Precept 2: Classification cos 484

Austin Wang 2/8 2023

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{\sum_{v \in V} c(w_1, \dots, w_{n-1}, v)}.$ To prevent (possible) infinite perplexity on the test

corpus D_t , you apply Laplace smoothing. Let $P(D), P(D_t)$ be the unsmoothed probabilities and $P'(D), P'(D_t)$ be the smoothed probabilities.

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t ,

you apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and n, etc)?

1. $ppl'(D) \ge ppl(D)$

2. $ppl'(D_t) < ppl(D_t)$

3. $ppl(D) < ppl(D_t)$

 $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data,

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t , you

of the smoothed model. Is the following T, F or undetermined (depends on model, data, n, etc)?

1. $ppl'(D) \ge ppl(D)$

that P(D) cannot increase under any other distribution for $P(w_n | w_1, \ldots, w_{n-1})$

2. $ppl'(D_t) < ppl(D_t)$

3. $ppl(D) < ppl(D_t)$

- apply Laplace smoothing. Let ppl(D), $ppl(D_t)$ be perplexities of the unsmoothed model and ppl'(D), $ppl'(D_t)$

This is true! Remember that setting the probability using counts (above) is the MLE estimate, which means

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t , you

apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and etc)?

1.
$$ppl'(D) \ge ppl(D)$$
 - T

2. $ppl'(D_t) < ppl(D_t)$

test corpus is very similar to the train corpus, and smoothing will cause its probability to drop.

3. $ppl(D) < ppl(D_t)$

- $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data, n,

This is undetermined! It's not clear that the test corpus will have infinite perplexity. It is possible that the

You train an n-gram model on some training corpus D using counts $P(w_n | w_1, \dots, w_{n-1}) = \frac{c(w_1, \dots, w_n)}{c(w_1, \dots, w_{n-1})}.$ To prevent (possible) infinite perplexity on the test corpus D_t ,

you apply Laplace smoothing. Let $ppl(D), ppl(D_t)$ be perplexities of the unsmoothed model and n, etc)?

- 1. $ppl'(D) \ge ppl(D) T$
- 2. $ppl'(D_t) < ppl(D_t) U$
- 3. $ppl(D) < ppl(D_{t})$

 $ppl'(D), ppl'(D_t)$ of the smoothed model. Is the following T, F or undetermined (depends on model, data,

Undetermined. A test corpus consisting solely of high-frequency n-grams might have a higher probability

Todays Topics

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d). Two ways to do this:

Naive Bayes

Logistic Regression

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$ (the MAP estimate)

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$ (the MAP estimate)

Language Model: $P(w_1, \ldots, w_K) = P(d)$ gives us a probability for a text sequence

Conditional Language Model: P(d | c) gives us probability of a text sequence conditioned on something

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$ (the MAP estimate)

Language Model: $P(w_1, \ldots, w_K) = P(d)$ gives us a probability for a text sequence

Given a conditional language model (which conditions on the classes) we can find the MAP estimate using Bayes rule!

Conditional Language Model: P(d | c) gives us probability of a text sequence conditioned on something

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$ (the MAP estimate)

Language Model: $P(w_1, \ldots, w_K) = P(d)$ gives us a probability for a text sequence

Conditional Language Model: P(d | c) gives us probability of a text sequence conditioned on something

Given a conditional language model (which conditions on the classes) we can find the MAP estimate using Bayes rule!

$c_{\rm MAP}$ =

$$= \operatorname{argmax}_{c \in C} P(c \mid d)$$
$$= \operatorname{argmax}_{c \in C} \frac{P(d \mid c) P(c)}{P(d)}$$
$$= \operatorname{argmax}_{c \in C} P(d \mid c) P(c)$$

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Let's say you work on a group project with a friend, and we want a model that can attribute your writing vs your friend's writing. C = {you, friend}

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

your friend's writing. C = {you, friend}

- $c \in C$
- Let's say you work on a group project with a friend, and we want a model that can attribute your writing vs

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Let's say you work on a group project with a friend, and we want a model that can attribute your writing vs your friend's writing. C = {you, friend}

Summary: We want to find the class $c_{MAP} = \arg \max_{c \in C} P(d | c) P(c)$

First, we determine who did more work. This gives us a prior estimate (bias) on whether any document was written by you or your friend.

