1. Intro to Colab &
Language Models

Austin W.

Slides based on those of Jens T., Ameet D., Chris S., and everyone else they based theirs on



Logistics

* Precepts are Fridays, 1 - 2pm ET, COS 402 (for now)

« Office Hours (all be in Friend 003):
e Alex: Thurs 7 - 8pm
* Austin: Right after precept
e Howard: Mon 11-12pm
o Samyak: Friday 12-1pm

* All assignments should be done on Colab! To maximize OH efficiency we will
not be debugging problems with incompatible local Jupyter instances.




Today’s Topics

1. Google Colab walkthrough

2. Lecture review: language models



Google Colab Demo




Useful Resources

* Working with Colab

 Working with LaleX

o Submitting Assignments

* Feel free to post any issues with any of these on Ed!


https://docs.google.com/document/d/1LlnXoOblXwW3YX-0yG_5seTXJsb3kRdMMRYqs8Qqum4/edit
https://docs.google.com/document/d/13PIBndWXRrEzZeE70zfMooNNh6bt81QspaFz2PNdDIg/edit#heading=h.weu2hur6e1v1
https://docs.google.com/document/d/114CQ70qk8E--90qM8kxpTeegSATmDLIp7z_GVqJAGrk/edit
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Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens P(w{, w,, ..., w, )

We can decompose this using the chain rule:

Pwi,wy, ...ow,) = P(w;) - Pw, |w;) - Pwg|wi,wy) - ... - Pw, |wy,...,w,_1)

Given an (ideally very large) sequence of words (called a corpus) how do
we set P(w, |wy, ..., w,_{) ?

Why not let P(w, |wy, ...,w,_;) =1 for w, with the max count from the
corpus, 0 for all other words and then apply smoothing?

MLE Principle: We want to set P(w, |wy, ..., w,_;) such that the
probability of the corpus is maximized! — perplexity is minimized



Language Models Review

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens P(w{, w,, ..., w, )

We can decompose this using the chain rule:

Pwi,wy, ...ow,) = P(w;) - Pw, |w;) - Pwg|wi,wy) - ... - Pw, |wy,...,w,_1)
This Is the provable way to set the probabilities so corpus perplexity is
minimized:

Count(wy, wy, ws)

Pwz | wi, w,) <
(w3 1wy, W) Count(wy, w,)

where Count(w,, w,, ws) is the number of times the sequence “w;w,w;”
occurs in the corpus.
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Language Models Review

Definition: A language model is a probabilistic model over sequences of words (tokens).

More explicitly, a probability over a sequence is the joint probability of the tokens P(w{, w,, ..., w, )

We can decompose this using the chain rule:
Pwi,wy, ...ow,) = P(w;) - Pw, |w;) - Pwg|wi,wy) - ... - Pw, |wy,...,w,_1)

How to evaluate a language model? For a test corpus S with n words wy, w,, ..., w

1 n
ppl(S) p— P(Wl’ o ,Wn)—l/n p— eXp( - ; Z lOg P(Wl ‘ Wl, ""Wi—1)>
=1

where n is the total number of words in the corpus

Lower perplexity means the model accurately describes the corpus. Intuitively,

you can think of perplexity as the average branching factor (i.e. between how
many words is the model choosing when predicting the next word).



Language Models Review
Intuition on perplexity

If our k-gram model (with vocabulary V) has following probability:

1

PWI|W;_p...Ww;_y) = m vweV opl(S) = e* where

X = —lZIOgP(wilwl ceeWily)
what is the perplexity of the test corpus? =

A) eV B) | V| o) | V|? D) e~

ppl — e—%nlog(l/lVI) — I VI

Measure of model’s uncertainty about next word (aka average branching factor’)
branching factor = # of possible words following any word
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the sheer number of possible sequences (| V]")

Impossible for training corpus to have counts for every conceivable Count(w, w,, ..., w, )



Language Models Review

Calculating the probabilities exactly for every sequence is infeasible because of
the sheer number of possible sequences (| V")

Impossible for training corpus to have counts for every conceivable Count(w, w,, ..., w, )

We approximate using the Markov assumption:

1st order approximation:
Pw, |wi,wsy..oow, ) & Pw,|w,_)

2nd order approximation:
Pw [wi W,y ...ow,_ )& Pw, W, _,,w, )

kth order approximation:
Pw, |wi,wy...ow,_ )= Pw, |w, _1s...ow, 5w, 1)
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An n-gram language model is an (n — 1) order Markov approximation:

Unigram (1 - gram) model:

P(Wy, Wy, ..., w,) & P(w)P(wy)...Pw,) = | | P(w)
=1
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i=1



Language Models Review

An n-gram language model is an (n — 1) order Markov approximation:

Unigram (1 - gram) model:

