
Austin Wang
2/8 2023

Precept 2: Classification
COS 484

Review Question
You train an n-gram model on some training corpus using counts

. To prevent (possible) infinite perplexity on the test

corpus , you apply Laplace smoothing. Let be the unsmoothed probabilities and
 be the smoothed probabilities.

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

∑v∈V c(w1, . . . , wn−1, v)
Dt P(D), P(Dt)

P′ (D), P′ (Dt)

Review Question
You train an n-gram model on some training corpus using counts

. To prevent (possible) infinite perplexity on the test corpus ,

you apply Laplace smoothing. Let be perplexities of the unsmoothed model and
 of the smoothed model. Is the following T, F or undetermined (depends on model, data,

n, etc)?

1.

2.

3.

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt)
ppl′ (D), ppl′ (Dt)

ppl′ (D) ≥ ppl(D)

ppl′ (Dt) < ppl(Dt)

ppl(D) < ppl(Dt)

Review Question
You train an n-gram model on some training corpus using counts

. To prevent (possible) infinite perplexity on the test corpus , you

apply Laplace smoothing. Let be perplexities of the unsmoothed model and
of the smoothed model. Is the following T, F or undetermined (depends on model, data, n, etc)?

1.

This is true! Remember that setting the probability using counts (above) is the MLE estimate, which means
that cannot increase under any other distribution for

2.

3.

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt) ppl′ (D), ppl′ (Dt)

ppl′ (D) ≥ ppl(D)

P(D) P(wn |w1, . . . , wn−1)

ppl′ (Dt) < ppl(Dt)

ppl(D) < ppl(Dt)

Review Question
You train an n-gram model on some training corpus using counts

. To prevent (possible) infinite perplexity on the test corpus , you

apply Laplace smoothing. Let be perplexities of the unsmoothed model and
 of the smoothed model. Is the following T, F or undetermined (depends on model, data, n,

etc)?

1. - T

2.

This is undetermined! It’s not clear that the test corpus will have infinite perplexity. It is possible that the
test corpus is very similar to the train corpus, and smoothing will cause its probability to drop.

3.

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt)
ppl′ (D), ppl′ (Dt)

ppl′ (D) ≥ ppl(D)

ppl′ (Dt) < ppl(Dt)

ppl(D) < ppl(Dt)

Review Question
You train an n-gram model on some training corpus using counts

. To prevent (possible) infinite perplexity on the test corpus ,

you apply Laplace smoothing. Let be perplexities of the unsmoothed model and
 of the smoothed model. Is the following T, F or undetermined (depends on model, data,

n, etc)?

1. - T

2. - U

3.

Undetermined. A test corpus consisting solely of high-frequency n-grams might have a higher probability

D

P(wn |w1, . . . , wn−1) =
c(w1, . . . , wn)

c(w1, . . . , wn−1)
Dt

ppl(D), ppl(Dt)
ppl′ (D), ppl′ (Dt)

ppl′ (D) ≥ ppl(D)

ppl′ (Dt) < ppl(Dt)

ppl(D) < ppl(Dt)

Todays Topics
Given a document and a set of classes , we want to find the class
that maximizes . Two ways to do this:

Naive Bayes

Logistic Regression

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci
P(c |d)

Naive Bayes Intuition
Given a document and a set of classes , we want to find the class
that maximizes (the MAP estimate)

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

Naive Bayes Intuition
Given a document and a set of classes , we want to find the class
that maximizes (the MAP estimate)

Language Model: gives us a probability for a text sequence

Conditional Language Model: gives us probability of a text sequence conditioned on something

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
P(w1, . . . , wK) = P(d)

P(d |c)

Naive Bayes Intuition
Given a document and a set of classes , we want to find the class
that maximizes (the MAP estimate)

Language Model: gives us a probability for a text sequence

Conditional Language Model: gives us probability of a text sequence conditioned on something

Given a conditional language model (which conditions on the classes) we can find the MAP estimate using
Bayes rule!

