Precept 6: RNNs

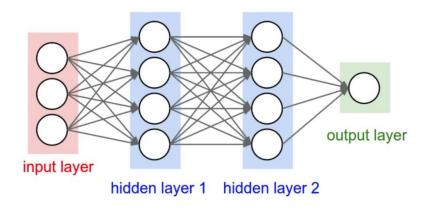
Samyak Gupta 03/31/2023

Agenda

- Recurrent Neural Networks
- LSTMs and GRUs

Recap: Feed Forward Neural Networks (FFNs)

- The units are connected with no cycles
- The outputs from units in each layer are passed to units in the next higher layer
- No outputs are passed back to lower layers



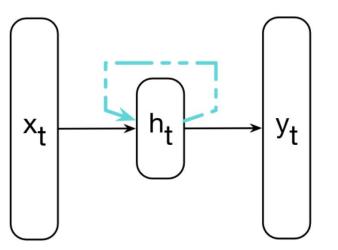
But FFNs are limited!

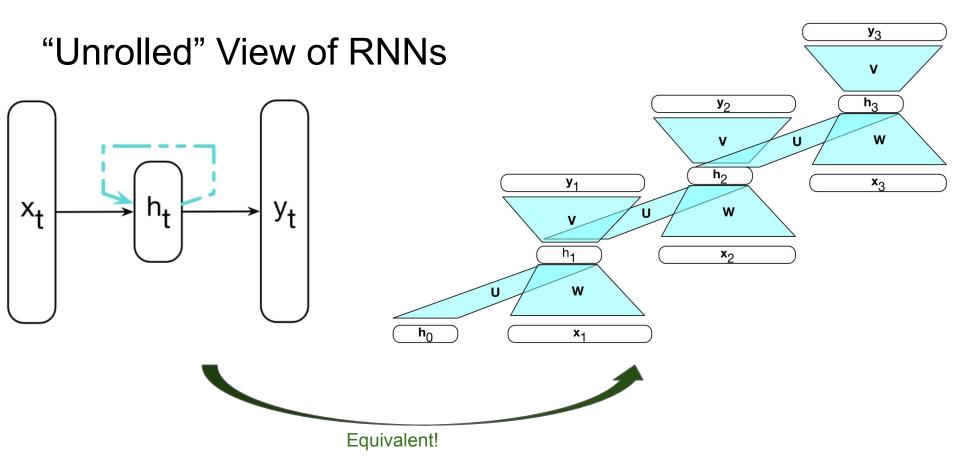
- Fixed input lengths
- Number of parameters scales with context window size
- Assume simultaneous access to entire window

Recurrent Neural Networks (RNNs)

• A **recurrent** neural network is any network that contains a cycle within its network connections

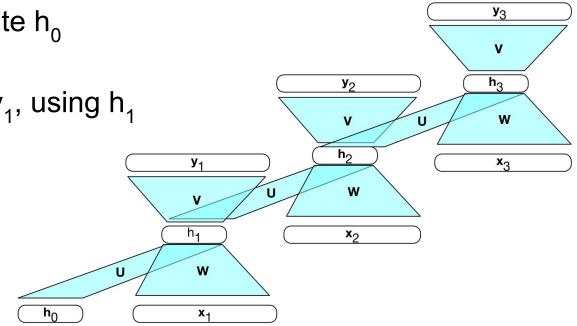
$$\mathbf{h}_t = g(\mathbf{U}\mathbf{h}_{t-1} + \mathbf{W}\mathbf{x}_t)$$
$$\mathbf{y}_t = f(\mathbf{V}\mathbf{h}_t)$$





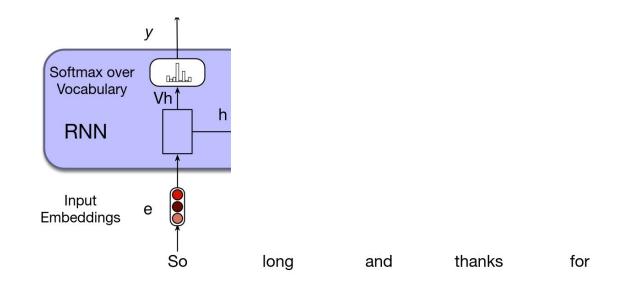
"Unrolled" View of RNNs

- Pick some starting state h₀
- Compute h_1 using h_0
- Compute the output y₁, using h₁ and some input x₁
- Compute h₂ using h₁