P(Wy, W, ... w,) & P(w))P(wy)...P(w,) = | | POw,)
=1

Bigram (2-gram) model:

Pwi,wy, ..., w ) & P(w)P(w,|wy)...Pw, |w, _,) = HP(WZ- lw._ 1)
i=1

N-gram model:

n
PWi,wy, ..., w,) X HP(wl- | Wi s ooy Wiy Wi_ 1)
i=1



Language Models Review

Generating from a language model

« Given a language model, how to generate a sequence?

n
Trigram P(wi,we, ..., w,) = HP(wi | w; o, w;—1)
i=1
- Generate the first word w; ~ P(w)
- Generate the second word w, ~ P(w | w;)

+ Generate the third word w; ~ P(w | wy, w,)

- Generate the fourth word w, ~ P(w | W, W3)



Left to Right Generation Surprisingly Powerful...

are you doing ? <EOS> I'm eating a croissant

What are you doing ? <gE0S> I'm eating a

Thoppilan et al. 2022 LaMDA Langague Models for Dialogue Applications



Left to Right Generation Surprisingly Powerful...

The Google engineer who thinks the
company s Al has come to life

Al ethicists warned Google not to impersonate humans. Now one of Google’s own thinks there’s a ghost in the machine.

BUSINESS JUN 17, 2822 3:12 PH
Blake Lemoine Says Google's LaMDA Al Faces 'Bigotry’



Left to Right Generation Surprisingly Powerful...

The Google engineer who thinks the

Google fires researcher who claimed LaMDA Al
was sentient

Lemoine went public with his claims last month, to the chagrin of Google and other Al researchers.

Blake Lemoine Says Google's LaMDA Al Faces 'Bigotry’
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Recap

Definition: A language model is a probabilistic model over sequences of words (tokens). P(w;, w,, ..., w, )

n

We can decompose this using the chain rule:
Pwi,wy, ...ow,) = P(w;) - Pw, |w;) - Pwg|wi,wy) - ... - Pw, |wy,...,w,_1)

To make estimating these probabilities tractable, we use Markov assumption (e.g. bigram)

PWi, Wy, ..., w ) & Pw)Pw, | wy)...P(w, |w, _) = HP(wi lw._1)
i=1

We set these conditional probabilities to minimize the perplexity of training corpus. For trigram:

Count(wy, w,, )

Pw: | wi,w,) <
(W3 11, w)) Count(wy, w,)

We evaluate using perplexity:

1 n
=1



Smoothing

We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data — Not all n-grams will be observed In the training data!
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Smoothing

We want our models to accurately describe our languages. But, languages have a long tail
and we have finite data — Not all n-grams will be observed In the training data!

How can we help our models compensate for this sparsity? Smoothing!
* Additive
* Discounting
* Back-off

* Interpolation
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Smoothing

Additive smoothing (Laplace): add a small count to each n-gram

« Simplest form of smoothing: Just add a to all counts and renormalize!

» Max likelihood estimate for bigrams:

C(wz’—la wz)

P(wi\wi_l) — C('w,,;_l)

» After smoothing:

P(w-|w- ) _ C(w’i—lﬂw??)
e C(w;_1 H a|V|




Smoothing

Additive smoothing (Laplace): add a small count (&) to each n-gram

1 want | to ecat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 1510 15 0 1 4 0 0
lunch 2 0 0 0 O 1 0 O
spend 1 0 1 0 0 0 0 0

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 | 609 | 2 7 7 6 2
to 3 5 687 | 3 I 7 212
cat 1 3 | 17 3 43 |
chinese g 1 1 83 2
food 16 16 2 5 1
lunch 3 1 1 2 1
spend 2 2 1 l ]

Add 1 (a = 1) observation to
each bigram



Smoothing

Additive smoothing (Laplace): add a small count (&) to each n-gram

Original;

Smoothed:

1 want | to eat chinese | food | lunch | spend
1 0.002 [033 |0 0.0036 | O 0 0 0.00079
want 0.0022 |0 0.66 | 0.0011 | 0.0065 | 0.0065|0.0054|0.0011
to 0.00083 | O 0.0017] 0.28 | 0.00083 | 0 0.0025 | 0.087
eat 0 0 0.00271 0 0.021 0.0027 1 0.056 |0
chinese | 0.0063 | 0 0 0 0 0.52 ]0.0063 |0
food 0.014 0 0.014 | 0O 0.00092 | 0.0037 | 0 0
lunch || 0.0059 | O 0 0 0 0.0029 | O 0
spend | 0.0036 | O 0.0036| 0 0 0 0
1 want to eat chinese | food lunch spend
i 0.0015 0.21 0.00025  0.0025 0.00025( 0.00025| 0.00025( 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078 | 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eal 0.00046| 0.000461 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039( 0.0063 0.00039( 0.00079( 0.002 0.00039| 0.00039
lunch 0.0017 0.00056( 0.00056 0.00056( 0.00056( 0.0011 0.00056  0.00056
_spend 0.0012 0.00058 | 0.0012 0.00058 | 0.00058| 0.00058| 0.00058] 0.00058




