
Slides based on those of Jens T., Ameet D., Chris S., and everyone else they based theirs on

1. Intro to Colab &
Language Models
Austin W.

Logistics

• Precepts are Fridays, 1 - 2pm ET, COS 402 (for now)

• Office Hours (all be in Friend 003):

• Alex: Thurs 7 - 8pm

• Austin: Right after precept

• Howard: Mon 11-12pm

• Samyak: Friday 12-1pm

• All assignments should be done on Colab! To maximize OH efficiency we will
not be debugging problems with incompatible local Jupyter instances.

Today’s Topics

1. Google Colab walkthrough

2. Lecture review: language models

Google Colab Demo

Useful Resources

• Working with Colab

• Working with LaTeX

• Submitting Assignments

• Feel free to post any issues with any of these on Ed!

https://docs.google.com/document/d/1LlnXoOblXwW3YX-0yG_5seTXJsb3kRdMMRYqs8Qqum4/edit
https://docs.google.com/document/d/13PIBndWXRrEzZeE70zfMooNNh6bt81QspaFz2PNdDIg/edit#heading=h.weu2hur6e1v1
https://docs.google.com/document/d/114CQ70qk8E--90qM8kxpTeegSATmDLIp7z_GVqJAGrk/edit

Language Models Review

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

Definition: A language model is a probabilistic model over sequences of words (tokens).

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Given an (ideally very large) sequence of words (called a corpus) how do
we set ?P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Given an (ideally very large) sequence of words (called a corpus) how do
we set ?P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

Why not let = 1 for with the max count from the
corpus, 0 for all other words and then apply smoothing?

P(wn |w1, …, wn−1) wn

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Given an (ideally very large) sequence of words (called a corpus) how do
we set ?P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

Why not let = 1 for with the max count from the
corpus, 0 for all other words and then apply smoothing?

P(wn |w1, …, wn−1) wn

MLE Principle: We want to set such that the
probability of the corpus is maximized! perplexity is minimized

P(wn |w1, …, wn−1)
→

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

This is the provable way to set the probabilities so corpus perplexity is
minimized:

where is the number of times the sequence “ ”
occurs in the corpus.

P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)

Count(w1, w2, w3) w1w2w3

Definition: A language model is a probabilistic model over sequences of words (tokens).

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

How to evaluate a language model?

Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

How to evaluate a language model? For a test corpus S with n words

where n is the total number of words in the corpus

w1, w2, …, wn

ppl(S) = P(w1, . . . , wn)−1/n = exp(−
1
n

n

∑
i=1

log P(wi |w1, …, wi−1))

Lower perplexity means the model accurately describes the corpus. Intuitively,
you can think of perplexity as the average branching factor (i.e. between how
many words is the model choosing when predicting the next word).

Language Models Review

Language Models Review
Calculating the probabilities exactly for every sequence is infeasible because of
the sheer number of possible sequences (|V |n)

Impossible for training corpus to have counts for every conceivable Count(w1, w2, . . . , wn)

Language Models Review
Calculating the probabilities exactly for every sequence is infeasible because of
the sheer number of possible sequences (|V |n)

We approximate using the Markov assumption:

1st order approximation:

2nd order approximation:

kth order approximation:

P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−1)

P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−2, wn−1)

P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−k, …, wn−2, wn−1)

Impossible for training corpus to have counts for every conceivable Count(w1, w2, . . . , wn)

Language Models Review
An n-gram language model is an order Markov approximation:(n − 1)th

Language Models Review
An n-gram language model is an order Markov approximation:(n − 1)th

Unigram (1 - gram) model:

P(w1, w2, …, wn) ≈ P(w1)P(w2)…P(wn) =
n

∏
i=1

P(wi)

Language Models Review
An n-gram language model is an order Markov approximation:(n − 1)th

Unigram (1 - gram) model:

Bigram (2-gram) model:

