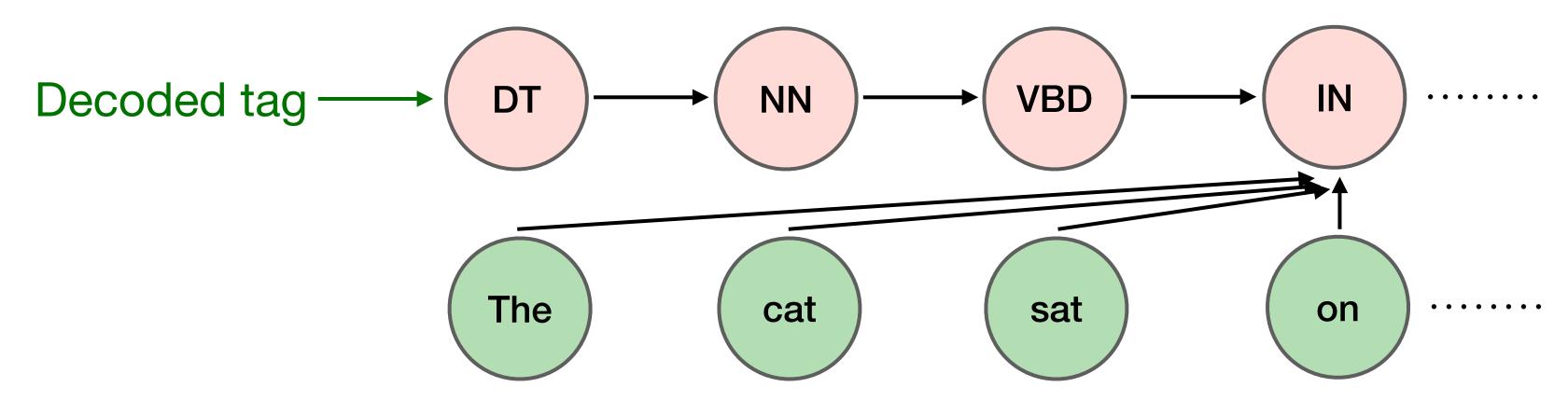
$$\hat{s}_2 = \arg \max_{s} P(s_i = s \mid DT, O) = NN$$

MEMMs: Decoding

Bigram MEMM:

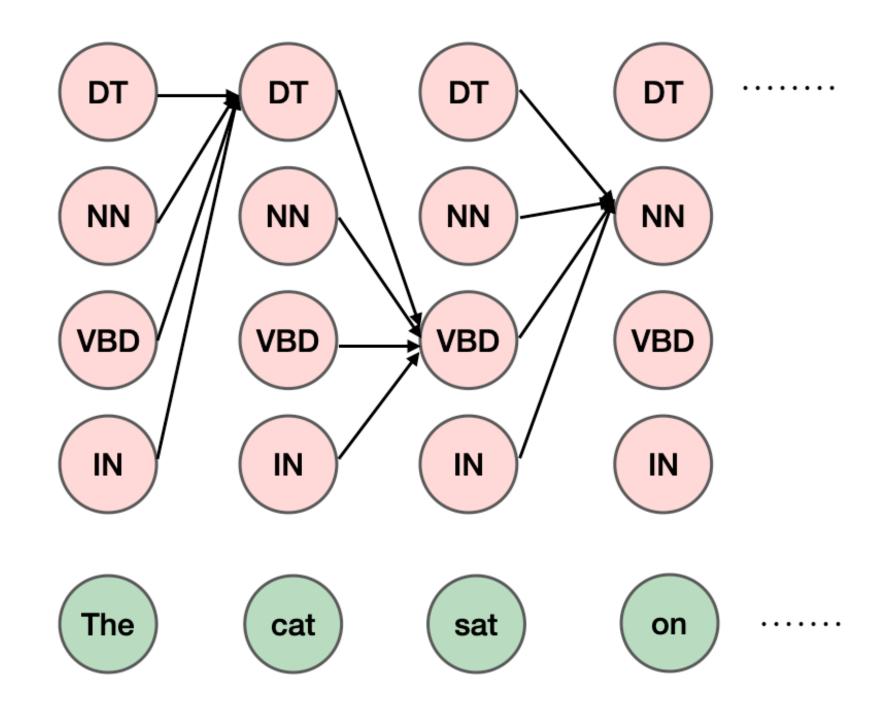
$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \Pi_{i} P(s_{i} \mid s_{i-1}, O)$$