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
P(w1, . . . , wK) = P(d)

P(d |c)

Naive Bayes Intuition
Given a document and a set of classes , we want to find the class
that maximizes (the MAP estimate)

Language Model: gives us a probability for a text sequence

Conditional Language Model: gives us probability of a text sequence conditioned on something

Given a conditional language model (which conditions on the classes) we can find the MAP estimate using
Bayes rule!

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
P(w1, . . . , wK) = P(d)

P(d |c)

Naive Bayes: An “illustration”
Summary: We want to find the class

Let’s say you work on a group project with a friend, and we want a model that can attribute your writing vs
your friend’s writing. C = {you, friend}

cMAP = arg max
c∈C

P(d |c)P(c)

Naive Bayes: An “illustration”
Summary: We want to find the class

Let’s say you work on a group project with a friend, and we want a model that can attribute your writing vs
your friend’s writing. C = {you, friend}

cMAP = arg max
c∈C

P(d |c)P(c)

Your friend’s writing

Naive Bayes: An “illustration”
Summary: We want to find the class

Let’s say you work on a group project with a friend, and we want a model that can attribute your writing vs
your friend’s writing. C = {you, friend}

cMAP = arg max
c∈C

P(d |c)P(c)

Your friend’s writing
Your writing

Naive Bayes: An “illustration”
Summary: We want to find the class

First, we determine who did more work. This gives us a prior estimate (bias) on whether any document was
written by you or your friend.

cMAP = arg max
c∈C

P(d |c)P(c)

Naive Bayes: An “illustration”
Summary: We want to find the class

First, we determine who did more work. This gives us a prior estimate (bias) on whether any document was
written by you or your friend.

cMAP = arg max
c∈C

P(d |c)P(c)

P(friend) = 3/4 P(you) = 1/4

Naive Bayes: An “illustration”
Summary: We want to find the class

Now, to compute for any input document We can train two language models, one trained on
your writing, and one on your friend’s

cMAP = arg max
c∈C

P(d |c)P(c)

P(d |c) d

P(x|friend) P(x|you)

Summary: We want to find the class

Now given a new sample , we can compute the probability under each LM to find . And multiply
this by to find the MAP estimate.

cMAP = arg max
c∈C

P(d |c)P(c)

d P(d |c)
P(c)

Naive Bayes: An “illustration”

Summary: We want to find the class

Now given a new sample , we can compute the probability under each LM to find . And multiply
this by to find the MAP estimate.

cMAP = arg max
c∈C

P(d |c)P(c)

d P(d |c)
P(c)

Naive Bayes: An “illustration”

P(d|friend)=
1/10

P(d|you)=
8/10

Summary: We want to find the class

Now given a new sample , we can compute the probability under each LM to find . And multiply
this by to find the MAP estimate.

cMAP = arg max
c∈C

P(d |c)P(c)

d P(d |c)
P(c)

Naive Bayes: An “illustration”

P(d|friend)=
1/10

P(d|you)=
8/10

P(friend) =
3/4X

X P(you) =
1/4

Summary: We want to find the class

Now given a new sample , we can compute the probability under each LM to find . And multiply
this by to find the MAP estimate.

cMAP = arg max
c∈C

P(d |c)P(c)

d P(d |c)
P(c)

Naive Bayes: An “illustration”

P(d|friend)=
1/10

P(d|you)=
8/10

P(friend) =
3/4X

X P(you) =
1/4

3 / 40=

= 8 / 40

MAP estimate is you!

Summary: We want to find the class

The prior is important when the probabilities are close under each LM!

cMAP = arg max
c∈C

P(d |c)P(c)

Naive Bayes: An “illustration”

MAP estimate is friend!

