
L8: Constituency Parsing

COS 484

Natural Language Processing

Spring 2023

Feature templates and sparse features

wi+3

DT NN VB DT NN

The old man the boat

Which of these feature templates
would help most to tag ‘old’ correctly? 
A)

B)

C)

D)

⟨ti, ti−1, wi, wi−1, wi+1⟩
⟨ti, ti−1, wi, wi−1⟩
⟨ti, wi, wi−1, wi+1⟩
⟨ti, wi, wi−1, wi+1, wi+2⟩

Tags

wiwi−1 wi+1 wi+2

Words

⟨ti, ti−1, wi, wi−1⟩Feature template =
Feature =

<latexit sha1_base64="7/UkWK8Aus0NwQwl+EWcrZXCIlg=">AAACTHicbVDLSgNBEJyN7/iKevQyGAQ9GHZF1Isg6kEvopCokA3L7GwnGTL7YKZXDct+oBcP3vwKLx4UEZzEKPFRMFBUddHT5SdSaLTtR6swMjo2PjE5VZyemZ2bLy0sXug4VRxqPJaxuvKZBikiqKFACVeJAhb6Ei79zmHPv7wGpUUcVbGbQCNkrUg0BWdoJK/E3ZBh2/ezk3wNPUH3qItwi9npaU7dGwhaQNHLxIaTf1tH1W/rZigRy2BI/4pU27Dulcp2xe6D/iXOgJTJAGde6cENYp6GECGXTOu6YyfYyJhCwSXkRTfVkDDeYS2oGxqxEHQj65eR01WjBLQZK/MipH11OJGxUOtu6JvJ3un6t9cT//PqKTZ3G5mIkhQh4p+LmqmkGNNeszQQCjjKriGMK2H+SnmbKcbR9F80JTi/T/5LLjYrznZl63yrvH8wqGOSLJMVskYcskP2yTE5IzXCyR15Ii/k1bq3nq036/1ztGANMkvkBwrjH4A4slw=</latexit>

I(ti = NN ^ ti�1 = DT ^ wi = old ^ wi�1 = The)

We can only count the # of features that appear in the training
set (sometimes keeping them when frequency threshold)≥

……1
w1137

1137

Feature template = abstract specification of features
Feature = what we actually use in classifier

(can be very sparse!)

Feature templates and sparse features

P(si = s ∣ si−1, O) =
exp(w ⋅ f(si = s, si−1, O, i))

∑K
s′￼=1 exp(w ⋅ f(si = s′￼, si−1, O, i))

• Bigram MEMM:

P(y = c |x) =
ewc ⋅ x+bc

∑m
j=1 ewj ⋅ x+bj

• Multinominal logistic regression:

Feature 8 =
<latexit sha1_base64="pYKZGDq4IO6Wwz5QnHp480qZa18=">AAACEXicbVC7TgMxEPTxDOEVoKSxiJCgie4QAkoeDWWQSIKURJHP2QtWbN/J3kNEp/wCDb9CQwFCtHR0/A1OcgUERrI0ntldeydMpLDo+1/ezOzc/MJiYam4vLK6tl7a2KzbODUcajyWsbkJmQUpNNRQoISbxABToYRG2L8Y+Y07MFbE+hoHCbQV62kRCc7QSZ3SXgvhHrNQ9AxTw/x2psC4Ck1DN6ofMYvD/U6p7Ff8MehfEuSkTHJUO6XPVjfmqQKNXDJrm4GfYDtjBgWXMCy2UgsJ433Wg6ajmimw7Wy80ZDuOqVLo9i4o5GO1Z8dGVPWDlToKhXDWzvtjcT/vGaK0Uk7EzpJETSfPBSlkmJMR/HQrjDAUQ4cYdwI91fKb5lhHF2IRRdCML3yX1I/qARHlcOrw/LpeR5HgWyTHbJHAnJMTsklqZIa4eSBPJEX8uo9es/em/c+KZ3x8p4t8gvexzesvp4s</latexit>

bigram(American breakfast)