Greedy decoding:



$$\hat{s}_i = \arg \max_{s} P(s_i = s \mid \hat{s}_{i-1}, O)$$

Viterbi decoding for MEMMs



M[i,j] stores joint probability of most probable sequence of states ending with state j at time i

$$M[i,j] = \max_{k} M[i-1,k] P(s_i = j \mid s_{i-1} = k, O) \quad 1 \le k \le K \quad 1 \le i \le n$$

Backward: Pick $\max_{k} M[n, k]$ and backtrack using B

MEMM: Decoding

How would you compare the computational complexity of Viterbi decoding for bigram MEMMs compared to decoding for bigram HMMs?

- A) More operations in MEMM
- B) More operations in HMM

The answer is (D)

- C) Equal
- D) Depends on number of features in MEMM

$$M[i,j] = \max_{k} M[i-1,k] P(s_i = j | s_{i-1} = k, O)$$
 $1 \le k \le K$ $1 \le i \le n$

HMM:
$$M[i,j] = \max_{k} M[i-1,k] P(s_j|s_k) P(o_i|s_j) \quad 1 \le k \le K \quad 1 \le i \le n$$

MEMM: Learning

Gradient descent: similar to logistic regression!

$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))}$$

• Given: annotated pairs of (S,O) where each $S=\langle s_1,s_2,\ldots,s_n\rangle$

Loss for one sequence,
$$L = -\sum_{i=1}^{n} \log P(s_i | s_{i-1}, O)$$

Compute gradients with respect to weights w and update

MEMM vs HMM

- HMM models the joint P(S, O) while MEMM models the required prediction $P(S \mid O)$
- MEMM has more expressivity
 - accounts for dependencies between neighboring states and entire observation sequence
 - allows for more flexible features
- HMM may hold an advantage if the dataset is small

Conditional Random Fields (CRFs)

ICML 2001

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

John Lafferty^{†*} Andrew McCallum^{*†} Fernando Pereira^{*‡}

LAFFERTY@CS.CMU.EDU MCCALLUM@WHIZBANG.COM FPEREIRA@WHIZBANG.COM

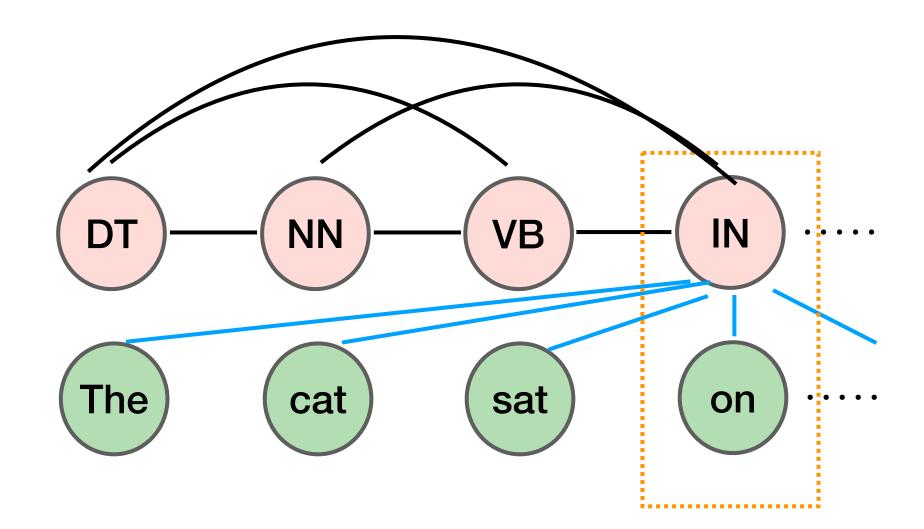
^{*}WhizBang! Labs-Research, 4616 Henry Street, Pittsburgh, PA 15213 USA