P(w1, w2, …, wn) ≈ P(w1)P(w2)…P(wn) =
n

∏
i=1

P(wi)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

Language Models Review
An n-gram language model is an order Markov approximation:(n − 1)th

Unigram (1 - gram) model:

Bigram (2-gram) model:

N-gram model:

P(w1, w2, …, wn) ≈ P(w1)P(w2)…P(wn) =
n

∏
i=1

P(wi)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

P(w1, w2, …, wn) ≈
n

∏
i=1

P(wi |wi−n+1, …, wi−2, wi−1)

Language Models Review

Left to Right Generation Surprisingly Powerful…

Thoppilan et al. 2022 LaMDA Langague Models for Dialogue Applications

Left to Right Generation Surprisingly Powerful…

Left to Right Generation Surprisingly Powerful…

Recap
Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

Recap

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

Recap

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

Recap

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

We set these conditional probabilities to minimize the perplexity of training corpus. For trigram:

P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)

Recap

We can decompose this using the chain rule:

P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w1, w2, …, wn)

We evaluate using perplexity:

ppl(S) = P(w1, . . . , wn)−1/n = exp(−
1
n

n

∑
i=1

log P(wi |w1, …, wi−1))

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

We set these conditional probabilities to minimize the perplexity of training corpus. For trigram:

P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)

Smoothing
We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data Not all n-grams will be observed in the training data! →

Smoothing
We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data Not all n-grams will be observed in the training data! →

How can we help our models compensate for this sparsity? Smoothing!
• Additive

• Discounting

• Back-off

• Interpolation

Additive smoothing (Laplace): add a small count to each n-gram

Smoothing

Additive smoothing (Laplace): add a small count () to each n-gramα

Add 1 (= 1) observation to
each bigram

α

Smoothing

Additive smoothing (Laplace): add a small count () to each n-gramα

Smoothing

Additive smoothing (Laplace): add a small count () to each n-gramα

As increases, we approach the uniform distribution.

Add often removes too much probability mass / too simple to work well in practice

α
α

Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

P(wi |wi−1) =

Count(wi−1, wi) − d
Count(wi−1)

Count(wi−1, wi) > 0

α(wi−1) ⋅
P(wi)

∑w:Count(wi−1,w)=0 P(w)
Count(wi−1, wi) = 0

Left-over probability mass to be redistributed (either uniformly or
according to unigram probabilities as above)

Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

P(wi | the) =

Count(the, wi) − d
Count(the) Count(the, wi) > 0

α(the) ⋅
P(wi)

∑w:Count(the,w)=0 P(w)
Count(the, wi) = 0

Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

P(wi | the) =

Count(the, wi) − d
Count(the) Count(the, wi) > 0

α(the) ⋅
P(wi)

∑w:Count(the,w)=0 P(w)
Count(the, wi) = 0

Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

P(wi | the) =

Count(the, wi) − d
Count(the) Count(the, wi) > 0

α(the) ⋅
P(wi)

∑w:Count(the,w)=0 P(w)
Count(the, wi) = 0

the, teacher = 0

the, student = 0
teacher = 1

student = 2

Counts

Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

P(wi | the) =

Count(the, wi) − d
Count(the) Count(the, wi) > 0

α(the) ⋅
P(wi)

∑w:Count(the,w)=0 P(w)
Count(the, wi) = 0

the, teacher = 0

the, student = 0
teacher = 1

student = 2

Counts

Prob after smoothing

the, teacher =

the, student =

5
48

×
1
3

5
48

×
2
3

Smoothing

Interpolation: Use a combination of multiple different n-grams.

̂P(wi |wi−2, wi−1) = λ1P(wi |wi−2, wi−1) + λ2P(wi |wi−1) + λ3P(wi)

E.g. Linear interpolation

Trigram
Bigram

Unigram

∑
i

λi = 1

How do we pick lambdas? Many ways!

• Use a development set to pick best one

• Average-count (Chen and Goldman, 1996)

• …

Smoothing

