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1. Intro to Colab &  
Language Models
Austin W. 



Logistics

• Precepts are Fridays, 1 - 2pm ET, COS 402 (for now)


• Office Hours (all be in Friend 003): 

• Alex: Thurs 7 - 8pm

• Austin: Right after precept 

• Howard: Mon 11-12pm

• Samyak: Friday 12-1pm


• All assignments should be done on Colab! To maximize OH efficiency we will 
not be debugging problems with incompatible local Jupyter instances. 



Today’s Topics

1. Google Colab walkthrough


2. Lecture review: language models



Google Colab Demo



Useful Resources

• Working with Colab


• Working with LaTeX


• Submitting Assignments


• Feel free to post any issues with any of these on Ed!

https://docs.google.com/document/d/1LlnXoOblXwW3YX-0yG_5seTXJsb3kRdMMRYqs8Qqum4/edit
https://docs.google.com/document/d/13PIBndWXRrEzZeE70zfMooNNh6bt81QspaFz2PNdDIg/edit#heading=h.weu2hur6e1v1
https://docs.google.com/document/d/114CQ70qk8E--90qM8kxpTeegSATmDLIp7z_GVqJAGrk/edit
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→
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More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:


P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

This is the provable way to set the probabilities so corpus perplexity is 
minimized:





where  is the number of times the sequence “ ” 
occurs in the corpus.


P(w3 |w1, w2) ←
Count(w1, w2, w3)

Count(w1, w2)

Count(w1, w2, w3) w1w2w3

Definition: A language model is a probabilistic model over sequences of words (tokens).



Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:


P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

How to evaluate a language model?



Language Models Review

More explicitly, a probability over a sequence is the joint probability of the tokens P(w1, w2, …, wn)

We can decompose this using the chain rule:


P(w1, w2, …, wn) = P(w1) ⋅ P(w2 |w1) ⋅ P(w3 |w1, w2) ⋅ … ⋅ P(wn |w1, …, wn−1)

Definition: A language model is a probabilistic model over sequences of words (tokens).

How to evaluate a language model? For a test corpus S with n words 





where n is the total number of words in the corpus

w1, w2, …, wn

ppl(S) = P(w1, . . . , wn)−1/n = exp( −
1
n

n

∑
i=1

log P(wi |w1, …, wi−1))

Lower perplexity means the model accurately describes the corpus. Intuitively, 
you can think of perplexity as the average branching factor (i.e. between how 
many words is the model choosing when predicting the next word). 
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Calculating the probabilities exactly for every sequence is infeasible because of 
the sheer number of possible sequences ( |V |n )

We approximate using the Markov assumption:


1st order approximation:




2nd order approximation:




kth order approximation:


P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−1)

P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−2, wn−1)

P(wn |w1, w2, …, wn−1) ≈ P(wn |wn−k, …, wn−2, wn−1)

Impossible for training corpus to have counts for every conceivable Count(w1, w2, . . . , wn)
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An n-gram language model is an  order Markov approximation:(n − 1)th

Unigram (1 - gram) model:





Bigram (2-gram) model:





N-gram model:


P(w1, w2, …, wn) ≈ P(w1)P(w2)…P(wn) =
n

∏
i=1

P(wi)

P(w1, w2, …, wn) ≈ P(w1)P(w2 |w1)…P(wn |wn−1) =
n

∏
i=1

P(wi |wi−1)

P(w1, w2, …, wn) ≈
n

∏
i=1

P(wi |wi−n+1, …, wi−2, wi−1)
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Left to Right Generation Surprisingly Powerful…

Thoppilan et al. 2022 LaMDA Langague Models for Dialogue Applications
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We want our models to accurately describe our languages. But, languages have a long tail 
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How can we help our models compensate for this sparsity? Smoothing! 
• Additive

• Discounting

• Back-off

• Interpolation 



Additive smoothing (Laplace): add a small count to each n-gram

Smoothing



Additive smoothing (Laplace): add a small count ( ) to each n-gramα

Add 1 (  = 1) observation to 
each bigram

α
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Additive smoothing (Laplace): add a small count ( ) to each n-gramα

As  increases, we approach the uniform distribution.

Add  often removes too much probability mass / too simple to work well in practice

α
α

Smoothing



Discounting: Take probability mass from each of the observed n-grams. Redistribute it among 
unseen n-grams.

P(wi |wi−1) =

Count(wi−1, wi) − d
Count(wi−1)

Count(wi−1, wi) > 0

α(wi−1) ⋅
P(wi)

∑w:Count(wi−1,w)=0 P(w)
Count(wi−1, wi) = 0

Left-over probability mass to be redistributed (either uniformly or 
according to unigram probabilities as above)

Smoothing
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Discounting: Take probability mass from each of the observed n-grams. Redistribute it among 
unseen n-grams.

P(wi | the) =

Count(the, wi) − d
Count(the) Count(the, wi) > 0

α(the) ⋅
P(wi)

∑w:Count(the,w)=0 P(w)
Count(the, wi) = 0

the, teacher = 0

the, student = 0 
teacher = 1

student = 2 

Counts

Prob after smoothing

the, teacher = 


the, student = 

5
48

×
1
3

5
48

×
2
3

Smoothing



Interpolation: Use a combination of multiple different n-grams.

̂P(wi |wi−2, wi−1) = λ1P(wi |wi−2, wi−1) + λ2P(wi |wi−1) + λ3P(wi)

E.g. Linear interpolation

Trigram
Bigram

Unigram

∑
i

λi = 1

How do we pick lambdas? Many ways! 

• Use a development set to pick best one

• Average-count (Chen and Goldman, 1996)

• …

Smoothing