Weight vector for class ‘positive’: wpos,8

Equivalent as: Feature 137 = <latexit sha1_base64="1BveqG/CiP+aEiioe3oXEME79Ac=">AAACLHicbVDLSgMxFM34tr6qLt0Ei6CbMiOibgQfG5cV7APaUjLpnRqaZIbkjlqG+SA3/oogLhRx63eYPha+DgROzj034ZwwkcKi7795U9Mzs3PzC4uFpeWV1bXi+kbNxqnhUOWxjE0jZBak0FBFgRIaiQGmQgn1sH8xnNdvwVgR62scJNBWrKdFJDhDJ3WKFy2Ee8xC0TNM5bvj25kC4xyahu6pfsQs5nu0dQfdHtABPaFjVxJbgeIW8k6x5Jf9EehfEkxIiUxQ6RSfW92Ypwo0csmsbQZ+gu2MGRRcQl5opRYSxvusB01HNVNg29kobE53nNKlUWzc0UhH6veNjClrByp0TsXwxv6eDcX/Zs0Uo+N2JnSSImg+/ihKJcWYDpujXWGAoxw4wrhx0TnlN8wwjq7fgish+B35L6ntl4PD8sHVQen0fFLHAtki22SXBOSInJJLUiFVwskDeSKv5M179F68d+9jbJ3yJjub5Ae8zy8u2Klk</latexit>

bigram(American breakfast) ^ y = positive

Weight vector: <latexit sha1_base64="lrHgm8YXbkHRxNrH7BUJgW+n7Lk=">AAAB7nicbVDLTgJBEOzFF+IL9ehlIjHxRHaViEeiF4+YyCOBDZkdGpgwO7uZmdWQDR/hxYPGePV7vPk3DrAHBSvppFLVne6uIBZcG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLx7cxvPaLSPJIPZhKjH9Kh5APOqLFS66mXepfVaa9YcsvuHGSVeBkpQYZ6r/jV7UcsCVEaJqjWHc+NjZ9SZTgTOC10E40xZWM6xI6lkoao/XR+7pScWaVPBpGyJQ2Zq78nUhpqPQkD2xlSM9LL3kz8z+skZnDtp1zGiUHJFosGiSAmIrPfSZ8rZEZMLKFMcXsrYSOqKDM2oYINwVt+eZU0L8reVblyXynVbrI48nACp3AOHlShBndQhwYwGMMzvMKbEzsvzrvzsWjNOdnMMfyB8/kDv96PMg==</latexit>w137

Syntactic structure: constituency and dependency

Two views of linguistic structure

• Constituency (today)

• = phrase structure grammar

• based on context-free grammars (CFGs)

• Dependency (next class)

Theme: How do we represent the structure of sentences
using (syntax) trees?

Constituency structure

• Phrase structure organizes words into nested constituents

• Starting units: words

the, cuddly, cat, by, the, door

• Words combine into phrases

the cuddly cat, by the door

are given a category: part-of-speech tags

DT, JJ, NN, IN, DT, NN

NP DT JJ NN→

with categories

PP IN DT NN→
recursively

NP NP PP→

• Phrases can combine into bigger phrases
the cuddly cat by the door

NP: noun phrase, PP: prepositional phrase

Syntactic parsing

Syntactic parsing is the task of recognizing a sentence and assigning a structure to it.
Constituency parsing is the task of recognizing a sentence and assigning a constituency structure to it.

Input Output

Sam thinks Sandy likes the book

Syntactic parsing: applications

• Grammar checking

• If a sentence can’t be parsed, it may have grammatical errors (or at
least hard to read)

• Used as intermediate representations for downstream tasks

• Machine translation (syntax-based statistical MT)

• Information extraction

• Question answering

Syntactic parsing: applications

Used as intermediate representation for downstream applications

Image credit: http://vas3k.com/blog/machine_translation/

English word order: subject — verb — object
Japanese word order: subject — object — verb

http://vas3k.com/blog/machine_translation/

Image credit: (Zhang et al, 2018)

Used as intermediate representation for downstream applications

Syntactic parsing: applications

(Note: these are dependency parses)

Tree structures in the deep learning era

The keys to the cabinet is/are on the table.

(Linzen et al., 2016): Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies
(Hewitt and Manning, 2019): A Structural Probe for Finding Syntax in Word Representations

Context-free grammars (CFGs)

• The most widely used formal system for modeling constituency structure in English and other
natural languages

• A context free grammar where

• is a set of non-terminal symbols

• Phrasal categories: S, NP, VP, …

• Parts-of-speech (pre-terminals): DT, NN, Vi, …

• is a set of terminal symbols: the, man, sleeps, ..

