COS 484

Natural Language Processing

Precept #3

Preceptor: Howard Chen

Word embeddings

* Represent words as vectors: apple -> (0.1, 0.2, 0.3, 0.5]

e Encode the semantic information in the word vector
e Use for downstream NLP tasks

software

Word embeddings

* Represent words as vectors: apple -> (0.1, 0.2, 0.3, 0.5]

e Encode the semantic information in the word vector
e Use for downstream NLP task

* How can we get high-quality word vectors.

software

Word embeddings

* Represent words as vectors: apple -> (0.1, 0.2, 0.3, 0.5]

e Encode the semantic information in the word vector
e Use for downstream NLP task

* Distributional hypothesis

e words that occur in similar contexts
tend to have similar meanings

* Als the Capital Of A and B are both the B S _.;S.O-ftware: = e
e Bisthe capita| of — name of capital cities. ™

Word embeddings

* Distributional hypothesis
* words that occur in similar contexts tend to have similar meanings

* How can we get high-quality word vectors following the intuition of
distributional hypothesis?

Word embeddings

* Distributional hypothesis
* words that occur in similar contexts tend to have similar meanings

* How can we get high-quality word vectors following the intuition of
distributional hypothesis?
 Count-based methods: PMI, PPMI ...
* Predict-based methods: word2vec, GloVe, Fasttext ...

Word embeddings

* Distributional hypothesis
* words that occur in similar contexts tend to have similar meanings

* How can we get high-quality word vectors following the intuition of
distributional hypothesis?
* Count-based methods: PMI, PPMI ... (statistics)
* Predict-based methods: word2vec, GloVe, Fasttext ...

Word embeddings

* Distributional hypothesis
* words that occur in similar contexts tend to have similar meanings

* How can we get high-quality word vectors following the intuition of
distributional hypothesis?
* Count-based methods: PMI, PPMI ... (statistics)

* Predict-based methods: word2vec, GloVe, Fasttext ... (learning)
* Task: predict the context word given the target word.

Count-based word vectors

* Word-word co-occurrence matrix W
* WIt, c] = count(t, c)
(the counts that word c occurs in the context of word t)

context words: 1s traditionally followed by cherry pie, a traditional dessert
4 words to the left often mixed, such as strawberry rhubarb pie. Apple pie
o computer peripherals and personal digital assistants. These devices usually
4 words to the right a computer. This includes information available on the internet
aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital
information 0 3325 3982 378 S 13

Most entries are 0s = sparse vectors

Count-based word vectors

* Word-word co-occurrence matrix W
* WIt, c] = count(t, c)
(the counts that word c occurs in the context of word t)

 Weakness: overly frequent words like “the”, “it", or “they” appear a lot
near other words

 W[the, apple] >> W[apple, pie]

Count-based word vectors

* Pointwise mutual information (PMl)
* From text, extract a lot of word pairs: (target, context).
* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

t,
* PMI[t, c] = log pz(gt()PC()C)

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)
p(Le) _ g
p()p(c)

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)
p(tc) _ p(tc) _
por@ 0 ropo

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(tc) p(tc) p(tc)
20p0 -0 sop0 -1 S PO

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,C) _ p(t,C) _ p(t’(;) B B
p(Op(c) 0= p(Op(c) l& (D) p(c) & plc|t) = p(c)

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)
p(tc) _ p(tc) _ p(tc) _ _
or©@ 0 papo " 1 pi - PO @ plelt)=p(d

& p(t) and p(c) is independent.

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)
p(t,c) p(t,c) p(t,c)

p(t)p(c) -0 = p(t)p(c) =le n(t) = p(c) & p(c|t) = p(c)

& p(t) and p(c) is independent.
& Knowing that the target is t doesn’t affect the probability of context is c.

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c)
O O

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c) p(t,c)
0@ 2 2o

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c) p(t,c) p(t,c)
2or0 >0 sopo0 1 o PO

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,C) p(t,C) p(t’(;)
o "0 ® o> L ® S > p(©) @ plelt)>p(c)

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,C) p(t,C) p(t’(;)
o "0 ® o> L ® S > p(©) @ plelt)>p(c)

«» Knowing that the target is t, context is more likely to be c.