Smoothing

Additive smoothing (Laplace): add a small count (&) to each n-gram

As a Increases, we approach the uniform distribution.
Add a often removes too much probability mass / too simple to work well in practice

P(w|w ): C(wi—law’i)
e C(w;_1H a|V|



Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

Count(w,_,w,) —d
C()T(Wi—l) C()U.Ilt(Wi_l, Wi) > 0

Pw;[w;_1) = P(w))
(Z(Wl_l) *

l

Left-over probability mass to be redistributed (either uniformly or
according to unigram probabilities as above)

Z w:Count(w;_1,w)=0 P(W)



Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among
unseen n-grams.

Count(the, w;) — d
T—— Count(the, w;) > 0

a(the) - )

Count(the,w;) = 0

z w:Count(the,w)=0



Smoothing

Discounting: Take probability mass from each of the observed n-grams. Redistribute it among

unseen n-grams.

Count(the,w;) — d

Define Count*(x) = Count(x) - 0.5

Missing probability mass:

Count” (wz —1,w )

a(wi_l) =1 — Z

a(the) = 10 x 0.5/48 = 5/48

Count (wi_ 1 )

Divide this mass between words w
for which Count(the, w) =0

Count(the)

a(the) -

P(w,)

z w:Count(the,w)=0

Count(the, w;) > 0

Count(the,w;) = 0

T Count(x) | Count™(z) %%l:lt:ltt (,I)
the 48

the, dog 5 14.5 14.5/48
the, woman ] 10.5 10.5/48
the, man 0 9.5 9.5/48
the, park 5 4.5 4.5/48
the, job 2 1.9 1.5/48
the, telescope 1 0.5 0.5/48
the, manual 0.5 0.5/48
the, afternoon 0.5 0.5/48
the, country 0.5 0.5/48
the, street 0.5 0.5/48




« Define Count*(x) = Count(x) - 0.5

L , Sy Count™ ()
a Count(xz) | Count™(z) Tt
. Missing probability mass: - "
the, dog 5 14.5 14.5/48
Count™* (w;_1 ) the, woman [ 1 10.5 10.5/48
a(wi1) =1- 5 ) the, man 0 9.5 9.5/48
v the, park 5 4.5 4.5/48
a(the) = 10 x 0.5/48 = 5/48 the, job 2 1.5 1.5/48
the, telescope l 0.5 0.5/48
o , the, manual 0.5 0.5/48
* Divide this mass between words w " — 05 0.5/48
for which Count(the, w) =0 the, country 0.5 0.5/48
the, street 0.5 0.5/48

Smoothing

Discounting: Take probability mass from each of the observed n-grams. F

unseen n-grams.

Count(the,w;) — d

Count(the)

a(the) -

P(w,)

Zw:Count(the,w)zo

Count(the, w;) > 0

Count(the,w;) = 0

edistribute it among

Counts

the, teacher = 0
the, student =0

teacher = 1
student = 2



« Define Count*(x) = Count(x) - 0.5

Smoothing

Discounting: Take probability mass from each of the observed n-grams. F

unseen n-grams.

« Missing probability mass:

a(wi—y) =1-)

Count™ (w; 1)

Count (w,-_ 1 )

a(the) = 10 x 0.5/48 = 5/48

Divide this mass between words w

for which Count(the, w) =0

Count(the,w;) — d

Count(the)

a(the) -

P(w,)

Zw:Count(the,w)zO

Count(the, w;) > 0

Count(the,w;) = 0

Count™ (x)

14.5/48
10.5/48
9.5/48
4.5/48
1.5/48
0.5/48
0.5/48
0.5/48
0.5/48
0.5/48

T Count(z) | Count™(x) Tt
the 48

the, dog 5 14.5
the, woman | 10.5
the, man 0 9.5
the, park 5 4.5
the, job 2 1.5
the, telescope 0.5
the, manual 0.5
the, afternoon l 0.5
the, country | 0.5
the, street 0.5

edistribute it among

Counts

the, teacher = 0
the, student =0

teacher = 1
student = 2

Prob after smoothing

5 |

the, teacher = X —
48 3

5 2

the, student = X —
48 3



Smoothing

Interpolation: Use a combination of multiple different n-grams.

E.g. Linear interpolation

f’(wl- (W, 5w ) = A4 PW: | w,_r,w,_ )+ HLPw,|w,_) + 1P(w,)

/ \

Trigram Unigram
Bigram

How do we pick lambdas? Many ways!
 Use a development set to pick best one
* Average-count (Chen and Goldman, 1996)