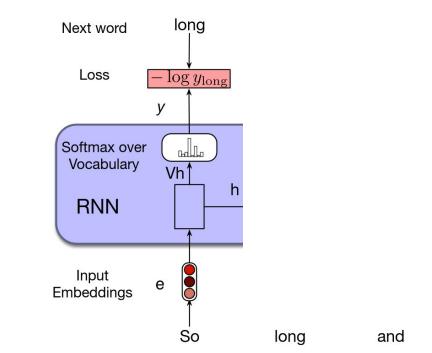
Predict the sentence "So long and thanks for all the fish"

for

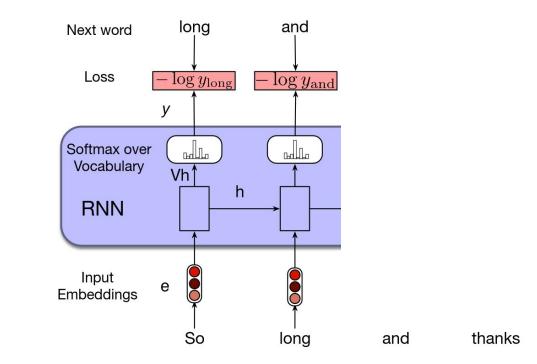


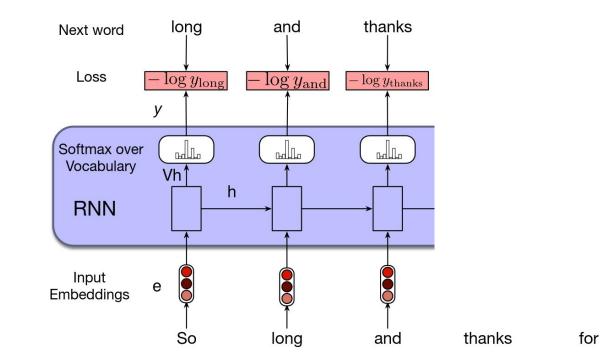
thanks

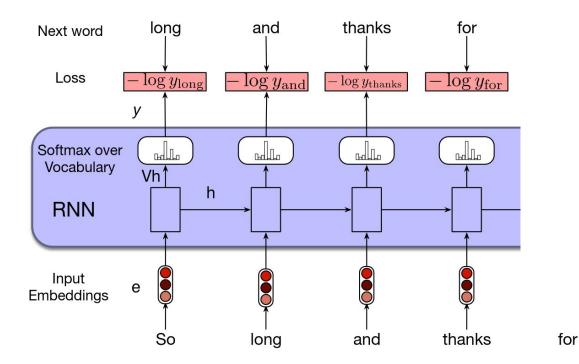
for

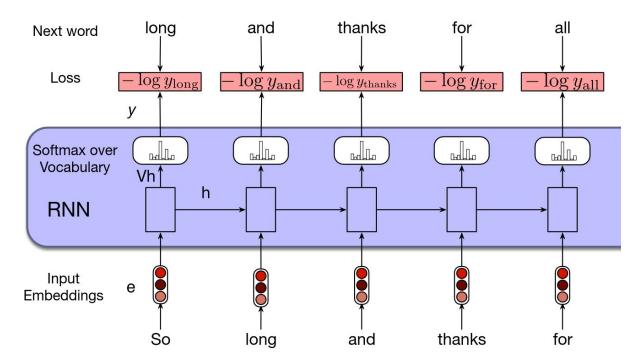


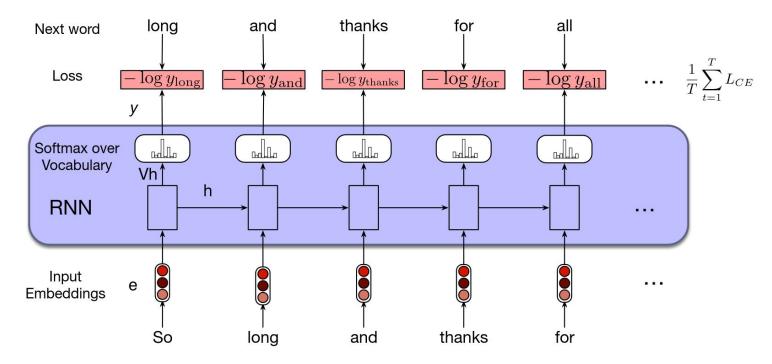
for

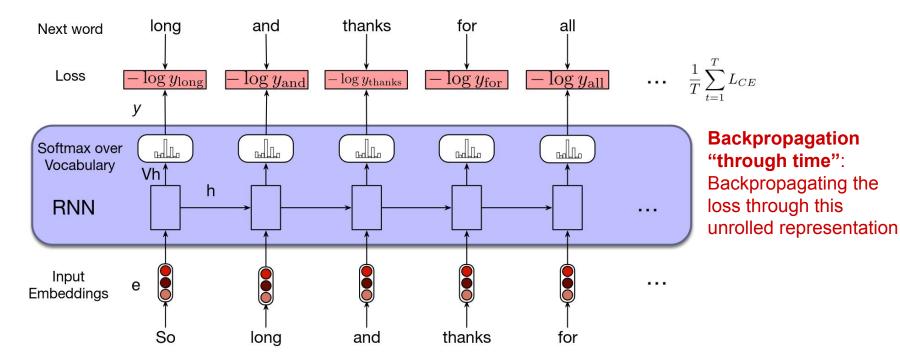


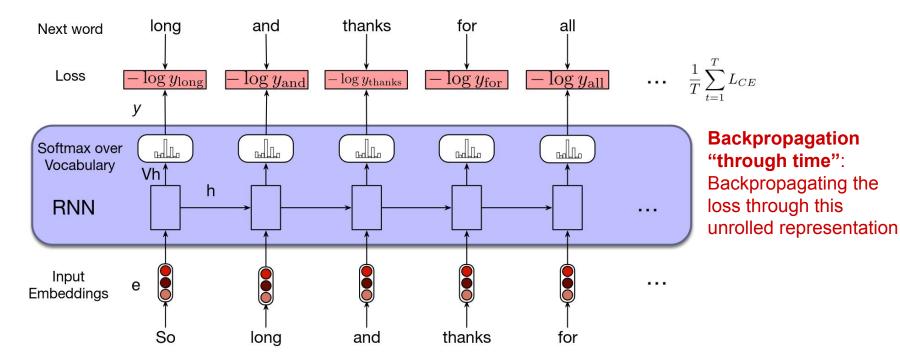




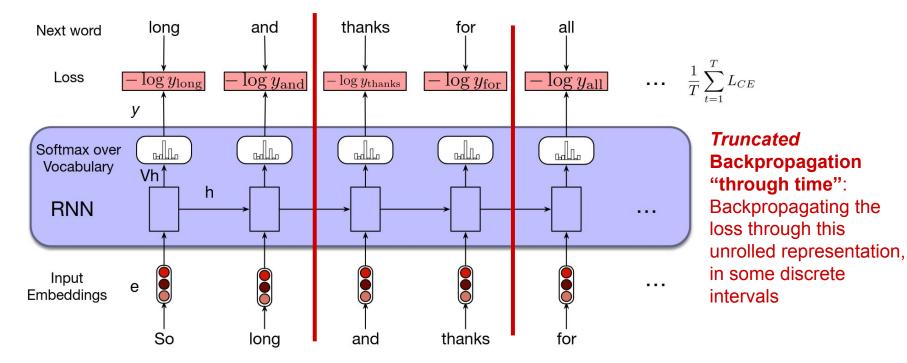






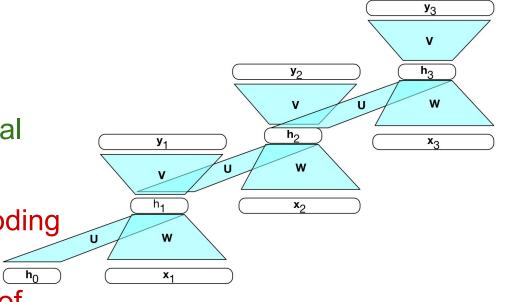


Truncated Backpropagation Through Time



Tradeoffs of RNNs

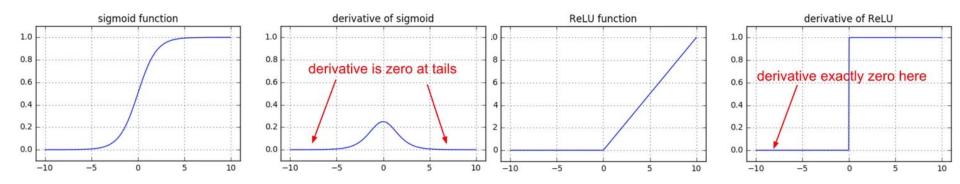
- Can handle arbitrary length inputs