P(d|friend)=
1/10

P(d|you)=
1/10

P(friend) =
3/4X

X P(you) =
1/4

3 / 40=

= 1 / 40

Naive Bayes: One extra detail…
Summary: We want to find the class

Now, to compute for any input document We can train two language models, one trained on
your writing, and one on your friend’s

cMAP = arg max
c∈C

P(d |c)P(c)

P(d |c) d

P(x|you)

Naive Bayes: One extra detail…
Summary: We want to find the class

Now, to compute for any input document We can train two language models, one trained on
your writing, and one on your friend’s

cMAP = arg max
c∈C

P(d |c)P(c)

P(d |c) d

P(x|you) To simplify our LM, we use unigrams. This is
equivalent to saying, we assume all words are
independent of each other. This is the “naive”
assumption of Naive Bayes

Naive Bayes: Summary

Naive Bayes: Summary
1. Given a document and a set of classes , we want to find the class

that maximizes .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c

P(c |d)

Naive Bayes: Summary
1. Given a document and a set of classes , we want to find the class

that maximizes .

2. We don’t know , but we know how to estimate using a simple LM! we can get
 using Bayes’ rule!

1.

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

Naive Bayes: Summary
1. Given a document and a set of classes , we want to find the class

that maximizes .

2. We don’t know , but we know how to estimate using a simple LM! we can get
 using Bayes’ rule!

1.

3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents
that are class

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c

Naive Bayes: Summary
1. Given a document and a set of classes , we want to find the class

that maximizes .

2. We don’t know , but we know how to estimate using a simple LM! we can get
 using Bayes’ rule!

1.

3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents
that are class

4. To estimate let’s be lazy and choose the simplest possible LM that assume (Naively) that each
word is independent - the unigram

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c

P(d |c)

Naive Bayes: Summary
1. Given a document and a set of classes , we want to find the class

that maximizes .

2. We don’t know , but we know how to estimate using a simple LM! we can get
 using Bayes’ rule!

1.

3. Bayes rule requires us to estimate , we can do this just by counting the proportion of documents
that are class

4. To estimate let’s be lazy and choose the simplest possible LM that assume (Naively) that each
word is independent - the unigram

5. Combine 3 + 4 and you can find the MAP estimate:

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d)

P(c |d) P(d |c) →
P(c |d)

P(c |d) ∝ P(d |c)P(c)

P(c)
c

P(d |c)

cMAP = arg max
c∈C

P(d |c)P(c)

Todays Topics
Given a document and a set of classes , we want to find the class
that maximizes . Two ways to do this:

Naive Bayes

Logistic Regression

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci
P(c |d)

Logistic Regression: Intuition
Given a document and a set of classes , we want to find the class
that maximizes

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

Logistic Regression: Intuition
Given a document and a set of classes , we want to find the class
that maximizes

Compared to NB, with LR we take a more direct approach: directly compute given a set of
features constructed from the input document .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Logistic Regression: Intuition
Given a document and a set of classes , we want to find the class
that maximizes

Compared to NB, with LR we take a more direct approach: directly compute given a set of
features constructed from the input document .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Document
d Features LR Model P(c |d)

Given a document and a set of classes , we want to find the class
that maximizes

Compared to NB, with LR we take a more direct approach: directly compute given a set of
features constructed from the input document .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Logistic Regression: Features

Document
d Features LR Model P(c |d)

This is the feature vector for some input
document

x
d

Given a document and a set of classes , we want to find the class
that maximizes

Compared to NB, with LR we take a more direct approach: directly compute given a set of
features constructed from the input document .

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)

P(c |d)
d

Logistic Regression: Features

Document
d Features LR Model P(c |d)

The features to use is a design decision. A
natural default is to use a vector
where each dim is the counts of one word
in the vocabulary. (BOW)

x ∈ ℝ|V|

Given a document and a set of classes , we want to find the class
that maximizes

Now given some feature vector how do we turn this to a probability?

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
x

Logistic Regression: LR Model

Document
d Features LR Model P(c |d)

Given a document and a set of classes , we want to find the class
that maximizes

Now given some feature vector how do we turn this to a probability?

1. Convert the features to a number. The higher the number, the more confident we are that the document

belongs to a class. We call these numbers logits.

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
x

Logistic Regression: LR Model

Document
d Features LR Model P(c |d)

w ⋅ x + b

Given a document and a set of classes , we want to find the class
that maximizes

Now given some feature vector how do we turn this to a probability?