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c)
o) O

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c) p(t,c)
OGO G

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c) p(t,c) p(t,c)
2or0 <0 sopo 1?0 PO

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,C) p(t,C) p(t’(;)
ot S0 @ <@ —os <p(e) @ plelt) <p(c)

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,C) p(t,C) p(t’(;)
ot S0 @ <@ —os <p(e) @ plelt) <p(c)

«» Knowing that the target is t, context is less likely to be c.

log

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

Count-based word vectors

* Pointwise mutual information (PMI): PMI|[t,c] € (-inf, inf)

p(t,c) p(t,c) p(t,c)
0g o ~0 ® popo <1 p <P @ plclt)<plc

«» Knowing that the target is t, context is less likely to be c.

* p(t, c) = the probability that target is t and context is c.
* p(t) =the probability that target is t.
* p(c) = the probability that context is.

PMI(x, v): Do events x and y co-occur more or less than if they were
independent?

Count-based word vectors

* PMI(x, y): Do events x and y co-occur more or less than if they were
independent?

* Negative PMI values tend to be unreliable without enormous corpora.
 Why? (will study this problem in the exercise)

* Positive Pointwise Mutual Information (PPMI)
 PPMI[t, c] = max(0, PMI[t, c])

Count-based word vectors

* Positive Pointwise Mutual Information (PPMI)
 PPMI[t, c] = max(0, PMI[t, c])

* PPMl is in the shape of |V|x]|V].
* The dimensionality is too big. (curse of dimensionality)

* Dimensionality reduction by SVD
* Transform into low dimension space but retain meaningful information.

Singular value decomposition

SVD: A=UzV’!

A IS an m X n matrix.

U is an m x m orthogonal matrix. UTU = 1.

V is an n x n orthogonal matrix. VIV =1.

2 iSan m x n nonnegative diagonal matrix.

The diagonal entries of 2 are called singular values of A.

The columns of U and V are called left/right singular vectors.

Singular value decomposition

SVD: A = UV’
A is a m-by-n matrix.

PPMI matrix. m target word, n

context word
Consider rows of U as word

U is a m-by-m orthogonal matrix. U'U = I. ectors.
V is a n-by-n orthogonal matrix. V'V = [, Consider rows of Vas context

word vectors.

2 IS @ m-by-n nonnegative diagonal matrix.
The diagonal entries of 2 are called singular values of A.
The columns of U and V are called left/right singular vectors.

Singular value decomposition

SVD: A = UsVT

Low-rank matrix approximation:
Find a p-rank matrix B to approximate A based on minimizing Y.(A[i, j] — B[i, j])?.

The solution is B = U2VT, where 2 is the same as I except it contains only the p largest singular
values.

Only the p columns of U that have nonzero singular values contribute to B.

We can throw away other columns and the rest m-by-p matrix U still contain necessary
information to restore B.

The row vector of U is the low-rank word vectors.

word2vec

* Learn word vectors by solving a machine learning task
* Use the target words to predict their context words (skip-gram).
* Build a learning objective for this task.
* Optimize the word vectors to minimize the learning objective.

* Input: a large text corpora, V, d
» Output: f:word — R®

Skip-gram

* Learning objective
* Use the target words to predict their context words: P(c]|t)
* A |V|-way classification problem: |V | potential context word.

Skip-gram

* Learning objective
* Use the target words to predict their context words: P(c]|t)
* A |V|-way classification problem: |V | potential context word.
* Get |V]| scores, one for each context word.

Skip-gram

* Learning objective
* Use the target words to predict their context words: P(c]|t)
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = scores ([0.1, 0.2, 0.3]).
* G:scores -> prediction ([0, O, 1]).
* Minimize the difference between prediction and true labels ([0,1,0]).

Skip-gram

* Learning objective
* Use the target words to predict their context words: P(c]|t)
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = scores ([0.1, 0.2, 0.3]).

* G:scores -> prediction ([0, O, 1]). Discrete values! Non-differentiable!
* Minimize the difference between prediction and true labels ([0,1,0]).

Skip-gram

* Learning objective
* Use the target words to predict their context words: P(c]|t)
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = scores ([0.1, 0.2, 0.3]).

* G:scores -> prediction ([0, O, 1]). Discrete values! Non-differentiable!
. I\/Iinimizet difference between prediction and true labels ([0,1,0]).

* Continuous approximation: prediction -> probability distribution

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = scores ([0.1, 0.2, 0.3]).

* G:scores -> prediction ([0, O, 1]). Discrete values! Non-differentiable!
. I\/Iinimizet difference between prediction and true labels ([0,1,0]).