- Reuse weights to reduce total model parameters
- Suffers from vanishing/exploding gradients
- Doesn't take full advantage of highly parallel hardware



An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop -e2f06eab496b

• Choice of activation function matters

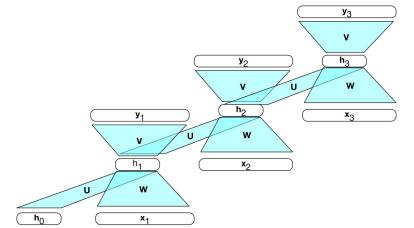


What if you had an unlucky initialization?

An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop -e2f06eab496b

- Choice of activation function matters
- Weight initialization matters

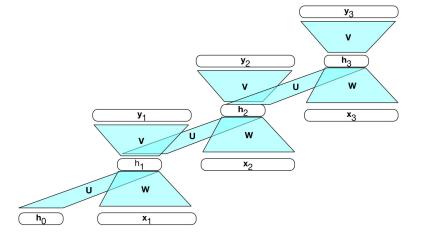


Whether gradients vanish/explode depends on the eigenvalues of weight matrices

An Aside: Some Intuitions on Gradient Issues

https://karpathy.medium.com/yes-you-should-understand-backprop -e2f06eab496b

- Choice of activation function matters
- Weight initialization matters



Whether gradients vanish/explode depends on the eigenvalues of weight matrices

Example: Consider simple RNN, with g = ReLU. Suppose all dimensions are 1.

$$\mathbf{h}_t = g(\mathbf{U}\mathbf{h}_{t-1} + \mathbf{W}\mathbf{x}_t)$$

$$\mathbf{y}_t = f(\mathbf{V}\mathbf{h}_t)$$

How to solve gradient issues?

Exploding Gradients

• "Clip" the gradients

What would the gradient [2, 2] be clipped to if the max allowed norm is 2?

[√2, √2]

How to solve gradient issues?