• is a set of rules of the form for ,

• Examples: S NP VP, NP DT NN, NN man

• is a distinguished start symbol

G = (N, Σ, R, S)
N

Σ
R X → Y1Y2…Yn n ≥ 1
X ∈ N, Yi ∈ (N ∪ Σ)

→ → →
S ∈ N

S:sentence, VP:verb phrase, NP: noun phrase, DT:determiner,

NN: noun, Vi: intransitive verb…

Not always the sentence non-terminal S

A context-free grammar for English

S:sentence, VP:verb phrase, NP: noun phrase, PP:prepositional phrase,
DT:determiner, Vi:intransitive verb, Vt:transitive verb, NN: noun, IN:preposition

Grammar Lexicon

(Left-most) Derivations

• Given a CFG , a left-most derivation is a sequence of strings , whereG s1, s2, …, sn

• A string “the man sleeps” can be derived from S

• Derivation = the sequence of rule expansions

• : all possible strings made up of words from sn ∈ Σ* Σ

• Each for is derived from by picking the left-most non-
terminal in and replacing it by some where

si i = 2,…, n si−1
X si−1 β X → β ∈ R

• : yield of the derivationsn

• s1 = S

(Left-most) Derivations

• Ss1 =

• NP VPs2 =

• DT NN VPs3 =

• the NN VPs4 =

• the man VPs5 =

• the man Vis6 =
A derivation can be

represented as a parse tree!

The set of possible derivations may be finite or infinite

• the man sleepss7 =

Ambiguity

Some sentences/phrases may have more than one derivation (i.e. more than one parse tree!).

Attachment ambiguity (e.g., PP attachment)

Which one is the correct parse?  
(a) Left (b) Right (c) both correct (d) both incorrect The answer is (b).

Ambiguity

Coordination ambiguity

old men and women

old [men and women] [old men] and women

President Kennedy today pushed aside other White House business to devote
all his time and attention to working on the Berlin crisis address he will deliver
tomorrow night to the American people over nationwide television and radio.

Q: What ambiguities are there in this sentence?

Some sentences/phrases may have more than one derivation (i.e. more than one parse tree!).

Sentences can have a large number of parses

• In fact, sentences can have a very large number of possible parses

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto]
[for $27 a share] [at its monthly meeting]

((ab)c)d (a(bc))d (ab)(cd) a((bc)d) a(b(cd))

Catalan number:
Cn =
1

n + 1 (2n
n)

• Constructing a grammar is difficult— a less constrained grammar can parse more
sentences but result in more parses for even simple sentences

• There is no way to choose the right parse!

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786,…

Probabilistic context-free grammars (PCFGs)

A probabilistic context-free grammar (PCFG) consists of:

• A context-free grammar: G = (N, Σ, R, S)
• For each rule , there is a parameter (probability) . For any ,α → β ∈ R q(α → β) ≥ 0 X ∈ N

∑
α→β:α=X

q(α → β) = 1

Probabilistic context-free grammars (PCFGs)

For any derivation (parse tree) containing rules:
, the probability of the parse is:α1 → β1, α2 → β2, …, αl → βl

l

∏
i=1

q(αi → βi)

P(t) = q(S → NP VP) × q(NP → DT NN) × q(DT → the)

× q(NN → man) × q(VP → Vi) × q(Vi → sleeps)

= 1.0 × 0.8 × 1.0 × 0.1 × 0.3 × 1.0 = 0.024

Q: Why do we want ?∑
α→β:α=X

q(α → β) = 1

Which parse tree has a higher probability?

q(VP → Vt NP) × q(NP → NP PP) = 0.5 × 0.2 = 0.1

q(VP → VP PP) × q(VP → Vt NP) = 0.2 × 0.5 = 0.1

This PCFG can’t identify the correct parse tree!

Learning from data: treebanks

Adding probabilities to the rules: probabilistic CFGs

Treebanks: a collection of sentences paired with their annotated parse trees

The Penn Treebank Project (Marcus et al, 1993)

Penn Treebank

Standard setup

• 40,000 sentences for training

• 1,700 for development

• 2,400 for testing

Phrasal categories

Penn Treebank
Part-of-speech tagset

Which of the following statements is incorrect?

(a) A treebank can provide us frequencies and distributional information

(b) A treebank provides us a way to evaluate systems

(c) The treebank data can be biased to the selection of sentences/documents

(d) It is easy to scale up a treebank to multiple domains and languages

The answer is (d).

Treebanks

Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG :

• is the set of all non-terminals seen in the trees

• is the set of all words seen in the trees

• is taken to be S.

• is taken to be the set of all rules seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

Deriving a PCFG from a treebank

Deriving a PCFG from a treebank

A sample of the CFG grammar rules and lexical entries that
would be extracted from the three treebank sentences

Deriving a PCFG from a treebank

• Training data: a set of parse trees t1, t2, …, tm

• A PCFG :

• is the set of all non-terminals seen in the trees

• is the set of all words seen in the trees

• is taken to be S.