[†]School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 USA

[‡]Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA

Conditional Random Field

- Model $P(s_1, \ldots, s_n | o_1, \ldots, o_n)$ directly
- No Markov assumption
 - Map entire sequence of states S and observations O to a global feature vector
- Normalize over entire sequences



$$P(S \mid O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{\sum_{S'} \exp(\mathbf{w} \cdot \mathbf{f}(S', O))} = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{Z(O)}$$

DT NN VB IN

$$P(S \mid O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{\sum_{S'} \exp(\mathbf{w} \cdot \mathbf{f}(S', O))}$$

$$1\{x_i = the, y_i = DET\}$$

$$1\{y_i = PROPN, x_{i+1} = Street, y_{i-1} = NUM\}$$

$$1\{y_i = VERB, y_{i-1} = AUX\}$$

Features

• Each F_k in f is a global feature function

$$P(S \mid O) = \frac{\exp(\sum_{k=1}^{m} w_k \cdot F_k(S, O))}{\sum_{S'} \exp(\sum_{k=1}^{m} w_k \cdot F_k(S', O))}$$

· Can be computed as a combination of local

features:
$$F_k = \sum_{i=1}^{n} f_k(s_{i-1}, s_i, O, i)$$

Each local feature only depends on previous and current states

CRF: Decoding

$$\hat{S} = \arg \max_{S} P(S \mid O) = \arg \max_{S} \frac{\exp(\mathbf{w} \cdot \mathbf{f}(S, O))}{Z(O)}$$

=
$$\underset{S}{\operatorname{arg max}} \exp(\mathbf{w} \cdot \mathbf{f}(S, O))$$

$$= \arg \max_{S} \sum_{k=1}^{m} \sum_{i=1}^{n} w_{k} f_{k}(s_{i-1}, s_{i}, O, i)$$

Use Viterbi similar to HMM and MEMM

CRF: Learning

$$P(S \mid O) = \frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{Z(O)}$$

Log-Linear Models, MEMMs, and CRFs

Michael Collins

$$= \frac{\exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i))}{\sum_{s_1', \dots, s_n'} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}', s_i', O, i))}$$

$$-\log P(S \mid O) = -\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s_{i-1}, s_i, O, i) + \log \sum_{s'_1, \dots, s'_n} \exp(\sum_{k=1}^{m} \sum_{i=1}^{n} w_k f_k(s'_{i-1}, s'_i, O, i))$$

$$\frac{-\partial \log P(S \mid O)}{\partial w_k}$$
 can be done efficiently using dynamic programming

CRF vs MEMM

- MEMM models the required prediction $P(S \mid O)$ using the Markov assumption, while the CRF does not
- CRF uses global features while MEMM features are localized
- Feature design is flexible in both models
- CRF is computationally more complex

History of CRFs

- Very popular in the 2000s
- Wide variety of applications:
 - Information extraction
 - Summarization
 - Image labeling/segmentation

Information extraction from research papers using conditional random fields ☆

Fuchun Peng ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Andrew McCallum ^b $\stackrel{\boxtimes}{\simeq}$

Multiscale conditional random fields for image labeling

Publisher: IEEE

Cite This

Xuming He; R.S. Zemel; M.A. Carreira-Perpinan All Authors

Document Summarization using Conditional Random Fields

Dou Shen¹, Jian-Tao Sun², Hua Li², Qiang Yang¹, Zheng Chen²

¹Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong
{dshen, qyang}@cse.ust.hk

²Microsoft Research Asia, 49 Zhichun Road, China
{jtsun, huli, zhengc}@microsoft.com

History of CRFs

- Very popular in the 2000s
- Wide variety of applications:
 - Information extraction
 - Summarization
 - Image labeling/segmentation

Software [edit]

This is a partial list of software that implement generic CRF tools.