Exploding Gradients

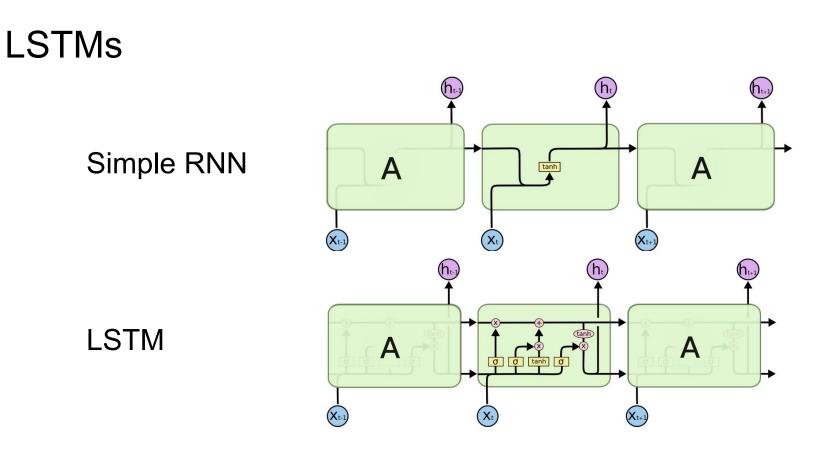
• "Clip" the gradients

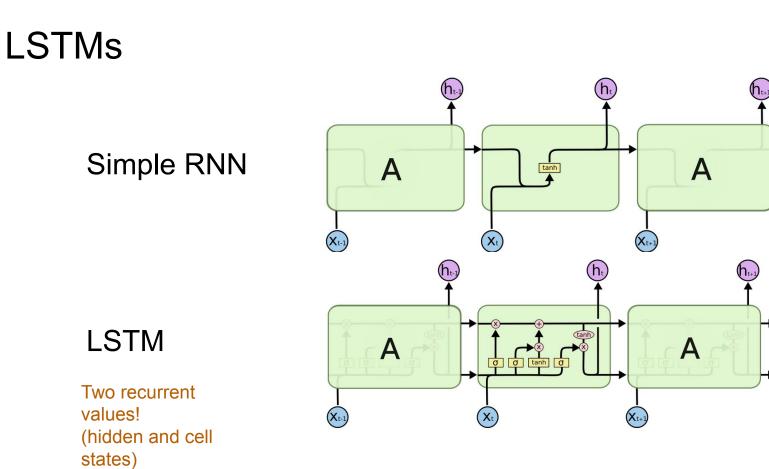
What would the gradient [2, 2] be clipped to if the max allowed norm is 2?

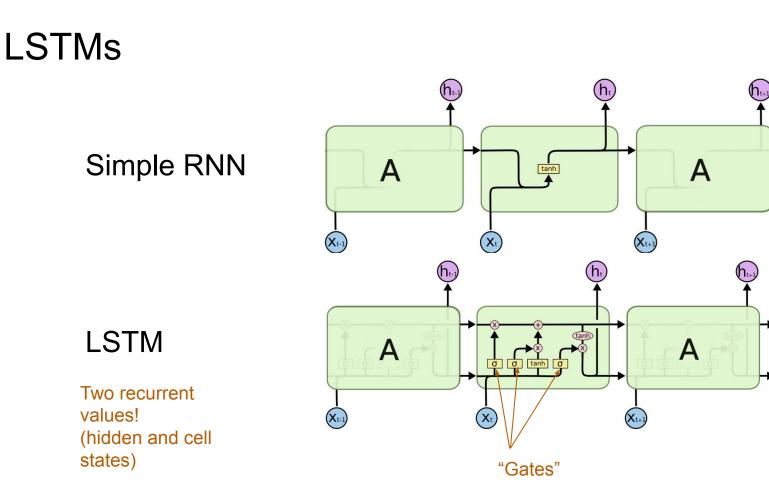
[√2, √2]

Vanishing Gradients

- Choose a different activation function
- Initialize weights properly
- Use a different architecture (e.g. LSTM)



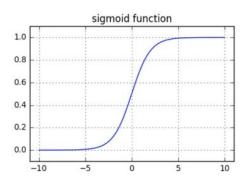




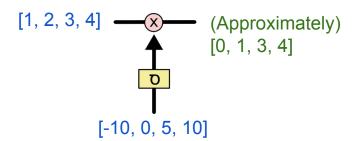
LSTMs Broken Down

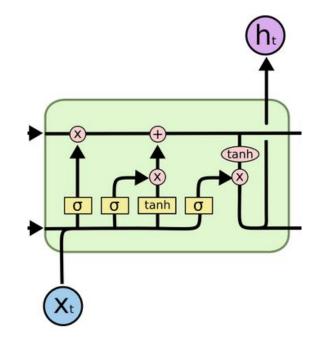
Gates (i.e. sigmoid followed by multiplication)

- Outputs value in range (0, 1)
- Intuitive meaning:
 - Close to 0 => "forget this value"
 - Close to 1 => "keep this value"



```
Example:
```





LSTM: Example scenario (Language Modelling)

Suppose we are predicting the sentence "Jon is a boy. Sally is a girl."