Summary: We want to find the class $c_{MAP} = \arg \max_{c \in C} P(d | c) P(c)$

First, we determine who did more work. This gives us a prior estimate (bias) on whether any document was written by you or your friend.

$$P(friend) = 3/4$$

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c) P(c)$

Now, to compute P(d | c) for any input document d We can train two language models, one trained on your writing, and one on your friend's

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Now given a new sample d, we can compute the probability under each LM to find $P(d \mid c)$. And multiply this by P(c) to find the MAP estimate.

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Now given a new sample d, we can compute the probability under each LM to find $P(d \mid c)$. And multiply this by P(c) to find the MAP estimate.

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Now given a new sample d, we can compute the probability under each LM to find $P(d \mid c)$. And multiply this by P(c) to find the MAP estimate.

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

Now given a new sample d, we can compute the probability under each LM to find $P(d \mid c)$. And multiply this by P(c) to find the MAP estimate.

 $c \in C$

$$(y) = (y/4)^{2} = (y/4)^{2}$$

MAP estimate is you!

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c)P(c)$

The prior is important when the probabilities are close under each LM!

 $c \in C$

$$\begin{array}{c} \text{(friend)} = \\ 3/4 \end{array} = \begin{array}{c} 3/40 \end{array}$$

MAP estimate is friend!

= X
$$P(you) = 1 / 40$$

Naive Bayes: One extra detail...

Summary: We want to find the class $c_{MAP} = \arg \max_{a} P(d | c) P(c)$

your writing, and one on your friend's

Now, to compute $P(d \mid c)$ for any input document d We can train two language models, one trained on

$P(w_1, w_2, \dots, w_K | c) = P(w_1 | c) P(w_2 | c) \dots P(w_K | c)$

Naive Bayes: One extra detail...

Summary: We want to find the class $c_{MAP} = \arg \max P(d | c) P(c)$

your writing, and one on your friend's

To simplify our LM, we use unigrams. This is equivalent to saying, we assume all words are **independent** of each other. This is the "naive" assumption of Naive Bayes

Now, to compute $P(d \mid c)$ for any input document d We can train two language models, one trained on

$P(w_1, w_2, \dots, w_K | c) = P(w_1 | c) P(w_2 | c) \dots P(w_K | c)$

1. Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!
 - **1.** $P(c | d) \propto P(d | c)P(c)$

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes P(c | d).
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

3. Bayes rule requires us to estimate P(c), we cathat are class c

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set c that maximizes $P(c \mid d)$.
- **2.** We don't know $P(c \mid d)$, but we know how to e $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

- **3.** Bayes rule requires us to estimate P(c), we cathat are class c
- **4.** To estimate $P(d \mid c)$ let's be lazy and choose th word is independent the unigram

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

4. To estimate $P(d \mid c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each

- that maximizes $P(c \mid d)$.
- $P(c \mid d)$ using Bayes' rule!

1. $P(c \mid d) \propto P(d \mid c)P(c)$

- that are class *c*
- word is independent the unigram
- **5.** Combine 3 + 4 and you can find the MAP estimate: $c_{MAP} = \arg \max P(d | c)P(c)$

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c

2. We don't know $P(c \mid d)$, but we know how to estimate $P(d \mid c)$ using a simple LM! \rightarrow we can get

3. Bayes rule requires us to estimate P(c), we can do this just by counting the proportion of documents

4. To estimate $P(d \mid c)$ let's be lazy and choose the simplest possible LM that assume (Naively) that each

Advantages of Naive Bayes

- Very fast, low storage requirements
- Robust to irrelevant features Irrelevant features cancel each other without affecting results

- Optimal if the independence assumptions hold
- A good dependable baseline for text classification However, other classifiers can give better accuracy

If assumed independence is correct, this is the 'Bayes optimal' classifier

Todays Topics

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d). Two ways to do this:

Naive Bayes

Logistic Regression

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of class that maximizes $P(c \mid d)$

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Intuition

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute P(c | d) given a set of features constructed from the input document d.

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Compared to NB, with LR we take a more direct approach: directly compute $P(c \mid d)$ given a set of features constructed from the input document d.

Var	Definition
x_1	$count(positive lexicon) \in doc)$
x_2	$count(negative \ lexicon) \in doc)$
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_6	log(word count of doc)

Logistic Regression: Features

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Compared to NB, with LR we take a more direct approach: directly compute $P(c \mid d)$ given a set of features constructed from the input document d.

Var	Definition
x_1	$count(positive lexicon) \in doc)$
x_2	$count(negative \ lexicon) \in doc)$
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> 5	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \\ \log(\text{word count of doc}) \end{cases}$
л6	log(word count of doc)

Value	
3	
2	The features to use is a design decision. A
1	natural default is to use a vector $x \in \mathbb{R}^{ V }$
3	where each dim is the counts of one word
0	in the vocabulary. (BOW)
ln(64) = 4.15	

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of cl that maximizes P(c | d)

Now given some feature vector *x* how do we turn this to a probability?