* Continuous approximation: prediction -> probability distribution P(c|t)
G -> softmax function

Skip-gram

e Softmax:

. ~ r exp(s1) exp(s2) exp(sk)
Softmax(sl, s2, ..., sk) = [—Zj exp(s))’ T, exp(s))’ " T, exp(s)) (Sj)]
exp(s1l) .

is close to but smaller than 1.

 Ifslisthe largest one, :
5 Zj exp(sj)

exp(s1)
2.; exp(sj)
* The output sums to 1.
* A perfect continues approximation of argmax function G.

is close to but larger than O.

 Otherwise,

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = score s ([0.1, 0.2, 0.3]).

» Softmax: score s-> p(c|t)

* Minimize the difference between p(c|t) and labels

exp(Scit)
a exp(5a|t)

* cross entropy: —log S

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = score s ([0.1, 0.2, 0.3]).

» Softmax: score s-> p(c|t)

* Minimize the difference between p(c|t) and labels
exp(scie)

a€ (5a|t)

* cross entropy: —log S

F(t, C) — SClt — ut ’ ‘UC

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = score s ([0.1, 0.2, 0.3]).

» Softmax: score s-> p(c|t)
* Minimize the difference between p(c|t) and labels

exp(usve)
a exp(usvy)

* cross entropy: —log 3

* u: word embedding.
* v: context word embedding.

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = score s ([0.1, 0.2, 0.3]).

» Softmax: score s-> p(c|t)
* Minimize the difference between p(c|t) and labels

exp(usve)

a €xp(utvg) \

* cross entropy: —log 3

. Learning objective for one target-context pair.
* u: word embedding. & O] g p

* v: context word embedding.

Skip-gram

* Learning objective
* Use the target words to predict their context words
* A |V|-way classification problem: |V | potential context word.

* F:input x labels = score s ([0.1, 0.2, 0.3]).

» Softmax: score s-> p(c|t)
* Minimize the difference between p(c|t) and labels

exp(usve)

a €xp(utvg) \

* cross entropy: —log 3

e u: word embeddin Learning objective for one target-context pair.
| > Follow the training corpora, sum over all target-context pairs.

* v: context word embedding.

Skip-gram

P(We_p | we) PWeiz | We)
INPUT PROJECTION OUTPUT P(we—q1 | we) P(Wesr | we)
w2l ; .. problems turning banking crises as
\ \) \ Y) L Y)
w(t-1) outside context words center word outside context words
| in window of size 2 at position t in window of size 2
w(t) —
P(We_z | we) P(Weyo | We)
w(t+1)
P(we—q | we) P(Weyq | we)
w(t+2)
problems turning into crises as
PP — : l . J \ ,) l J
Skip-gram outside context words center word outside context words

in window of size 2 at position t in window of size 2

Skip-gram

] — - exp(Ww, * V)
J(0) = — Z Z log

T — exp(uy, - Vs
t=1 —m<53<m,5#0 Zk’EV p(o’ ’l")

* Optimization
* Non-convex
* Gradient descent.
* Too slow to update all context word embeddings v_k at every step.

Skip-gram

| — - exp(Ww, * Vi, ;)
JO)=—=>) log :

T exp (U, - Vs
t=1 —m<j3<m,j3#0 Z"UEV p(Wt ’l")

* Optimization
* Non-convex
* Gradient descent.
* Too slow to update all context word embeddings v_k at every step.

* Use negative sampling

Matrix calculus to compute gradients

* Go through this note:
http://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf

* Make sure that you can understand all the cases in section 2 and section 3.

* Today, we will look at
* Section 2
* Section 3 (5)
* Section 3 (7)

Vectorized gradients

Next, we are going to compute gradients with respect to many variables together and
write them in vector/matrix notations.

f . Ry R™
f(l’) — [fl(ajla °°'7a:n)7f2(a:17“°7xn)7 °'°7fm(m17 "'72772,)]

f(x) =x€R"
af1 0f1
of |7 o ot s
ox 8}m ' 6},,,,,

0x1 "t 0x.,

Vectorized gradients

Next, we are going to compute gradients with respect to many variables together and
write them in vector/matrix notations.

f . Ry R™
f(l’) — [fl(ajla °°'7a:n)7f2(a:17“°7xn)7 °°°7fm(m17 "'72772,)]

f(x) =x € R"
on . oh
a_f — C'cl 0 zf:n gf = In -
— : £ ; Ix
ox 5f, 57,

0x1 "t 0L,

Vectorized gradients

Next, we are going to compute gradients with respect to many variables together and

write them in vector/matrix notations.

of,
of _ | "
ox B}m

8331

f Ry R™
f(iE) — [fl(xla °'°7xn)a.f2(x17°°°7xn)7 °°°7.fm(x17 73772)]

0f1

ox.,

O fom

Oxn

f(x) =x € R"
Of ofi |1
— =1, ‘ —

If m =1 (loss), the shape of gradients is the
same as the shape of input.