LSTM: Step 1

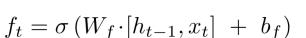
Suppose we are predicting the sentence "Jon is a boy. Sally is a girl."

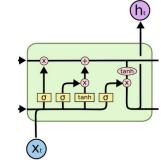
Step 1 (Forget gate): Discard information.

"Given the current input and the previous hidden state, how much should I discard from the cell state?"

 f_{t-1}

e.g. When I see the word "Sally", I may want to discard existing information associated with the gender of the subject in the cell state (which may be carried over from the first half of the sentence)





LSTM: Step 2

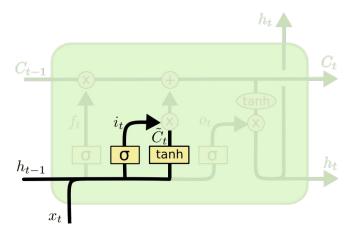
Suppose we are predicting the sentence "Jon is a boy. Sally is a girl."

Step 1 (Forget gate): Discard information.

"Given the current input and the previous hidden state, how much should I discard from the cell state?"

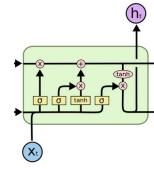
Step 2 (Input gate): Add new information.

"Given the current input and the previous hidden state, what should I add to the cell state?"

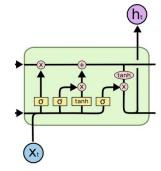


$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C$$

e.g. When I see the word "Sally", I may want to add information to the cell state indicating that the subject is female



LSTM: Step 3



Suppose we are predicting the sentence "Jon is a boy. Sally is a girl."

Step 1 (Forget gate): Discard information.

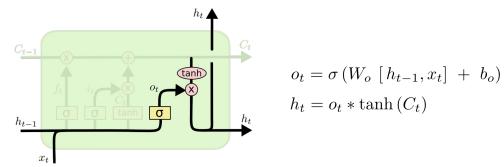
"Given the current input and the previous hidden state, how much should I discard from the cell state?"

Step 2 (Input gate): Add new information.

"Given the current input and the previous hidden state, what should I add to the cell state?"

Step 3 (Output gate): Compute the output.

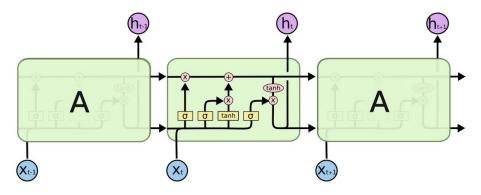
"Given the current input, previous hidden state, and updated cell state, what should I output?"



e.g. Predicting the word "girl" given that your cell state should contain gender information from when it saw Sally

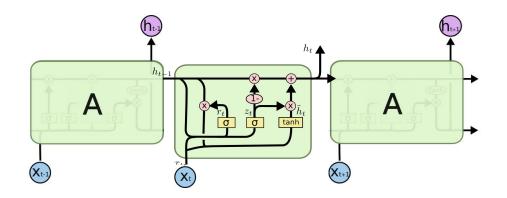
Gated Recurrent Units (GRUs)

LSTM



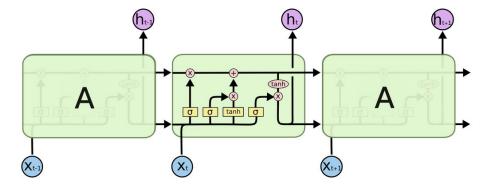
GRU

Only **one** recurrent state Input and forget gates are combined!



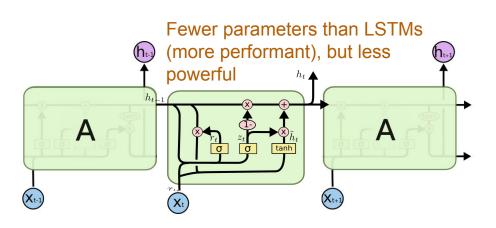
Gated Recurrent Units (GRUs)

LSTM



GRU

Only **one** recurrent state Input and forget gates are combined!



Bidirectional RNNs

When we have access to an entire sequence $x_0, ..., x_n$ at once, we can improve performance using **bidirectional** RNNs