• is taken to be the set of all rules seen in the trees

(N, Σ, S, R, q)
N
Σ
S
R α → β

The maximum-likelihood parameter (MLE) estimates are:

qML(α → β) =
Count(α → β)

Count(α)

If we have seen the rule 105 times, and the the non-terminal 1000
times,

VP → Vt NP VP
q(VP → Vt NP) = 0.105

Parsing with PCFGs

• Given a sentence and a PCFG, how to find the highest scoring parse tree for ?s s

• The CKY algorithm: applies to a restricted type of PCFG— a PCFG in Chomsky
normal form (CNF)

• CKY = the Cocke-Kasami-Younger algorithm

• Chomsky Normal Form (CNF): all the rules take one of the two following forms:

• where

• where

X → Y1Y2 X ∈ N, Y1 ∈ N, Y2 ∈ N
X → Y X ∈ N, Y ∈ Σ

• It is possible to convert any PCFG into an equivalent grammar in CNF!

• However, the trees will look different; It is possible to do “reverse transformation”

argmaxt∈𝒯(s)P(t)

Converting PCFGs into a CNF grammar

• -ary rules (): n n > 2 NP → DT NNP VBG NN

• Unary rules: VP → Vi, Vi → sleeps

• Eliminate all the unary rules recursively by adding VP → sleeps

The CKY algorithm

• Dynamic programming

• Given a sentence , denote as the highest score for any
parse tree that dominates words and has non-terminal as its root.

x1, x2, …, xn π(i, j, X)
xi, …, xj X ∈ N

• Output: π(1,n, S)

• Initially, for , i = 1,2,…, n

π(i, i, X) = {q(X → xi) if X → xi ∈ R
0 otherwise

The CKY algorithm

• For all such that for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

Also stores backpointers which allow us to recover the parse tree

The CKY algorithm

• For all such that for all , (i, j) 1 ≤ i < j ≤ n X ∈ N

π(i, j, X) = max
X→YZ∈R,i≤k<j

q(X → YZ) × π(i, k, Y) × π(k + 1,j, Z)

What is the time complexity of the CKY algorithm?

a) O(n2 |R |)
b) O(n3 |R |)

d) O(n3 |N |3)
c) O(n2 |N |3)

N: set of non-terminal symbols
R: set of derivation rules
n: sentence length

The answer is (b).

Evaluating constituency parsing

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)

Evaluating constituency parsing

• Labeled recall: (# correct constituents in candidate) / (# constituents in gold tree)

• Labeled precision: (# correct constituents in candidate) / (# constituents in candidate)

• F1 is the harmonic mean of precision and recall = (2 * precision * recall) / (precision + recall)

• Part-of-speech tagging accuracy is evaluated separately

• A constituent is correct if there is a constituent in the gold tree with the same starting point,

ending point, and non-terminal symbol.

Precision and Recall

What are the labeled precision (P) / recall (R) in the above example?

(a) P = 3/8, R = 3/7

(b) P = 3/7, R = 3/8

(c) P = 1/2, R = 1/2

(d) P = 1, R = 1

The answer is (b). F1 = 40%, tagging accuracy = 100%

Predicted: (1, 10, S), (1, 2, NP), (3, 10, VP), (4, 6, VP), (5, 6, NP), (7, 10, PP), (8, 10, NP)

Gold: (1, 10, S), (1, 2, NP), (3, 9, VP), (4, 9, VP), (5, 6, NP), (7, 9, PP), (8, 9, NP), (10, 10, NP)

Weaknesses of PCFGs

Lack of sensitivity to lexical information (words)

The only difference between these two parses:
 vs q(VP → VP PP) q(NP → NP PP)

… without looking at the words!

Weaknesses of PCFGs

Exactly the same set of context-free rules!

Lack of sensitivity to lexical information (words)

Lexicalized PCFGs

• Key idea: add headwords to trees

• Each context-free rule has one special child that is the head of the rule
(a core idea in syntax)

Lexicalized PCFGs

The heads are decided by rules:

Lexicalized PCFGs

• Further reading: Michael Collins. 2003. Head-Driven Statistical Models for
Natural Language Parsing.

• Results for a PCFG: 70.6% recall, 74.8% precision

• Results for a lexicalized PCFG: 88.1% recall, 88.3% precision