Let’s compute gradients for word2vec

T
1 OXp (uwt * th])
J(0) = = E E log ik

t=1 —m<j<m,j#0 Zkev exp(Uw, - Vi)

Consider one pair of center/context words (, ¢):

o (exp(u; - V))

Zkev exp(u; - Vi)

We need to compute the gradient of y with respect to

wandv,, VkeV

Let’s compute gradients for word2vec

(exp(uy - V)) Oy _ O(—uy-ve) 9Oog) jecy exp(uy - vy))
y _— — log P I
Zke\/ exp(ut - Vk) ouy ouy ouy
0 pey exp(ug-vg)
— vV I aut
y = — log(exp(uy - v¢)) + 10g(z exp(uy - vi)) ‘ D kev exp(ug - vi)
keV
= —u; - V. + log(z exp(us - vi))

keV

Recall that

exp(Wy, * Vi, +j)

ZkEV eXP(th ' Vk) = —V, + Z P(k | t)Vk

Plwiyj | we) =

Gradients for word2vec

What about context vectors?

dy {(P(ktt)l)ut k=c y:_log< exp(u; - ve))

OV, Pk | t)u k + c > _key €xp(ug - vi)

See assignment 1 :)

Convert the training data into:
. (into, problems)
Overall algorithm into, turning
(into, banking)
(into, crises)
(banking, turning)
(banking, into)
(
(

e |nput: text corpus, embedding size d, vocabulary V, context size m ,
banking, crises)

e Initialize u, v; randomly Vi € V ba”"”Q’ as)
 Run through the training corpus and for each training instance (t, c):
. Update u e u— L W o vt Y Pk Vi
duy Juy keV
0 _ —
e Update Vi < Vi — 7 y,\v’kev Oy _ JPE[)=1uw k=c
OV OV P(k | t)uy k#c

Q: Can you think of any issues with this algorithm?

Skip-gram with negative sampling (SGNS)

Problem: every time you get one pair of (t, ¢), you need to update v, with
all the words in the vocabulary! This is very expensive computationally.

W v+ Y Pl v Gy _ JPE[=1)u k=c
o keV OV P(k | t)u k# c

Negative sampling: instead of considering all the words in V, let’s randomly sample K
(5-20) negative examples.

o () !

T 1+ exp(—x)
exp(u; - v,
softmax: y = — log (p(u;)) |

> _key €xp(u - Vi) |

0.5+

K
Negative sampling: y = —log(o(u; - v.)) — Z i P(w) log(o(—uy - v;))
i=1

Skip-gram with negative sampling (SGNS)

Key idea: Convert the | V| -way classification into a set of binary classification tasks.

Every time we get a pair of words (t, ¢), we don’t predict c among all the words in the
vocabulary. Instead, we predict (t, ¢) is a positive pair, and (t, ¢’) is a negative pair for a
small number of sampled c’.

positive examples + negative examples - K

t C t C t C Yy=— log(a(ut ’ Vc)) - Z Il:f’jf\a]’(u') 10g(0(_ut) Vj))
apricot tablespoon apricot aardvark apricot seven =1

apricot of apricot my apricot forever P(w): sampling according to

apricot jam apricot where apricot dear the frequency of words

apricot a apricot coaxial apricot 1f

Similar to binary logistic regression, but we need to
optimize u and v together.

Ply=1|t,c)=o0c(us - ve) ply=01t,d)=1—0c(us-vy) =c(—u; - ver)

Skip-gram with Negative Sampling

Recall the loss for a particular (word, context word) pair in the Skip-gram with
Negative Sampling model:

JW, Cpos U, V) = —log(o(u], - v,)) =), log(o(—ul,- v,)

pos

Crea€ Wheg
o is the sigmoid function
Cpos 18 the positive context word Calculate:
w is the center word a) 0J o) 0J
u,, is the center word vector for word w ou,, Ve,
Ve is the context word vector for context word Cpos Q aaf
Ve

neg

Wne

. are the K negative context word samples

oJ

ou,,

Skip-gram with Negative Sampling (a)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

CnegE Wneg

oJ

ou,,

Skip-gram with Negative Sampling (a)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

CnegE Wneg

o(uyve,)1 —o(upve) - v o(—uwve, (1 —o(—uyv,,) - =V,

o pOS DOS Chos Z neg neg neg
U(UJVVC) 0(_ ulvvc)

pos Cnege Wneg neg

Skip-gram with Negative Sampling (a)

JW, Cpops U, V) = = log(o(ul, - ve) —) log(o(—u], - v,)
CnegEWneg

koo (1 = olulve,) - ve,, 5 ol=abv, (1 — o(—ulv,) - —v,

neg

O WY Croq

Skip-gram with Negative Sampling (a)

JW, Cpops U, V) = = log(o(ul, - ve) —) log(o(—u], - v,)
CnegEWneg

oJ koo (1 = olulve,) - ve,, 5 ol=abv, (1 — o(—ulv,,) - Ve,

ﬂ — (1 — g(u vCp()S)) Vc -|- Z (1 — 0(_U aneg)) Vcneg

du,,

o(=x) = (1 = o(x))

Skip-gram with Negative Sampling (a)
JW, Cpos U, V) = = log(o(ul, - ve,)= D log(o(—ul, - v,)

pos
Cnege Wneg

oJ ol (1 —oupve) - ve, 2 o(=uhv; (1 - 0(—uwvc,wg)) —Ve,,

ou,,, o(ul v O(— LV

(OA) ne
p Cne g E Wne g 5

ﬂ — (1 — G(U VCPOS)) Vc + Z (1 o 6(—U vcneg)) vcneg

ou, Cres€EWieo

oJ

— = (o(u), v,)—1 Ve ot o(u, V. Vv,
ou,, = (olu, POS)) Z (u neg) neg

Cpo EW

oJ
ov,.

Skip-gram with Negative Sampling (b)
JOW, €55 U, V) = — log(o(ul, - ve,) = ¥ log(o(—ul, - v,)

CnegE Wneg

pos

Skip-gram with Negative Sampling (b)
JOW, €55 U, V) = — log(o(ul, - ve,) = ¥ log(o(—ul, - v,)

CnegE Wneg T

Constant! (Not in terms of v,)

oJ

ov,.

pos

Skip-gram with Negative Sampling (b)
JOW, €55 U, V) = — log(o(ul, - ve,) = ¥ log(o(—ul, - v,)

Cnege Wneg

oJ _G(U;I/-VVC OS)(I _ G(U;I/-VVC OS)) * Uy
= : - + 0

OV, o(uyve,)

pos pos

Skip-gram with Negative Sampling (b)
JOW, €55 U, V) = — log(o(ul, - ve,) = ¥ log(o(—ul, - v,)

CnegE Wneg

+ 0

oJ _Wl o G(UJVVCPOS)) * Uy,
ove,, _olulve—y

Skip-gram with Negative Sampling (b)
JOW, €55 U, V) = — log(o(ul, - ve,) = ¥ log(o(—ul, - v,)

CnegE Wneg

+ 0

oJ _Wl o G(UJVVCPOS)) * Uy,
ove,, _olulve—y

oJ

6vcpos

= (o(ulv.)—1)-u,

pos

Skip-gram with Negative Sampling (c)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

CnegE Wneg

oJ

ov,.

neg

oJ
ov,.

neg

Skip-gram with Negative Sampling (c)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

T Cnege Wneg T

Constant! (Mostly) constant (not in terms of v

(Not in terms of v) with the exception of 1
sampled negative!

8

)

Skip-gram with Negative Sampling (c)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

ChegEE‘V%eg

oJ 6(_ulvvcneg)(1 o 0(_ulvvcneg)) Uy

aV(: 0(_ ulvvc)

neg neg

Skip-gram with Negative Sampling (c)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

ChegEE‘»%eg

o] ol=uve (1 —o(—ulv,) - —u,

aV(: 0(_ T C

neg neg

Skip-gram with Negative Sampling (c)
JOW, Cpos U, V) = = log(ou], - ve,) = ¥, log(a(—u],-v,,)

CnegEWneg
oJ W(l T 0(_ulvvcneg)) Uy
aVcneg 0(_ T Cneg
0J

_ T ,
o, = a(uwvcneg) u,,

neg

