
Samyak Gupta
04/7/2023

Precept 7: seq2seq, 
attention, and transformers



PSA
Start assignment 4 early

It’s more involved than the previous ones



Agenda

● seq2seq
● Attention
● Transformers



Machine Translation

Difficult due to nuances of language

“Source” language “Target” language



seq2seq models

Goal: Transform from a source sequence to a target sequence 

https://docs.google.com/file/d/1wI8IyditCwn1nmHlVKmPm-mPgZF34adQ/preview


seq2seq (with RNNs) for machine translation

Key idea: use two RNNs

Encoder Decoder



seq2seq (with RNNs) for machine translation

Key idea: use two RNNs

Encoder Decoder

(In assignment 4, your encoder and decoder will be based on transformers instead of RNNs)



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix E(s))

Vo
ca

b
S

iz
e

Embedding 
Size

hello
world

.



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix E(s))

Vo
ca

b
S

iz
e

Embedding 
Size

hello
world

.



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state

Repeat!



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq encoder

Encoder: Transform some source sequence into a hidden 
representation

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state

Key Idea: We’ve converted a 
variable length sequence to a 
fixed length representation 



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding

.



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding 
(using matrix E(t))

Vo
ca

b
S

iz
e

Embedding 
Size

<bos>
bonjour

<eos>
salut



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding 
(using matrix E(t))

Vo
ca

b
S

iz
e

Embedding 
Size

<bos>
bonjour

<eos>
salut



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state

Vo
ca

b
S

iz
e

Hidden 
state size

<bos>
bonjour

<eos>
salut



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state

Vo
ca

b
S

iz
e

Hidden 
state size

<bos>
bonjour

<eos>
salut

Recall: Output 
embeddings give us 
a probability 
distribution over 
outputs



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state

Vo
ca

b
S

iz
e

Hidden 
state size

<bos>
bonjour

<eos>
salut

Recall: Output 
embeddings give us 
a probability 
distribution over 
outputs

Picking only the 
highest probability 
is called “greedy” 
decoding



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state

Repeat!



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state



seq2seq decoder

Decoder: Using an encoded representation, predict a target 
sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute hidden state 
using word embedding and last 
hidden state
Step 3: Predict word using hidden 
state

Repeat process until 
model predicts <eos>



seq2seq Beam Search decoding

Key idea: Improve 
quality and variety of 
generations by 
tracking k best 
hypotheses at each 
step



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)



Beam Search Decoding Example (k=2)
Caveat: The log probabilities 
should be normalized!

Divide by 
5

Divide by 
4

Divide by 
3

Divide by 
2



seq2seq

Vanilla seq2seq models are limited!
● Encoded representation is a “bottleneck” (must 

contain all relevant information from context!) 
● Suffers from same issues as RNNs:

○ Vanishing gradients
○ Inefficient utilization of hardware



seq2seq

Vanilla seq2seq models are limited!
● Encoded representation is a “bottleneck” (must 

contain all relevant information from context!) 
● Suffers from same issues as RNNs:

○ Vanishing gradients
○ Inefficient utilization of hardware

Adding attention to seq2seq can help solve 
representation bottleneck



seq2seq with Attention

Key Idea: Let the decoder pick the parts of the encoder hidden 
states that it needs (i.e. “pay attention to” specific encoder hidden 
states)



seq2seq encoder with Attention

Encoder (with attention): Exactly the same as before! (except 
we also use hidden states h1, h2, h3)

Step 1: Transform word to a vector 
(using embeddings matrix)
Step 2: Compute hidden state 
using word embedding and last 
hidden state



seq2seq decoder with Attention

Decoder (with Attention): Using all hidden states from the 
encoder, predict a target sequence

Step 1: Transform previous 
predicted token to word embedding
Step 2: Compute decoder hidden 
state using word embedding
Step 3 (new): Compute context 
for decoder using all encoder 
hidden states
Step 4: Predict word using hidden 
state combined with context 
vector



seq2seq decoder with Attention

Decoder (with Attention): Using all hidden states from the 
encoder, predict a target sequence

2

2



Attention: Mathematical formulation



Transformer Architecture

Encoder Decoder

Source 
Sequence Input

Target Sequence (i.e. current 
progress generating words) 



Transformer Encoder

Source 
sequence 
(x1, …, xn)



Transformer Encoder: Positional + Word Embedding

Source 
sequence 
(x1, …, xn)

Embedded source sequence 

Input and Positional Embedding



Transformer Encoder: Multi-Head Self Attention

Source 
sequence 
(x1, …, xn)

Self-Attention:

MultiHead Attention:

Step 1: Step 2:

Embedded source sequence 

After Multi-Head Attention



Transformer Encoder: Multi-Head Self Attention

Source 
sequence 
(x1, …, xn)

Self-Attention:

MultiHead Attention:

Step 1: Step 2:

Embedded source sequence 

After Multi-Head Attention

In practice, d1= d2

“Self” attention means Q, K, V are 
all computed from a single 
sequence



Transformer Encoder: Add & Norm

Source 
sequence 
(x1, …, xn)

Add & Norm:

Embedded source sequence 

After Multi-Head Attention
LayerNorm

After Add & Norm



Transformer Encoder: Feed Forward

Source 
sequence 
(x1, …, xn)

Feed Forward

Embedded source sequence 

After Multi-Head Attention

After Add & