

COS 484

Natural Language Processing

L8: Constituency Parsing

Spring 2023

Feature templates and sparse features

Tags DT NN VB DT NN Words The old man the boat
$$w_{i-1}$$
 w_i w_{i+1} w_{i+2} w_{i+3}

Feature template = abstract specification of features

Feature = what we actually use in classifier (can be very sparse!)

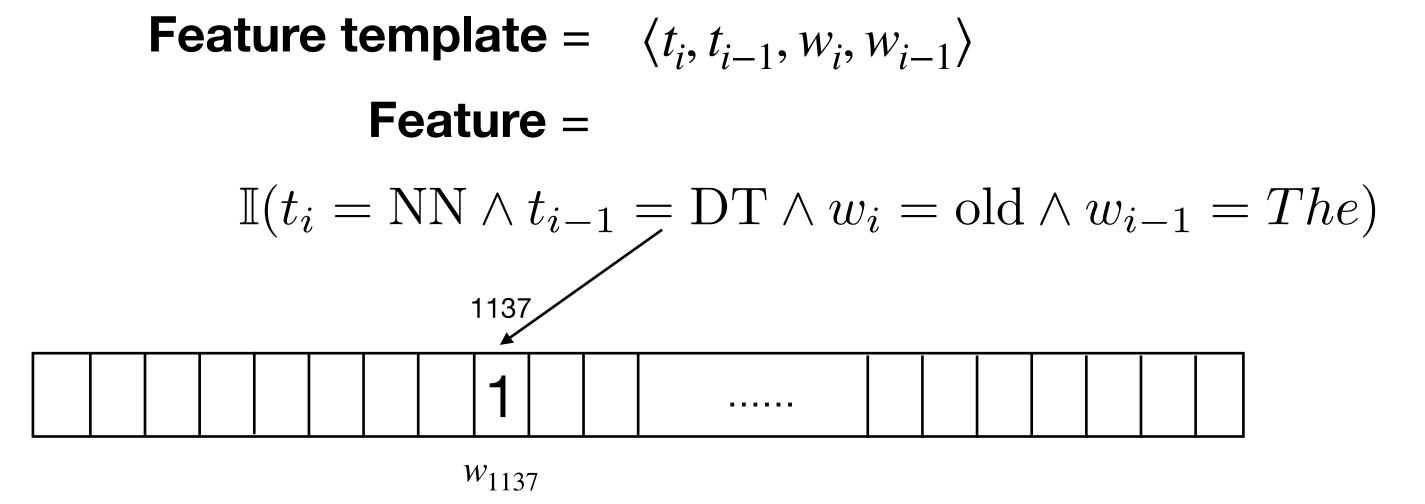
Which of these feature templates would help most to tag 'old' correctly?

A)
$$\langle t_i, t_{i-1}, w_i, w_{i-1}, w_{i+1} \rangle$$

B)
$$\langle t_i, t_{i-1}, w_i, w_{i-1} \rangle$$

C)
$$\langle t_i, w_i, w_{i-1}, w_{i+1} \rangle$$

D)
$$\langle t_i, w_i, w_{i-1}, w_{i+1}, w_{i+2} \rangle$$



We can only count the # of features that appear in the training set (sometimes keeping them when frequency \geq threshold)

Feature templates and sparse features

• Bigram MEMM:
$$P(s_i = s \mid s_{i-1}, O) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(s_i = s, s_{i-1}, O, i))}{\sum_{s'=1}^{K} \exp(\mathbf{w} \cdot \mathbf{f}(s_i = s', s_{i-1}, O, i))}$$

• Multinominal logistic regression: $P(y = c \mid x) = \frac{e^{\mathbf{w}_c} \cdot \mathbf{x} + b_c}{\sum_{j=1}^m e^{\mathbf{w}_j} \cdot \mathbf{x} + b_j}$

Feature 8 = bigram(American breakfast)

Weight vector for class 'positive': $w_{pos,8}$

Equivalent as: Feature 137 = $bigram(American breakfast) \land y = positive$

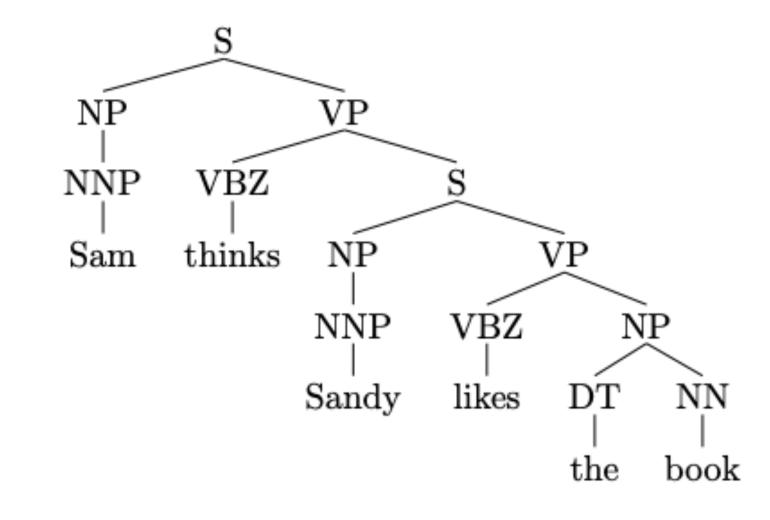
Weight vector: w_{137}

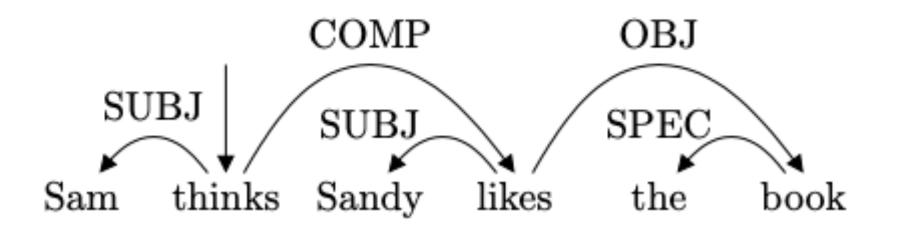
Syntactic structure: constituency and dependency

Theme: How do we represent the structure of **sentences** using (syntax) **trees**?

Two views of linguistic structure

- Constituency (today)
 - = phrase structure grammar
 - based on context-free grammars (CFGs)
- Dependency (next class)





Constituency structure

- Phrase structure organizes words into nested constituents
- Starting units: words are given a category: part-of-speech tags

```
the, cuddly, cat, by, the, door DT, JJ, NN, IN, DT, NN
```

Words combine into phrases with categories

the cuddly cat, by the door

$$NP \rightarrow DT JJ NN \qquad PP \rightarrow IN DT NN$$

 Phrases can combine into bigger phrases recursively the cuddly cat by the door

 $NP \rightarrow NP PP$

Syntactic parsing

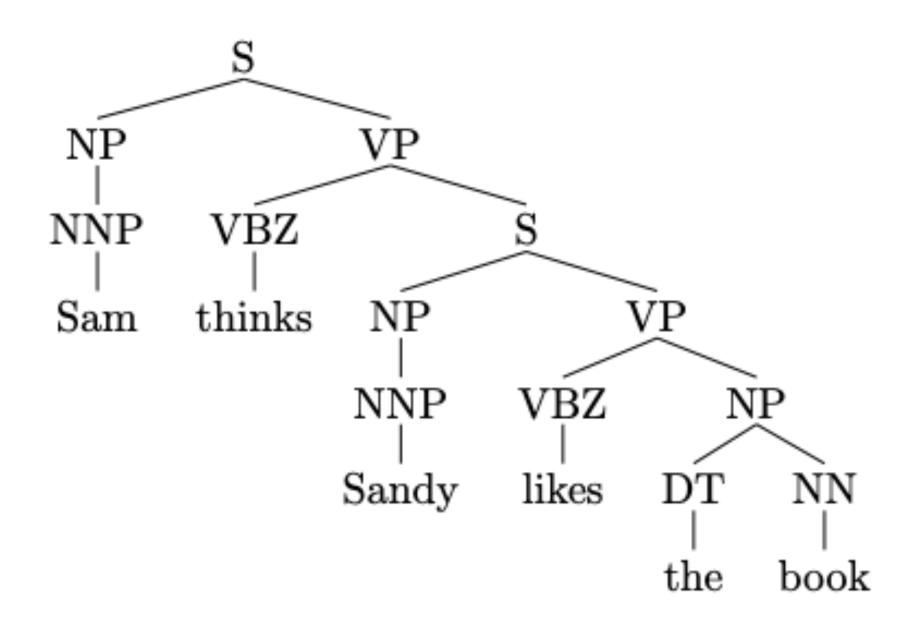
Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.

Constituency parsing is the task of recognizing a sentence and assigning a constituency structure to it.

Input

Sam thinks Sandy likes the book

Output



Syntactic parsing: applications

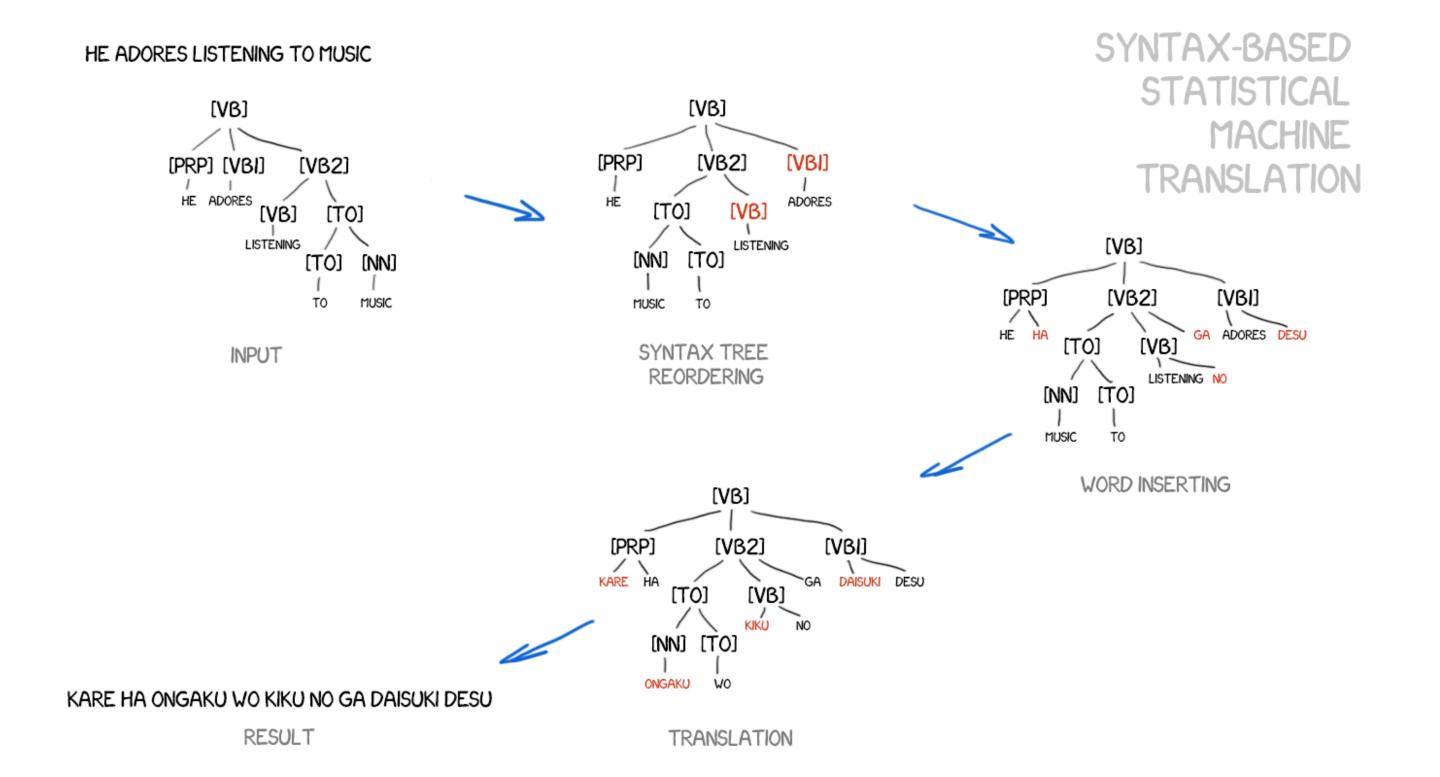
- Grammar checking
 - If a sentence can't be parsed, it may have grammatical errors (or at least hard to read)
- Used as intermediate representations for downstream tasks
 - Machine translation (syntax-based statistical MT)
 - Information extraction
 - Question answering

Syntactic parsing: applications

Used as intermediate representation for downstream applications

English word order: subject — verb — object

Japanese word order: subject — object — verb

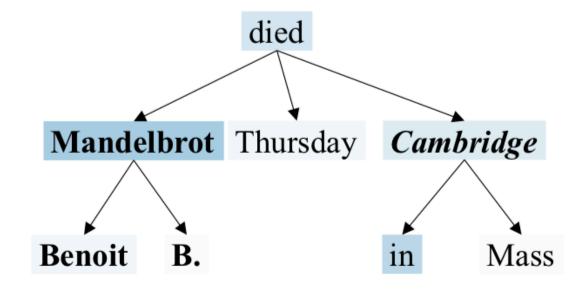


Syntactic parsing: applications

Used as intermediate representation for downstream applications

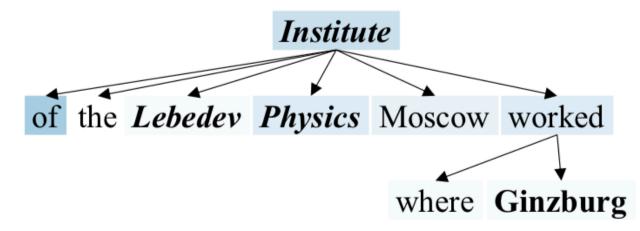
Relation: per:city of death

Benoit B. Mandelbrot, a maverick mathematician who developed an innovative theory of roughness and applied it to physics, biology, finance and many other fields, died Thursday in *Cambridge*, Mass.



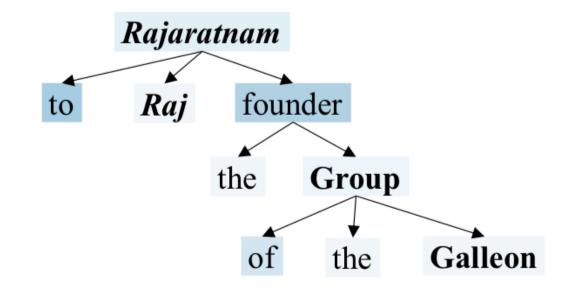
Relation: per:employee_of

In a career that spanned seven decades, Ginzburg authored several groundbreaking studies in various fields -- such as quantum theory, astrophysics, radio-astronomy and diffusion of cosmic radiation in the Earth's atmosphere -- that were of "Nobel Prize caliber," said Gennady Mesyats, the director of the *Lebedev Physics Institute* in Moscow, where **Ginzburg** worked.



Relation: org:founded by

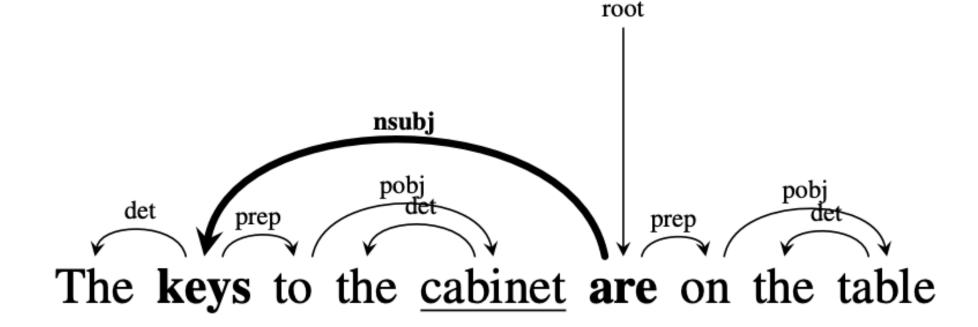
Anil Kumar, a former director at the consulting firm McKinsey & Co, pleaded guilty on Thursday to providing inside information to *Raj Rajaratnam*, the founder of the **Galleon Group**, in exchange for payments of at least \$ 175 million from 2004 through 2009.

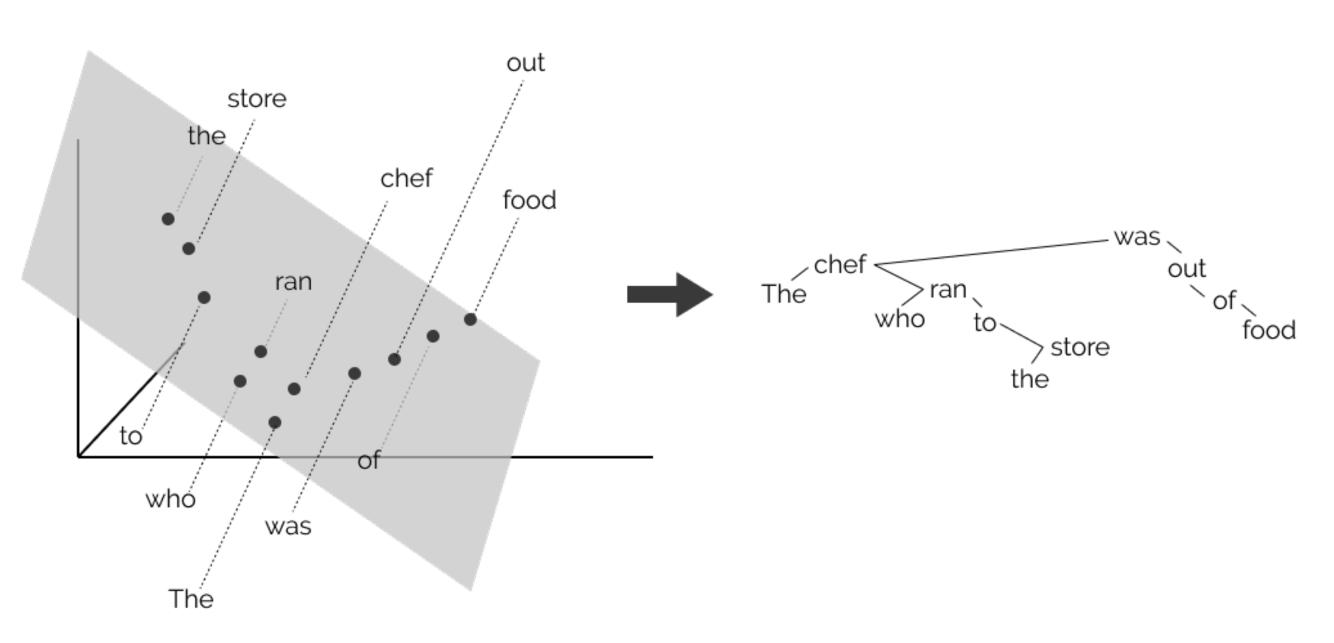


(Note: these are dependency parses)

Tree structures in the deep learning era

The keys to the cabinet <u>is/are</u> on the table.

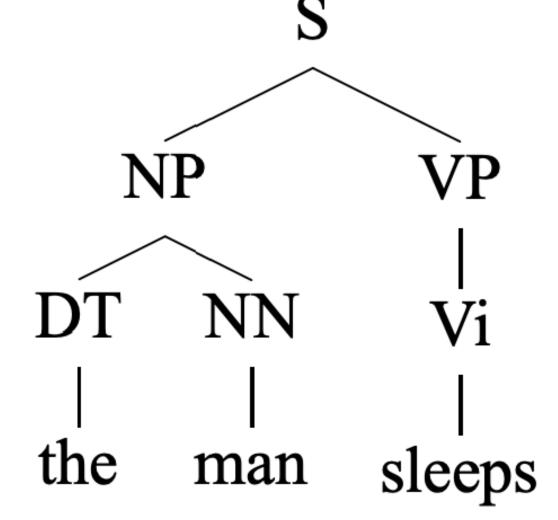




(Linzen et al., 2016): Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies (Hewitt and Manning, 2019): A Structural Probe for Finding Syntax in Word Representations

Context-free grammars (CFGs)

- The most widely used formal system for modeling constituency structure in English and other natural languages
- A context free grammar $G = (N, \Sigma, R, S)$ where
 - N is a set of non-terminal symbols
 - Phrasal categories: S, NP, VP, ...
 - Parts-of-speech (pre-terminals): DT, NN, Vi, ...
 - Σ is a set of terminal symbols: the, man, sleeps, ...
 - R is a set of rules of the form $X \to Y_1 Y_2 ... Y_n$ for $n \ge 1$, $X \in N, Y_i \in (N \cup \Sigma)$
 - Examples: S → NP VP, NP → DT NN, NN → man
 - $S \in N$ is a distinguished start symbol



A context-free grammar for English

```
N = \{ {
m S, NP, VP, PP, DT, Vi, Vt, NN, IN} \} S = {
m Sleeps, saw, man, woman, telescope, the, with, in} \}
```

R =

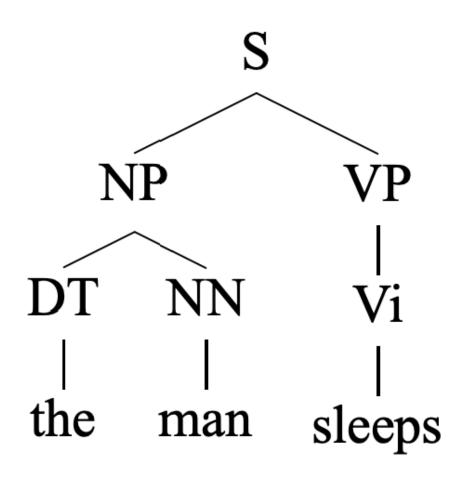
S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

sleeps Vt saw NN man NN woman NN \rightarrow telescope NNdog DT the IN \rightarrow with IN \rightarrow in

Grammar

Lexicon

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase, DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition



(Left-most) Derivations

- A string "the man sleeps" can be derived from S
- **Derivation** = the sequence of rule expansions

- Given a CFG G, a left-most derivation is a sequence of strings s_1, s_2, \ldots, s_n , where
 - $s_1 = S$
 - $s_n \in \Sigma^*$: all possible strings made up of words from Σ
 - Each s_i for $i=2,\ldots,n$ is derived from s_{i-1} by picking the left-most non-terminal X in s_{i-1} and replacing it by some β where $X\to\beta\in R$
- S_n : yield of the derivation

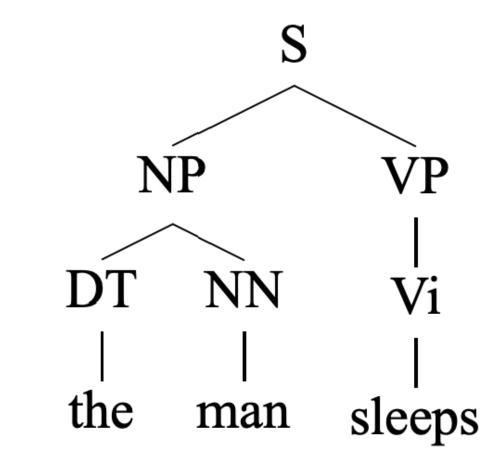
(Left-most) Derivations

•
$$s_1 = S$$

•
$$s_2 = NP VP$$

•
$$s_3 = DT NN VP$$

- s_4 = the NN VP
- s_5 = the man VP
- s_6 = the man Vi
- s_7 = the man sleeps



A derivation can be represented as a parse tree!

The set of possible derivations may be finite or infinite

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

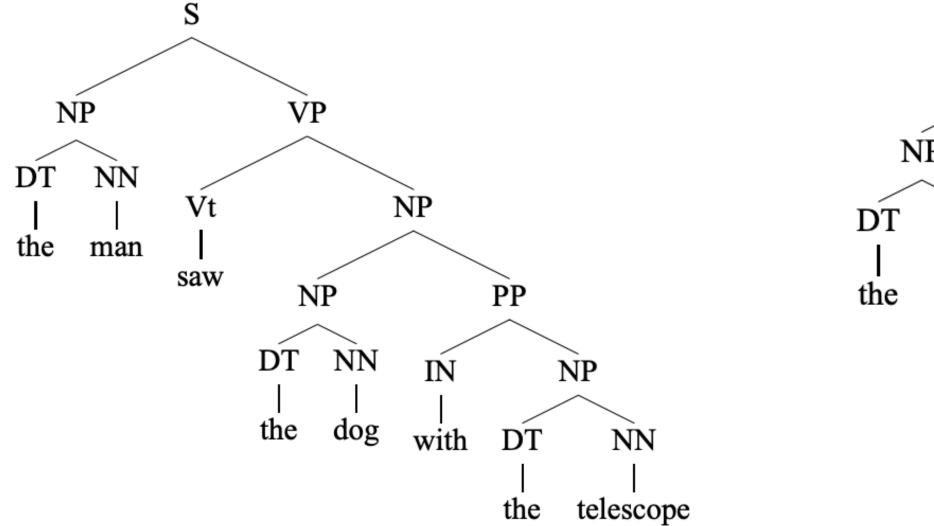
R =

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Ambiguity

Some sentences/phrases may have more than one derivation (i.e. more than one parse tree!).

Attachment ambiguity (e.g., PP attachment)





Which one is the correct parse?

(a) Left (b) Right (c) both correct (d) both incorrect

The answer is (b).

Ambiguity

Some sentences/phrases may have more than one derivation (i.e. more than one parse tree!).

Coordination ambiguity

old men and women

old [men and women]

[old men] and women

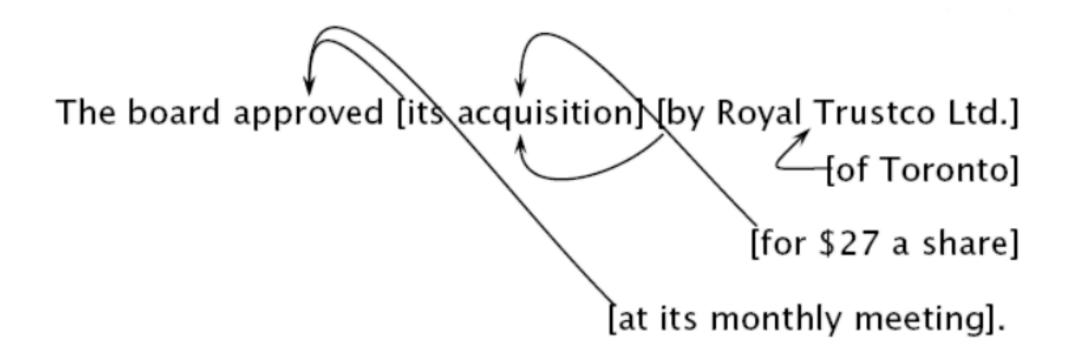
President Kennedy today pushed aside other White House business to devote all his time and attention to working on the Berlin crisis address he will deliver tomorrow night to the American people over nationwide television and radio.

Q: What ambiguities are there in this sentence?

Sentences can have a large number of parses

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto] [for \$27 a share] [at its monthly meeting]



((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

Catalan number:
$$C_n = \frac{1}{n+1} {2n \choose n}$$

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786,...

- There is no way to choose the right parse!
- Constructing a grammar is difficult— a less constrained grammar can parse more sentences but result in more parses for even simple sentences

Probabilistic context-free grammars (PCFGs)

A probabilistic context-free grammar (PCFG) consists of:

- A context-free grammar: $G = (N, \Sigma, R, S)$
- For each rule $\alpha \to \beta \in R$, there is a parameter (probability) $q(\alpha \to \beta) \ge 0$. For any $X \in N$,

$$\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1$$

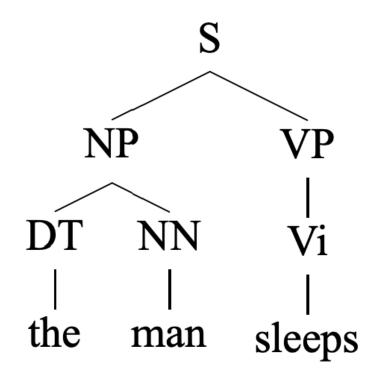
Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4

Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules:

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_l \to \beta_l$$
, the probability of the parse is:

$$\prod_{i=1}^{l} q(\alpha_i \to \beta_i)$$



R,q	=				
	S	\rightarrow	NP	VP	1.0
	VP	\rightarrow	Vi		0.3
	VP	\longrightarrow	Vt	NP	0.5
	VP	\rightarrow	VP	PP	0.2
	NP	\rightarrow	DT	NN	0.8
	NP	\rightarrow	NP	PP	0.2
	PP	\rightarrow	IN	NP	1.0

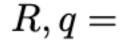
Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4

$$P(t) = q(S \rightarrow NP \ VP) \times q(NP \rightarrow DT \ NN) \times q(DT \rightarrow the)$$

 $\times q(NN \rightarrow man) \times q(VP \rightarrow Vi) \times q(Vi \rightarrow sleeps)$
 $= 1.0 \times 0.8 \times 1.0 \times 0.1 \times 0.3 \times 1.0 = 0.024$

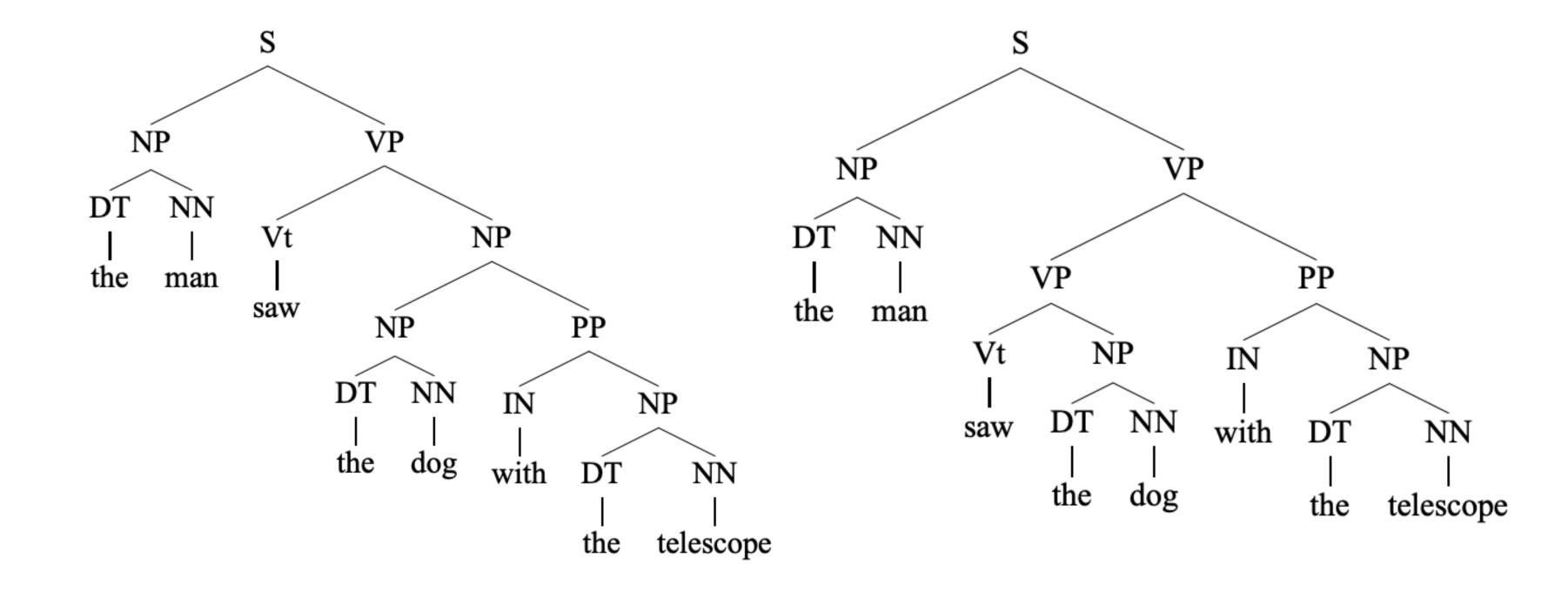
Q: Why do we want $\sum_{\alpha \to \beta: \alpha = X} q(\alpha \to \beta) = 1$?

Which parse tree has a higher probability?



S	\rightarrow	NP	VP	1.0
VP	\rightarrow	Vi		0.3
VP	\rightarrow	Vt	NP	0.5
VP	\rightarrow	VP	PP	0.2
NP	\rightarrow	DT	NN	0.8
NP	\longrightarrow	NP	PP	0.2
PP	\rightarrow	IN	NP	1.0

Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4



$$q(VP \rightarrow Vt NP) \times q(NP \rightarrow NP PP) = 0.5 \times 0.2 = 0.1$$

$$q(VP \rightarrow VP PP) \times q(VP \rightarrow Vt NP) = 0.2 \times 0.5 = 0.1$$

Learning from data: treebanks

Adding probabilities to the rules: probabilistic CFGs

Treebanks: a collection of sentences paired with their annotated parse trees

```
((S
   (NP-SBJ (DT That)
                                    ((S
    (JJ cold) (, ,)
                                       (NP-SBJ The/DT flight/NN )
    (JJ empty) (NN sky) )
                                       (VP should/MD
   (VP (VBD was)
                                         (VP arrive/VB
    (ADJP-PRD (JJ full)
                                           (PP-TMP at/IN
       (PP (IN of)
                                             (NP eleven/CD a.m/RB ))
         (NP (NN fire)
                                           (NP-TMP tomorrow/NN )))))
           (CC and)
           (NN light) ))))
   (. .) ))
                                                      (b)
               (a)
```

The Penn Treebank Project (Marcus et al, 1993)

Penn Treebank

Standard setup

- 40,000 sentences for training
- 1,700 for development
- 2,400 for testing

Phrasal categories

ADJP Adjective phrase
ADVP Adverb phrase

NP Noun phrase

PP Prepositional phrase

S Simple declarative clause

SBAR Subordinate clause

SBARQ Direct question introduced by wh-element

SINV Declarative sentence with subject-aux inversion

SQ Yes/no questions and subconstituent of SBARQ excluding wh-element

VP Verb phrase

WHADVP Wh-adverb phrase WHNP Wh-noun phrase

WHPP Wh-prepositional phrase

X Constituent of unknown or uncertain category

* "Understood" subject of infinitive or imperative

O Zero variant of *that* in subordinate clauses

Γ Trace of wh-Constituent

Penn Treebank

Part-of-speech tagset

CC	Coordinating coni	TO	infinitival to
	Coordinating conj.		
CD	Cardinal number	UH	Interjection
DT	Determiner	VB	Verb, base form
EX	Existential there	VBD	Verb, past tense
FW	Foreign word	VBG	Verb, gerund/present pple
IN	Preposition	VBN	Verb, past participle
JJ	Adjective	VBP	Verb, non-3rd ps. sg. present
JJR	Adjective, comparative	VBZ	Verb, 3rd ps. sg. present
JJS	Adjective, superlative	WDT	Wh-determiner
LS	List item marker	WP	Wh-pronoun
MD	Modal	WP\$	Possessive wh-pronoun
NN	Noun, singular or mass	WRB	Wh-adverb
NNS	Noun, plural	#	Pound sign
NNP	Proper noun, singular	\$	Dollar sign
NNPS	Proper noun, plural		Sentence-final punctuation
PDT	Predeterminer	,	Comma
POS	Possessive ending	:	Colon, semi-colon
PRP	Personal pronoun	(Left bracket character
PP\$	Possessive pronoun)	Right bracket character
RB	Adverb	"	Straight double quote
RBR	Adverb, comparative	•	Left open single quote
RBS	Adverb, superlative	"	Left open double quote
RP	Particle	,	Right close single quote
SYM	Symbol	,,	Right close double quote

Treebanks

Which of the following statements is incorrect?

- (a) A treebank can provide us frequencies and distributional information
- (b) A treebank provides us a way to evaluate systems
- (c) The treebank data can be biased to the selection of sentences/documents
- (d) It is easy to scale up a treebank to multiple domains and languages

The answer is (d).

- Training data: a set of parse trees $t_1, t_2, ..., t_m$
- A PCFG (N, Σ, S, R, q) :
 - \bullet N is the set of all non-terminals seen in the trees
 - Σ is the set of all words seen in the trees
 - S is taken to be S.
 - R is taken to be the set of all rules $\alpha \to \beta$ seen in the trees

```
((S
   (NP-SBJ (DT That)
                                     ((S
     (JJ cold) (, ,)
                                        (NP-SBJ The/DT flight/NN )
     (JJ empty) (NN sky) )
                                        (VP should/MD
   (VP (VBD was)
                                          (VP arrive/VB
     (ADJP-PRD (JJ full)
                                            (PP-TMP at/IN
       (PP (IN of)
                                              (NP eleven/CD a.m/RB ))
         (NP (NN fire)
                                            (NP-TMP tomorrow/NN )))))
           (CC and)
           (NN light) ))))
   (. .) ))
                                                       (b)
               (a)
```

```
( (S ('' '')
    (S-TPC-2
      (NP-SBJ-1 (PRP We) )
      (VP (MD would)
        (VP (VB have)
          (S
            (NP-SBJ (-NONE- *-1))
            (VP (TO to)
              (VP (VB wait)
                (SBAR-TMP (IN until)
                  (S
                    (NP-SBJ (PRP we) )
                    (VP (VBP have)
                      (VP (VBN collected)
                        (PP-CLR (IN on)
                          (NP (DT those)(NNS assets)))))))))))
    (, ,) ('' '')
    (NP-SBJ (PRP he) )
    (VP (VBD said)
      (S (-NONE- *T*-2) ))
    (. .) ))
```

Grammar	Lexicon
$S \rightarrow NP VP$.	$PRP \rightarrow we \mid he$
$S \rightarrow NP VP$	$DT \rightarrow the \mid that \mid those$
$S \rightarrow$ " S ", $NP VP$.	$JJ \rightarrow cold \mid empty \mid full$
$S ightarrow \ -NONE$ -	$NN \rightarrow sky \mid fire \mid light \mid flight \mid tomorrow$
$NP \rightarrow DT NN$	$NNS \rightarrow assets$
$NP \rightarrow DT NNS$	$CC \rightarrow and$
$NP \rightarrow NN CC NN$	$IN \rightarrow of \mid at \mid until \mid on$
$NP \rightarrow CD RB$	CD ightarrow eleven
NP ightarrow DTJJ , $JJNN$	RB ightarrow a.m.
NP o PRP	$VB ightarrow arrive \mid have \mid wait$
NP ightarrow -NONE-	$VBD \rightarrow was \mid said$
$VP \rightarrow MD \ VP$	$VBP \rightarrow have$
VP ightarrow VBDADJP	VBN ightarrow collected
VP o VBD S	$MD \rightarrow should \mid would$
VP o VBNPP	TO ightarrow to
VP o VB S	
$VP o VB \ SBAR$	
$VP o VBP \ VP$	
VP o VBNPP	
$VP \rightarrow TO \ VP$	
$SBAR \rightarrow INS$	
ADJP ightarrow JJ PP	
$PP \rightarrow IN NP$	

A sample of the CFG grammar rules and lexical entries that would be extracted from the three treebank sentences

- Training data: a set of parse trees $t_1, t_2, ..., t_m$
- A PCFG (N, Σ, S, R, q) :
 - ullet N is the set of all non-terminals seen in the trees
 - Σ is the set of all words seen in the trees
 - S is taken to be S.
 - R is taken to be the set of all rules $\alpha \to \beta$ seen in the trees

The maximum-likelihood parameter (MLE) estimates are:

$$q_{ML}(\alpha \to \beta) = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

If we have seen the rule VP \rightarrow Vt NP 105 times, and the the non-terminal VP 1000 times, $q(\text{VP} \rightarrow \text{Vt NP}) = 0.105$

Parsing with PCFGs

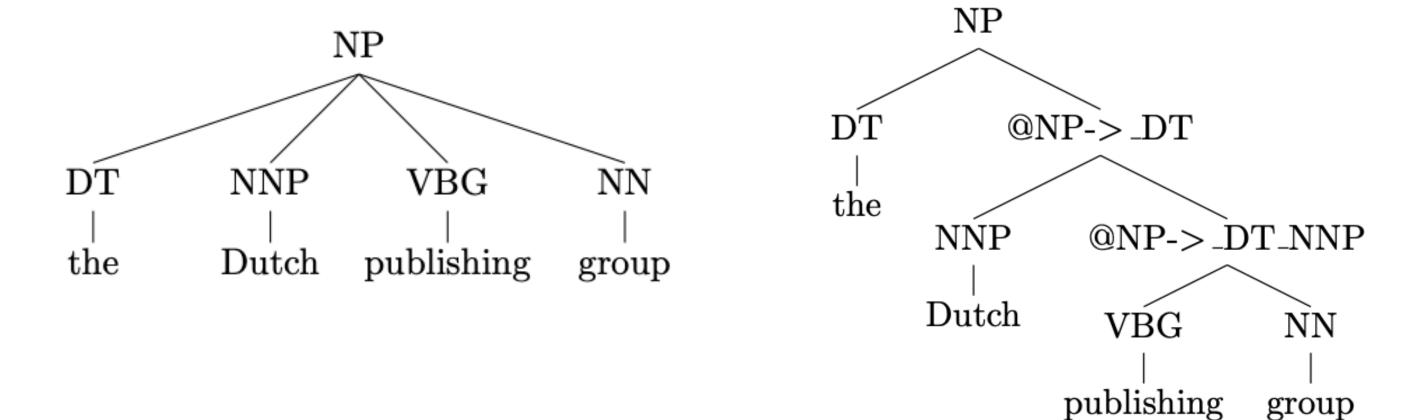
Given a sentence s and a PCFG, how to find the highest scoring parse tree for s?

$$argmax_{t \in \mathcal{T}(s)}P(t)$$

- The CKY algorithm: applies to a restricted type of PCFG— a PCFG in Chomsky normal form (CNF)
 - CKY = the Cocke-Kasami-Younger algorithm
- Chomsky Normal Form (CNF): all the rules take one of the two following forms:
 - $X \rightarrow Y_1Y_2$ where $X \in \mathbb{N}, Y_1 \in \mathbb{N}, Y_2 \in \mathbb{N}$
 - $X \to Y$ where $X \in N, Y \in \Sigma$
- It is possible to convert any PCFG into an equivalent grammar in CNF!
 - However, the trees will look different; It is possible to do "reverse transformation"

Converting PCFGs into a CNF grammar

• n-ary rules (n > 2): NP \rightarrow DT NNP VBG NN

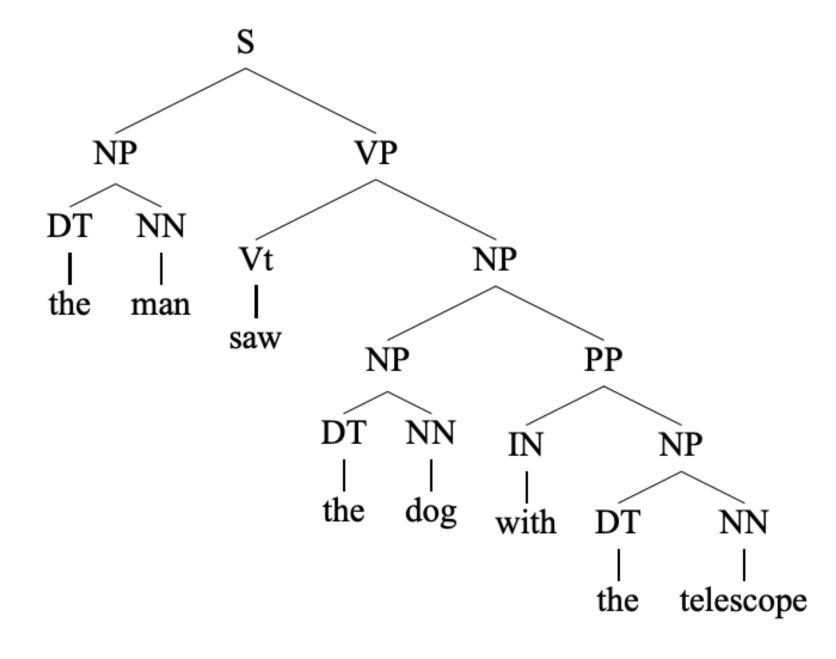


- Unary rules: VP → Vi, Vi → sleeps
 - Eliminate all the unary rules recursively by adding VP → sleeps

The CKY algorithm

- Dynamic programming
- Given a sentence $x_1, x_2, ..., x_n$, denote $\pi(i, j, X)$ as the highest score for any parse tree that dominates words $x_i, ..., x_j$ and has non-terminal $X \in N$ as its root.
- Output: $\pi(1,n,S)$
- Initially, for i = 1, 2, ..., n,

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

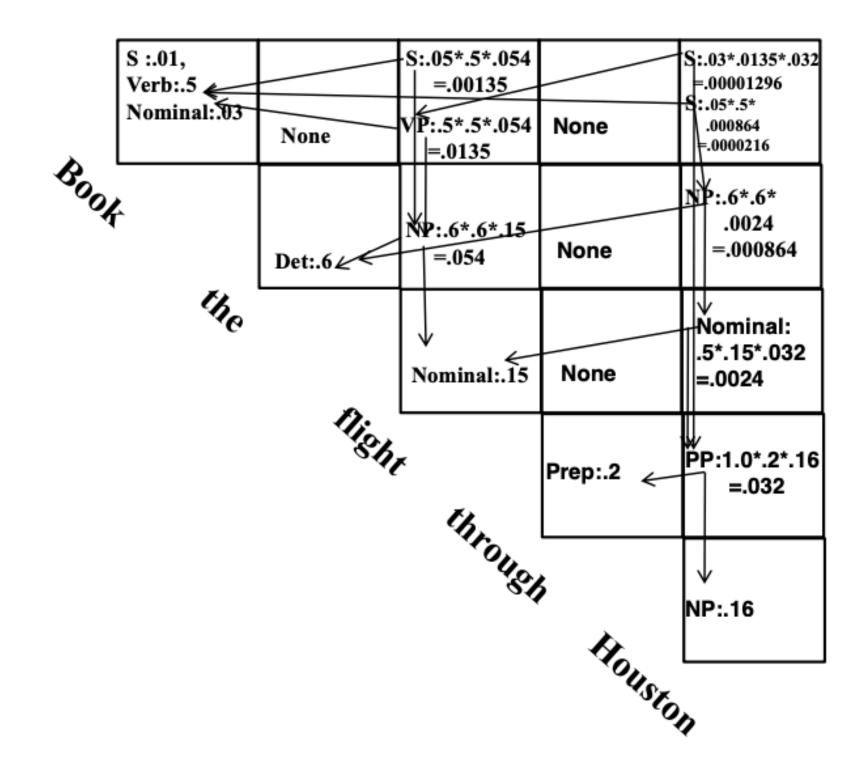


The CKY algorithm

• For all (i, j) such that $1 \le i < j \le n$ for all $X \in N$,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k+1, j, Z)$$

Also stores backpointers which allow us to recover the parse tree



The CKY algorithm

• For all (i, j) such that $1 \le i < j \le n$ for all $X \in N$,

$$\pi(i, j, X) = \max_{X \to YZ \in R, i \le k < j} q(X \to YZ) \times \pi(i, k, Y) \times \pi(k + 1, j, Z)$$

What is the time complexity of the CKY algorithm?

a)
$$O(n^2 |R|)$$

b)
$$O(n^3 |R|)$$

c)
$$O(n^2 |N|^3)$$

c)
$$O(n^2 |N|^3)$$

d) $O(n^3 |N|^3)$

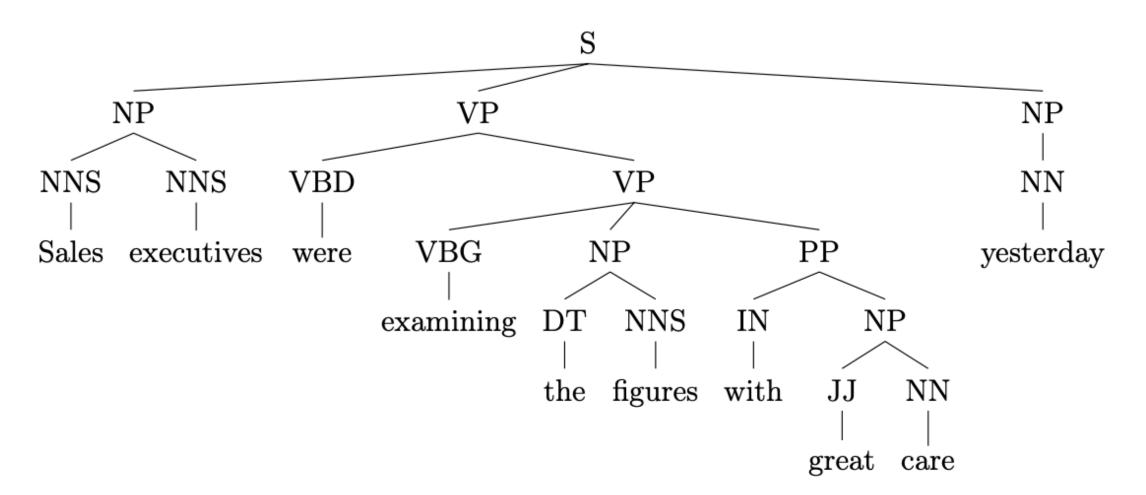
N: set of non-terminal symbols

R: set of derivation rules

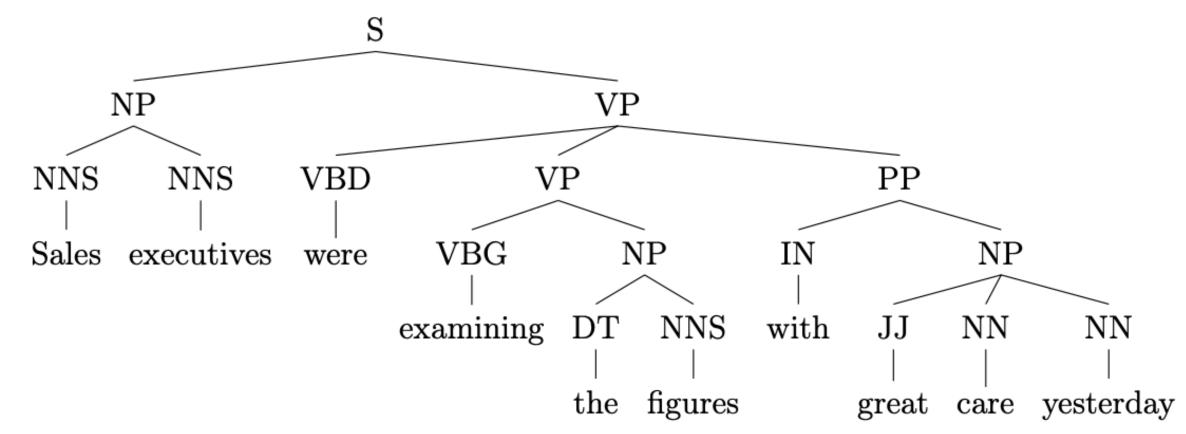
n: sentence length

Evaluating constituency parsing

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)



Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)



Evaluating constituency parsing

- Labeled recall: (# correct constituents in candidate) / (# constituents in gold tree)
- Labeled precision: (# correct constituents in candidate) / (# constituents in candidate)
- F1 is the harmonic mean of precision and recall = (2 * precision * recall) / (precision + recall)
- Part-of-speech tagging accuracy is evaluated separately
- A constituent is correct if there is a constituent in the gold tree with the same starting point, ending point, and non-terminal symbol.

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

What are the labeled precision (P) / recall (R) in the above example?

(a)
$$P = 3/8$$
, $R = 3/7$

(b)
$$P = 3/7$$
, $R = 3/8$

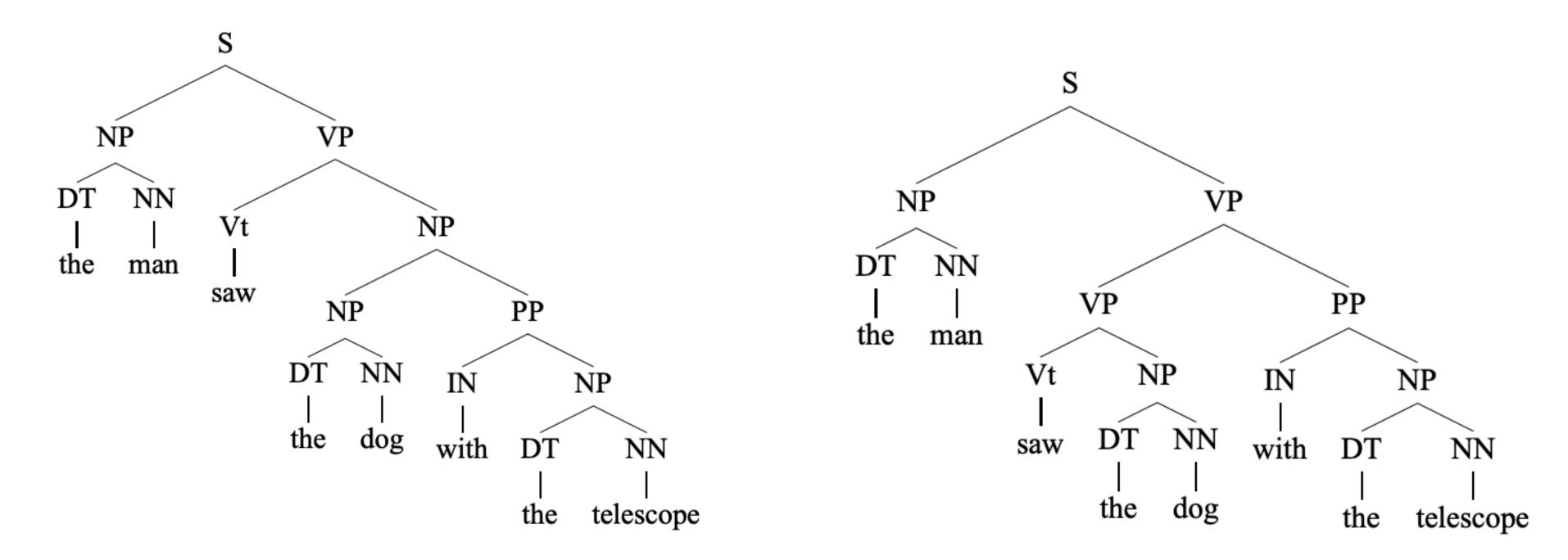
(c)
$$P = 1/2$$
, $R = 1/2$

(d)
$$P = 1$$
, $R = 1$

The answer is (b). F1 = 40%, tagging accuracy = 100%

Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)



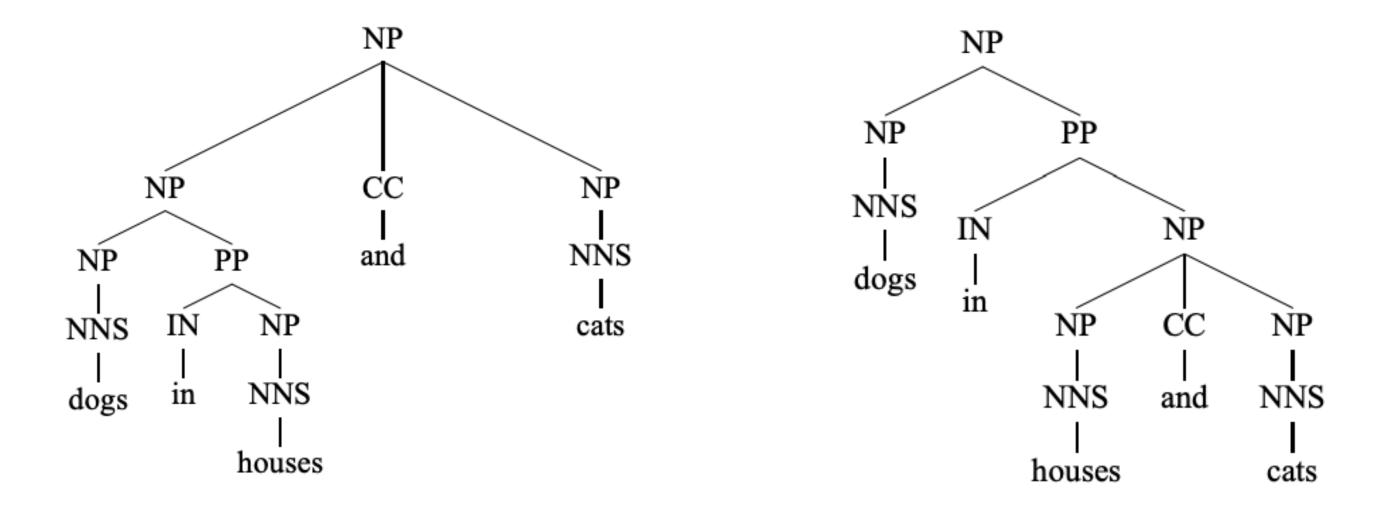
The only difference between these two parses:

$$q(VP \rightarrow VP PP) \text{ vs } q(NP \rightarrow NP PP)$$

... without looking at the words!

Weaknesses of PCFGs

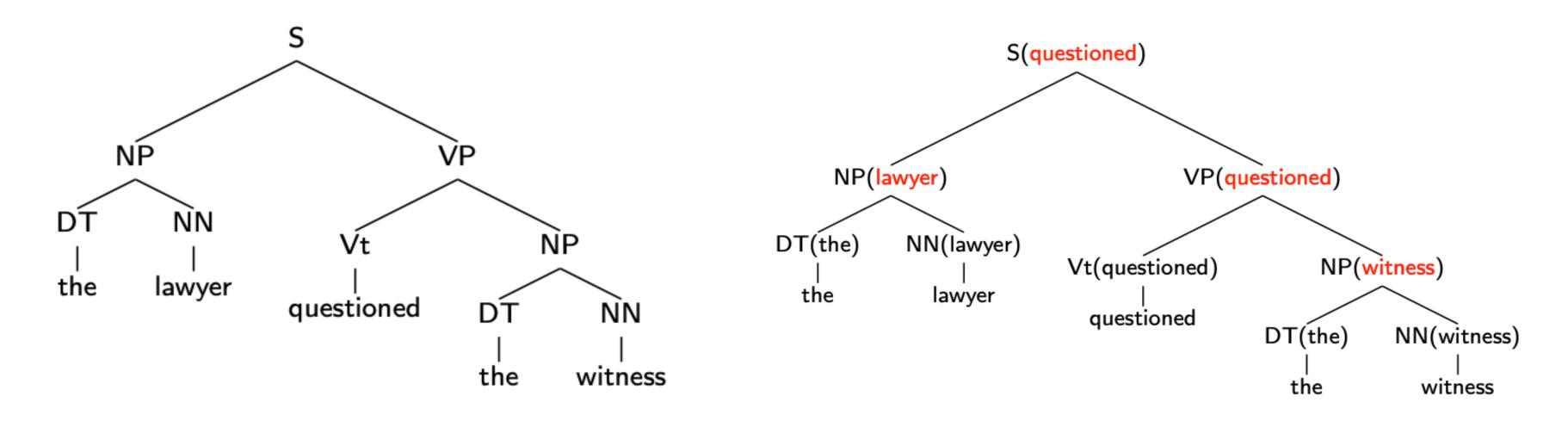
Lack of sensitivity to lexical information (words)



Exactly the same set of context-free rules!

Lexicalized PCFGs

Key idea: add headwords to trees



 Each context-free rule has one special child that is the head of the rule (a core idea in syntax)

$$S \Rightarrow NP VP$$
 (VP is the head)
 $VP \Rightarrow Vt NP$ (Vt is the head)
 $NP \Rightarrow DT NN NN$ (NN is the head)

Lexicalized PCFGs

The heads are decided by rules:

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains a VP: Choose the leftmost VP

Else Choose the leftmost child

Lexicalized PCFGs

- Further reading: Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing.
- Results for a PCFG: 70.6% recall, 74.8% precision
- Results for a lexicalized PCFG: 88.1% recall, 88.3% precision