- RNNSharp

 CRFs based on recurrent neural networks (C#, .NET)
- CRF-ADF ☑ Linear-chain CRFs with fast online ADF training (C#, .NET)
- CRFSharp

 Linear-chain CRFs (C#, .NET)
- GCO

 GCO

 CRFs with submodular energy functions (C++, Matlab)
- DGM General CRFs (C++)
- GRMM ☑ General CRFs (Java)
- factorie General CRFs (Scala)
- CRFall General CRFs (Matlab)
- Sarawagi's CRF

 Linear-chain CRFs (Java)
- Accord.NET ☑ Linear-chain CRF, HCRF and HMMs (C#, .NET)
- Wapiti Fast linear-chain CRFs (C)^[15]
- CRFSuite ☑ Fast restricted linear-chain CRFs (C)
- CRF++ ☑ Linear-chain CRFs (C++)
- FlexCRFs First-order and second-order Markov CRFs (C++)
- crf-chain1 & First-order, linear-chain CRFs (Haskell)
- imageCRF

 CRF for segmenting images and image volumes (C++)
- MALLET Linear-chain for sequence tagging (Java)

Empirical performance

Model	F score
SVM combination	94.39%
(Kudo and Matsumoto, 2001)	
CRF	94.38%
Generalized winnow	93.89%
(Zhang et al., 2002)	
Voted perceptron	94.09%
MEMM	93.70%

Table 2: NP chunking F scores

null hypothesis	p-value
CRF vs. SVM	0.469
CRF vs. MEMM	0.00109
CRF vs. voted perceptron	0.116
MEMM vs. voted perceptron	0.0734

Table 4: McNemar's tests on labeling disagreements

(Sha and Pereira, 2003): Shallow Parsing with Conditional Random Fields

CRFs in deep learning era

Conditional Random Fields as Recurrent Neural Networks

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr; Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1529-1537

Neural Architectures for Named Entity Recognition

Guillaume Lample Miguel Ballesteros Chris Dyer Sandeep Subramanian Kazuya Kawakami Chris Dyer Carnegie Mellon University NLP Group, Pompeu Fabra University {glample, sandeeps, kkawakam, cdyer}@cs.cmu.edu, miguel.ballesteros@upf.edu

