Precept 7: seq2seq, attention, and transformers

Samyak Gupta 04/7/2023

PSA

Start assignment 4 early It's more involved than the previous ones

Agenda

- seq2seq
- Attention
- Transformers

Machine Translation

Difficult due to nuances of language

seq2seq models

Goal: Transform from a source sequence to a target sequence

seq2seq (with RNNs) for machine translation

Key idea: use two RNNs

seq2seq (with RNNs) for machine translation

Key idea: use two RNNs

(In assignment 4, your encoder and decoder will be based on transformers instead of RNNs)

Encoder: Transform some source sequence into a hidden representation

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix)

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix)

word embedding

hello

Encoder: Transform some source sequence into a hidden representation

Step 1: Transform word to a vector (using embeddings matrix **E (s)**)

Sentence: hello world

hello

Encoder: Transform some source sequence into a hidden representation

Step 1: Transform word to a vector (using embeddings matrix **E (s)**)

Sentence: hello world

hello

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix) **Step 2: Compute hidden state** using word embedding and last hidden state

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix)

Step 2: Compute hidden state using word embedding and last hidden state

Repeat!

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix) **Step 2: Compute hidden state** using word embedding and last hidden state

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix)

Step 2: Compute hidden state using word embedding and last hidden state

Encoder: Transform some source sequence into a hidden representation

Sentence: hello world.

Step 1: Transform word to a vector (using embeddings matrix) **Step 2: Compute hidden state** using word embedding and last hidden state

Encoder: Transform some source sequence into a hidden representation

Step 1: Transform word to a vector (using embeddings matrix)

Step 2: Compute hidden state using word embedding and last hidden state

Key Idea: We've converted a *variable length* sequence to a *fixed length* representation

Sentence: hello world

(encoded representation)

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding

.

 $<$ bos $>$

Decoder: Using an encoded representation, predict a target sequence

Decoder: Using an encoded representation, predict a target sequence

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

le

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state **Step 3: Predict word using hidden**

state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Decoder: Using an encoded representation, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute hidden state** using word embedding and last hidden state

Step 3: Predict word using hidden state

Repeat process until model predicts <eos>

seq2seq Beam Search decoding

Key idea: Improve quality and variety of generations by tracking *k* best hypotheses at each step

start

Vanilla seq2seq models are limited!

- Encoded representation is a "bottleneck" (must contain all relevant information from context!)
- Suffers from same issues as RNNs:
	- Vanishing gradients
	- Inefficient utilization of hardware

Vanilla seq2seq models are limited!

- Encoded representation is a "bottleneck" (must **Adding attention to seq2seq can help solve** contain all relevant information from context!) **representation bottleneck**
- Suffers from same issues as RNNs:
	- Vanishing gradients
	- Inefficient utilization of hardware

seq2seq with Attention

Key Idea: Let the decoder pick the parts of the encoder hidden states that it needs (i.e. "pay attention to" specific encoder hidden states)

seq2seq encoder with Attention

Encoder (with attention): Exactly the same as before! (except we also use hidden states $\mathsf{h}_1^{},\,\mathsf{h}_2^{},\,\mathsf{h}_3^{})$

Step 1: Transform word to a vector (using embeddings matrix) **Step 2: Compute hidden state** using word embedding and last hidden state

 h^{enc} h_3 h_0 $h₂$ h_1 x_1 x_2 x_3 word I embedding hello world

(encoded representation)

Sentence: hello world

seq2seq decoder with Attention

Decoder (with Attention): Using **all hidden states from the encoder**, predict a target sequence

Step 1: Transform previous predicted token to word embedding **Step 2: Compute decoder hidden** state using word embedding

Step 3 (new): Compute context for decoder using all encoder hidden states

Step 4: Predict word using hidden state **combined with context vector**

seq2seq decoder with Attention

Decoder (with Attention): Using **all hidden states from the encoder**, predict a target sequence

Attention: Mathematical formulation

- Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$ (n: # of words in source sentence)
- Decoder hidden state at time t: h_t^{dec}
- Attention scores:

 $e^t = [g(h_1^{enc}, h_1^{dec}), \ldots, g(h_n^{enc}, h_t^{dec})] \in \mathbb{R}^n$

Attention distribution: ×

 α^t = softmax $(e^t) \in \mathbb{R}^n$

Weighted sum of encoder hidden states: $a_t = \sum_{i=1}^{n} \alpha_i^t h_i^{enc} \in \mathbb{R}^h$

Combine a_t and h_t^{dec} to predict next word

Transformer Architecture

Transformer Encoder

Transformer Encoder: Positional + Word Embedding

Input and Positional Embedding

Transformer Encoder: Multi-Head Self Attention

Self-Attention: $W_i^Q \in \mathbb{R}^{d_1 \times d_q}, W_i^K \in \mathbb{R}^{d_1 \times d_k}, W_i^V \in \mathbb{R}^{d_1 \times d_v}$

Transformer Encoder: Multi-Head Self Attention

Self-Attention: $W_i^Q \in \mathbb{R}^{d_1 \times d_q}, W_i^K \in \mathbb{R}^{d_1 \times d_k}, W_i^V \in \mathbb{R}^{d_1 \times d_v}$

Transformer Encoder: Add & Norm

LayerNorm $(x + \text{Sublayer}(x))$

LayerNorm

Source sequence $(x_1, ..., x_n)$

Transformer Encoder: Feed Forward

 $\mathbb{R}^{n \times d_1}$

Source sequence $(x_1, ..., x_n)$

$$
\text{FFN}(\mathbf{x}_i) = \text{ReLU}(\mathbf{x}_i \mathbf{W}_1 + \mathbf{b}_1) \mathbf{W}_2 + \mathbf{b}_2
$$

$$
\mathbf{W}_1 \in \mathbb{R}^{d \times d_{ff}}, \mathbf{b}_1 \in \mathbb{R}^{d_{ff}}
$$

$$
\mathbf{W}_2 \in \mathbb{R}^{d_{ff} \times d}, \mathbf{b}_2 \in \mathbb{R}^d
$$

Compute transformation over each value in the sequence **independently**

Transformer Encoder: Final Add & Norm

After Final Add & Norm

 $\mathbb{R}^{n \times d_1}$

After Feed Forward

 $\mathbb{R}^{n \times d_1}$

After Add & Norm $\mathbb{R}^{n \times d_1}$

After Multi-Head Attention $\mathbb{R}^{n \times d_1}$

Embedded source sequence $\mathbb{R}^{n \times d_1}$

Add & Norm:

LayerNorm $(x + \text{Sublayer}(x))$

LayerNorm

Source sequence $(x_1, ..., x_n)$

Add & Norm Feed Forward

Add & Norm Multi-Head **Attention**

Input Embedding

Inputs

 $N \times$

Positional $\overline{\bigcirc_{\text{Encoding}}\bigcirc}$ Encoding

Transformer Decoder:

 $\mathbb{R}^{m\times d_1}$

Output and Positional Embedding

Transformer Decoder: Masked Multi-Head Attention

Transformer Decoder:

Add & Norm:

LayerNorm $(x + \text{Sublayer}(x))$

LayerNorm

$$
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
$$

Transformer Decoder: Multi-Head (Cross) Attention

Cross-Attention: $W_i^Q \in \mathbb{R}^{d_1 \times d_q}, W_i^K \in \mathbb{R}^{d_1 \times d_k}, W_i^V \in \mathbb{R}^{d_1 \times d_v}$

Transformer Decoder: Multi-Head (Cross) Attention

Transformer Decoder: Add & Norm

Add & Norm:

LayerNorm $(x + \text{Sublayer}(x))$

LayerNorm

$$
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
$$

Transformer Decoder: Feed Forward

Feed Forward

 $\text{FFN}(\mathbf{x}_i) = \text{ReLU}(\mathbf{x}_i \mathbf{W}_1 + \mathbf{b}_1) \mathbf{W}_2 + \mathbf{b}_2$

$$
\mathbf{W}_1 \in \mathbb{R}^{d \times d_{ff}}, \mathbf{b}_1 \in \mathbb{R}^{d_{ff}}
$$

$$
\mathbf{W}_2 \in \mathbb{R}^{d_{ff} \times d}, \mathbf{b}_2 \in \mathbb{R}^d
$$

Transformer Decoder: Add & Norm

Add & Norm:

LayerNorm $(x + \text{Sublayer}(x))$

LayerNorm

$$
y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
$$

Transformer: Final output

Compute transformation over **concatenated states**