1. Convert the features to a number. The higher the number, the more confident we are that the document

belongs to a class. We call these numbers logits.

2. Normalize the logits using sigmoid so we get a well-defined probability distribution.

1. For more than 2 classes we use the softmax, which is the m > 2 generalization of sigmoid

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} ci

P(c |d)
x

Logistic Regression: LR Model

Document
d Features LR Model P(c |d)

w ⋅ x + b
σ(w ⋅ x + b)

1 − σ(w ⋅ x + b)

Summary: we want to estimate using a model P(c |d) σ(w ⋅ x + b)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

P(c |d) σ(w ⋅ x + b)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

P(𝒟) = P(c1 |d1)⋯P(cn |dn) = ΠiP(ci |di)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

How to set ?

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

P(𝒟) = P(c1 |d1)⋯P(cn |dn) = ΠiP(ci |di)

θ = (w, b)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

How to set ? Use the MLE principle! Set such that is maximized. This is analogous to
setting the n-gram probabilities such that the probability of the train corpus is maximal.

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

P(𝒟) = P(c1 |d1)⋯P(cn |dn) = ΠiP(ci |di)

θ = (w, b) θ P(𝒟)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

How to set ? Use the MLE principle! Set such that is maximized. This is analogous to
setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize:

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

P(𝒟) = P(c1 |d1)⋯P(cn |dn) = ΠiP(ci |di)

θ = (w, b) θ P(𝒟)

−ΠiP(ci |di)

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model
We use GD. But what should we make the loss?

Let our train dataset be . Let’s find the probability of seeing these documents
and labels. Assume that each datapoint is independent of the other.

How to set ? Use the MLE principle! Set such that is maximized. This is analogous to
setting the n-gram probabilities such that the probability of the train corpus is maximal.

So we can directly use GD to minimize:

Since is monotonic, this is equivalent to minimizing: this is just CE loss!

P(c |d) σ(w ⋅ x + b)

𝒟 = {(d1, c1), . . . , (dn, cn)}

P(𝒟) = P(c1 |d1)⋯P(cn |dn) = ΠiP(ci |di)

θ = (w, b) θ P(𝒟)

−ΠiP(ci |di)

log −∑
i

log P(ci |di) ←

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model

Want to minimize: this is just CE loss!

P(c |d) σ(w ⋅ x + b)
−∑

i

log P(ci |di) ←

Logistic Regression: How do we set ?w, b

Summary: we want to estimate using a model

Want to minimize: this is just CE loss!

P(c |d) σ(w ⋅ x + b)
−∑

i

log P(ci |di) ←

Logistic Regression: How do we set ?w, b

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

2. Want to turn into a vector because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in is the # of times a word in appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

2. Want to turn into a vector because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in is the # of times a word in appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn into a single number, because is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features:

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

2. Want to turn into a vector because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in is the # of times a word in appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn into a single number, because is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features:

4. Oh no! The linear combination might not be in , so we normalize using sigmoid:

1. The probability for one class is , so the other class must have prob

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

2. Want to turn into a vector because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in is the # of times a word in appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn into a single number, because is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features:

4. Oh no! The linear combination might not be in , so we normalize using sigmoid:

1. The probability for one class is , so the other class must have prob

5. Given our model, we can estimate the probability of a train set under the model

1. We will set so that = is maximal (MLE principle)

2. For stability and convenience we can take the to minimize this is CE loss

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)
P(𝒟)

w, b P(𝒟) ΠiP(ci |di)
log −∑

i

log P(ci |di)

Logistic Regression: Summary

1. Given a document and a set of classes , we want to find the class that
maximizes . Let’s say we estimating reliably is hard, we will need to estimate directly.

2. Want to turn into a vector because then we can operate on it more conveniently.

1. We can use a BOW, where each dim in is the # of times a word in appears

2. We can also be creative and add additional features we think are important (e.g. # of emojis in text)

3. Somehow we need to turn into a single number, because is a single number.

1. Let’s be as lazy as possible and just take a linear combination of the features:

4. Oh no! The linear combination might not be in , so we normalize using sigmoid:

1. The probability for one class is , so the other class must have prob

5. Given our model, we can estimate the probability of a train set under the model

1. We will set so that = is maximal (MLE principle)

2. For stability and convenience we can take the to minimize this is CE loss

6. We can then use GD to minimize the CE loss! Since the function is convex, we will converge to the optimum.

d = w1, . . . , wK 𝒞 = {c1, . . . , cm} c
P(c |d) P(d |c) P(c |d)

d x
x ∈ ℝ|V| V

x P(c |d)
w ⋅ x + b

[0,1] σ(x) = (1 + e−x)−1

σ(w ⋅ x + b) 1 − σ(w ⋅ x + b)
P(𝒟)

w, b P(𝒟) ΠiP(ci |di)
log −∑

i

log P(ci |di)

Logistic Regression: Summary

PMI: Quick Intuition

 tells us how correlated two events are:

• : two events are not correlated at all (if you see , tells you nothing about)

• : two events are correlated (if you see , you are more likely to see , vice versa)

• : two events are anti-correlated (if you see you are less likely to see y, vice versa)

PMI(x, y) x, y
PMI(x, y) = 0 x y
PMI(x, y) > 0 x y
PMI(x, y) < 0 x

PMI: Quick Intuition

 tells us how correlated two events are:

• : two events are not correlated at all (if you see , tells you nothing about)

• : two events are correlated (if you see , you are more likely to see , vice versa)

• : two events are anti-correlated (if you see you are less likely to see y, vice versa)

PMI(x, y) x, y
PMI(x, y) = 0 x y
PMI(x, y) > 0 x y
PMI(x, y) < 0 x

PMI: Quick Intuition

 tells us how correlated two events are:

• : two events are not correlated at all (if you see , tells you nothing about)

• : two events are correlated (if you see , you are more likely to see , vice versa)

• : two events are anti-correlated (if you see you are less likely to see y, vice versa)

PMI(x, y) x, y
PMI(x, y) = 0 x y
PMI(x, y) > 0 x y
PMI(x, y) < 0 x

PMI: Quick Intuition

Regularization
Regularization is a technique to help reduce overfitting

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance.

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting
model be anything, we want models where:

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting
model be anything, we want models where:

• should be small (Ridge regression) (note in the slides)

• should be small (Lasso regression)

∥ θ ∥2 ∥ w ∥2

∥ θ ∥1

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting
model be anything, we want models where:

• should be small (Ridge regression) (note in the slides)

• should be small (Lasso regression)

• Practically how do we introduce this to our models? Add it to the loss function! If the original loss
function is:

∥ θ ∥2 ∥ w ∥2

∥ θ ∥1

L

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting
model be anything, we want models where:

• should be small (Ridge regression) (note in the slides)

• should be small (Lasso regression)

• Practically how do we introduce this to our models? Add it to the loss function! If the original loss
function is:

• Ridge Regression new loss:

• Lasso Regression new loss:

∥ θ ∥2 ∥ w ∥2

∥ θ ∥1

L
ℓridge(θ) = L(θ) + λ ∥ θ ∥2

ℓlasso(θ) = L(θ) + λ ∥ θ ∥1

Regularization
Regularization is a technique to help reduce overfitting

• On the bias vs variance tradeoff scale, regularization tries to reduce the variance. Instead of letting
model be anything, we want models where:

• should be small (Ridge regression) (note in the slides)

• should be small (Lasso regression)

• Practically how do we introduce this to our models? Add it to the loss function! If the original loss
function is:

• Ridge Regression new loss:

• Lasso Regression new loss:

• The key difference between ridge and lasso regression:

• Weights in Lasso go to 0, so it can be used for feature selection!

∥ θ ∥2 ∥ w ∥2

∥ θ ∥1

L
ℓridge(θ) = L(θ) + λ ∥ θ ∥2

ℓlasso(θ) = L(θ) + λ ∥ θ ∥1