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x how do we turn this to a probability?

belongs to a class. We call these numbers logits.

Convert the features to a number. The higher the number, the more confident we are that the document

Logistic Regression: LR Model

Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c_i that maximizes $P(c \mid d)$

Now given some feature vector x how do we turn this to a probability?

- belongs to a class. We call these numbers **logits**.
- 2. Normalize the logits using sigmoid so we get a well-defined probability distribution.

Convert the features to a number. The higher the number, the more confident we are that the document

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

We use GD. But what should we make the loss?

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$

We use GD. But what should we make the loss?

and labels. Assume that each datapoint is independent of the other.

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss?

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

 $P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

How to set $\theta = (w, b)$?

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss?

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize: $-\prod_i P(c_i | d_i)$

Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

Summary: we want to estimate $P(c \mid d)$ using a model $\sigma(w \cdot x + b)$ We use GD. But what should we make the loss? Let our train dataset be $\mathcal{D} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$. Let's find the probability of seeing these documents and labels. Assume that each datapoint is independent of the other.

$$P(\mathcal{D}) = P(c_1 \mid d_1) \cdots P(c_n \mid d_n) = \prod_i P(c_i \mid d_i)$$

setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize: $-\prod_i P(c_i)$ Since log is monotonic, this is equivalent to minim

How to set $\theta = (w, b)$? Use the MLE principle! Set θ such that $P(\mathcal{D})$ is maximized. This is analogous to

$$d_i$$
)
nizing: $-\sum_i \log P(c_i | d_i) \leftarrow \text{this is just CE loss!}$

Summary: we want to estimate P(c | d) using a model $\sigma(w \cdot x + b)$ Want to minimize: $-\sum \log P(c_i | d_i) \leftarrow$ this is just CE loss!

Loss:
$$-\log \prod_{i=1}^{n} P(y_i | x_i) = -\sum_{i=1}^{n} \log \frac{1}{2}$$

$$L_{CE} = -\sum_{i=1}^{n} [y_i \log y_i]$$

 $\log P(y_i | x_i)$

 $g\hat{y}_i + (1 - y_i)\log(1 - \hat{y}_i)]$

Summary: we want to estimate P(c | d) using a model $\sigma(w \cdot x + b)$ Want to minimize: $-\sum \log P(c_i | d_i) \leftarrow$ this is just CE loss!

• Loss:
$$-\log \prod_{i=1}^{n} P(y_i | x_i) = -\sum_{i=1}^{n} \log \frac{1}{x_i}$$

$$L_{CE} = -\sum_{i=1}^{n} [y_i \log y_i]$$

• Gradient,
$$\frac{dL_{CE}(\mathbf{w}, b)}{dw_j} = \sum_{i=1}^{n} [j]$$
•
$$\frac{dL_{CE}(\mathbf{w}, b)}{db} = \sum_{i=1}^{n} [\hat{y}_i - y_i]$$

 $\log P(y_i | x_i)$

 $g\hat{y}_i + (1 - y_i)\log(1 - \hat{y}_i)]$

 $\hat{y}_i - y_i] x_{i,j}$ The j-th value of the feature vector \mathbf{x}_i

maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

- **1.** Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.
- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

- maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly. **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
 - 2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number. **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes P(c | d). Let's say we estimating P(d | c) reliably is hard, we will need to estimate P(c | d) directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

1. Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$

2. For stability and convenience we can take the log to minimize $-\sum \log P(c_i | d_i)$ this is CE loss

- **2.** Want to turn d into a vector x because then we can operate on it more conveniently.
 - **1.** We can use a BOW, where each dim in $x \in \mathbb{R}^{|V|}$ is the # of times a word in V appears
- **3.** Somehow we need to turn x into a single number, because $P(c \mid d)$ is a single number.
 - **1.** Let's be as lazy as possible and just take a linear combination of the features: $w \cdot x + b$
- **4.** Oh no! The linear combination might not be in [0,1], so we normalize using sigmoid: $\sigma(x) = (1 + e^{-x})^{-1}$
 - **1.** The probability for one class is $\sigma(w \cdot x + b)$, so the other class must have prob $1 \sigma(w \cdot x + b)$
- 5. Given our model, we can estimate the probability of a train set under the model $P(\mathcal{D})$
 - **1.** We will set w, b so that $P(\mathcal{D}) = \prod_i P(c_i | d_i)$ is maximal (MLE principle)
 - 2. For stability and convenience we can take the

1. Given a document $d = w_1, \ldots, w_K$ and a set of classes $\mathscr{C} = \{c_1, \ldots, c_m\}$, we want to find the class c that maximizes $P(c \mid d)$. Let's say we estimating $P(d \mid c)$ reliably is hard, we will need to estimate $P(c \mid d)$ directly.