Bidirectional LSTM-CRF Models for Sequence Tagging

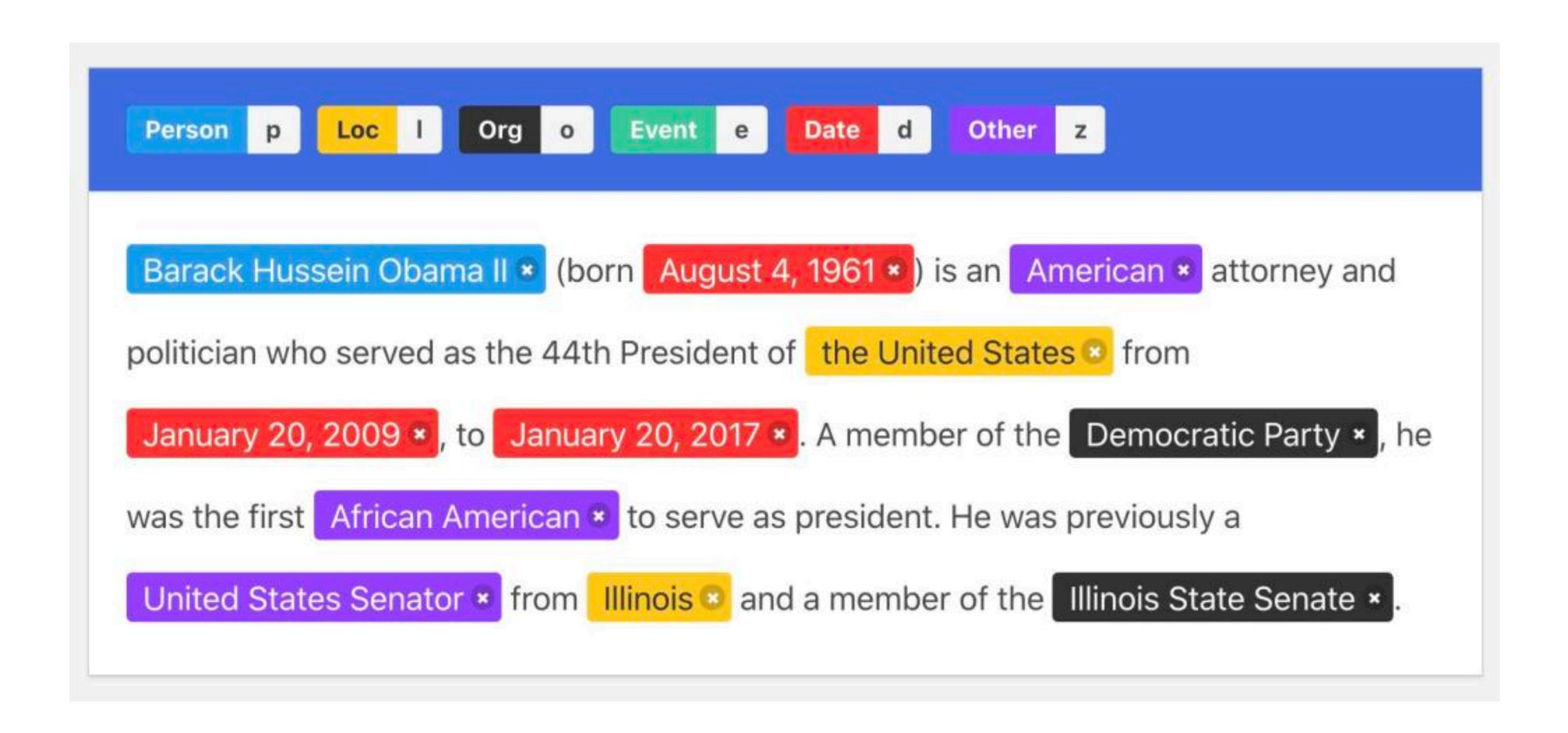
Zhiheng Huang Wei Xu
Baidu research
huangzhiheng@baidu.com xuwei06@baidu.com

Kai Yu
Baidu research
yukai@baidu.com

- Use CRFs on top of neural representations (instead of features and weights)
- Joint sequence prediction without the need for defining features!
- Recent architectures such as seq2seq w/ attention or Transformer may implicitly do the job

Named entity recognition (NER)

Named entity recognition



Named entities

- Named entity, in its core usage, means anything that can be referred to with a proper name.
- NER is the task of 1) finding spans of text that constitute proper names; 2) tagging the type of the entity
- Most common 4 tags:
 - PER (Person): "Marie Curie"
 - LOC (Location): "New York City"
 - ORG (Organization): "Princeton University"
 - MISC (Miscellaneous): nationality, events, ...

Only France and Britain backed Fischler 's proposal.

O LOC O LOC O PER O O O

Steve Jobs founded Apple with Steve Wozniak.

PER PER O ORG O PER PER.

O = not an entity

If multiple words constitute a named entity, they will be labeled with the same tag.

NER: BIO Tagging

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

B: token that begins a span

I: tokens that inside a span

O: tokens outside of a span