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Review Question
You train an n-gram model on some training corpus  using counts

. To prevent (possible) infinite perplexity on the test 

corpus , you apply Laplace smoothing. Let  be the unsmoothed probabilities and 
 be the smoothed probabilities.
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This is undetermined! It’s not clear that the test corpus will have infinite perplexity. It is possible that the 
test corpus is very similar to the train corpus, and smoothing will cause its probability to drop.
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Todays Topics
Given a document  and a set of classes , we want to find the class  
that maximizes . Two ways to do this: 

Naive Bayes 

Logistic Regression

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci
P(c |d)



Naive Bayes Intuition
Given a document  and a set of classes , we want to find the class  
that maximizes  (the MAP estimate)
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Naive Bayes: An “illustration”
Summary: We want to find the class 


Let’s say you work on a group project with a friend, and we want a model that can attribute your writing vs 
your friend’s writing. C = {you, friend} 

cMAP = arg max
c∈C

P(d |c)P(c)
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Summary: We want to find the class 


Now given a new sample , we can compute the probability under each LM to find . And multiply 
this by  to find the MAP estimate.  
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Summary: We want to find the class 


The prior is important when the probabilities are close under each LM! 

cMAP = arg max
c∈C

P(d |c)P(c)
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Naive Bayes: One extra detail…
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Now, to compute  for any input document  We can train two language models, one trained on 
your writing, and one on your friend’s 

cMAP = arg max
c∈C

P(d |c)P(c)

P(d |c) d

P(x|you) To simplify our LM, we use unigrams. This is 
equivalent to saying, we assume all words are 
independent of each other. This is the “naive” 
assumption of Naive Bayes
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1. Given a document  and a set of classes , we want to find the class  

that maximizes .


2. We don’t know , but we know how to estimate  using a simple LM!  we can get 
 using Bayes’ rule!


1.  


3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents 
that are class 


4. To estimate  let’s be lazy and choose the simplest possible LM that assume (Naively) that each 
word is independent - the unigram 


5. Combine 3 + 4 and you can find the MAP estimate: 
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Logistic Regression: Intuition
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that maximizes  
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features constructed from the input document .
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This is the feature vector  for some input 
document 
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Given a document  and a set of classes , we want to find the class  
that maximizes  


Compared to NB, with LR we take a more direct approach: directly compute  given a set of 
features constructed from the input document .
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Logistic Regression: Features

Document

d Features LR Model P(c |d)

The features to use is a design decision. A 
natural default is to use a vector 
where each dim is the counts of one word 
in the vocabulary. (BOW)

x ∈ ℝ|V|



Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 
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Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.
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Given a document  and a set of classes , we want to find the class  
that maximizes   

Now given some feature vector  how do we turn this to a probability? 

1. Convert the features to a number. The higher the number, the more confident we are that the document 

belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.


1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
x

Logistic Regression: LR Model
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d Features LR Model P(c |d)

w ⋅ x + b
σ(w ⋅ x + b)

1 − σ(w ⋅ x + b)
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and labels. Assume that each datapoint is independent of the other.





How to set ? Use the MLE principle! Set  such that  is maximized. This is analogous to 
setting the n-gram probabilities such that the probability of the train corpus is maximal. 


So we can directly use GD to minimize: 


Since  is monotonic, this is equivalent to minimizing:     this is just CE loss!
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1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.
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2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)


3. Somehow we need to turn  into a single number, because  is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features: 


4. Oh no! The linear combination might not be in , so we normalize using sigmoid: 

1. The probability for one class is , so the other class must have prob  


5. Given our model, we can estimate the probability of a train set under the model 
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1. Given a document  and a set of classes , we want to find the class  that 
maximizes . Let’s say we estimating  reliably is hard, we will need to estimate  directly.


2. Want to turn  into a vector  because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in  is the # of times a word in  appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
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5. Given our model, we can estimate the probability of a train set under the model 

1. We will set  so that  =  is maximal (MLE principle) 
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6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.
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PMI: Quick Intuition



 tells us how correlated two events  are:


• : two events are not correlated at all (if you see , tells you nothing about )


• : two events are correlated (if you see , you are more likely to see , vice versa)


• : two events are anti-correlated (if you see  you are less likely to see y, vice versa)


PMI(x, y) x, y
PMI(x, y) = 0 x y
PMI(x, y) > 0 x y
PMI(x, y) < 0 x
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• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting 
model be anything, we want models where: 


•  should be small (Ridge regression) (note  in the slides)

•  should be small (Lasso regression) 


• Practically how do we introduce this to our models? Add it to the loss function! If the original loss 
function is:  


• Ridge Regression new loss: 


• Lasso Regression new loss: 


• The key difference between ridge and lasso regression:

• Weights in Lasso go to 0, so it can be used for feature selection!

∥ θ ∥2 ∥ w ∥2

∥ θ ∥1

L
ℓridge(θ) = L(θ) + λ ∥ θ ∥2

ℓlasso(θ) = L(θ) + λ ∥ θ ∥1