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

e log to minimize –
$$\sum_{i} \log P(c_i | d_i)$$
 this is CE loss

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

Logistic Regression: what's good and what's not

- More freedom in designing features
 - No strong independence assumptions like Naive Bayes

- Can even have the same feature twice! (why?)
- Interpreting learned weights can be challenging.

May not work well on small datasets (compared to Naive Bayes)

PMI(x, y) tells us how correlated two events x, y are:

- PMI(x, y) = 0: two events are not correlated at all (if you see x, tells you nothing about y)
- PMI(x, y) > 0: two events are correlated (if you see x, you are more likely to see y, vice versa)

• PMI(x, y) < 0: two events are anti-correlated (if you see x you are less likely to see y, vice versa)

PMI(x, y) tells us how correlated two events x, y are:

- PMI(x, y) = 0: two events are not correlated at all (if you see x, tells you nothing about y)
- PMI(x, y) > 0: two events are correlated (if you see x, you are more likely to see y, vice versa)
- PMI(x, y) < 0: two events are anti-correlated (if you see x you are less likely to see y, vice versa)

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)} \qquad PMI(w = cherry, c = pie) = \log_2 \frac{P(w = cherry, c = pie)}{P(w = cherry)P(c = pie)}$$

PMI(x, y) tells us how correlated two events x, y are:

- PMI(x, y) = 0: two events are not correlated at all (if you see x, tells you nothing about y)
- PMI(x, y) > 0: two events are correlated (if you see x, you are more likely to see y, vice versa)
- PMI(x, y) < 0: two events are anti-correlated (if you see x you are less likely to see y, vice versa)

$$PMI(x, y) = \log_2 \frac{P(x, y)}{P(x)P(y)} \qquad PMI(w = cherry, c = pie) = \log_2 \frac{P(w = cherry, c = pie)}{P(w = cherry)P(c = pie)}$$

$$PPMI(w,c) = \max\left(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0\right)$$

Regularization is a technique to help reduce overfitting

Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance.

overfitting Jarization tries to reduce the variance.

Regularization is a technique to help reduce overfitting

model be anything, we want models where:

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting

Regularization is a technique to help reduce overfitting

- model be anything, we want models where:
 - $\| \theta \|^2$ should be small (Ridge regression) (note $\| w \|^2$ in the slides)
 - $\| \theta \|_1$ should be small (Lasso regression)

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting

Regularization is a technique to help reduce overfitting

- model be anything, we want models where:
 - $\| \theta \|^2$ should be small (Ridge regression) (note $\| w \|^2$ in the slides)
 - $\| \theta \|_1$ should be small (Lasso regression)
- function is: L

On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting

• Practically how do we introduce this to our models? Add it to the loss function! If the original loss

Regularization is a technique to help reduce overfitting

- On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting model be anything, we want models where:
 - $\|\theta\|^2$ should be small (Ridge regression) (note $\|w\|^2$ in the slides)
 - $\| \theta \|_1$ should be small (Lasso regression)
- Practically how do we introduce this to our models? Add it to the loss function! If the original loss function is: L
 - Ridge Regression new loss: $\ell_{ridge}(\theta) = L(\theta) + \lambda \parallel \theta \parallel^2$
 - Lasso Regression new loss: $\mathcal{C}_{\text{lasso}}(\theta) = L(\theta) + \lambda \parallel \theta \parallel_1$

Regularization is a technique to help reduce overfitting

- On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting model be anything, we want models where:
 - $\|\theta\|^2$ should be small (Ridge regression) (note $\|w\|^2$ in the slides)
 - $\|\theta\|_1$ should be small (Lasso regression)
- Practically how do we introduce this to our models? Add it to the loss function! If the original loss function is: L
 - Ridge Regression new loss: $\ell_{ridge}(\theta) = L(\theta) + \lambda || \theta ||^2$
 - Lasso Regression new loss: $\ell_{\text{lasso}}(\theta) = L(\theta) + \lambda \parallel \theta \parallel_1$
- The key difference between ridge and lasso regression: •
 - Weights in Lasso go to 0, so it can be used for feature selection!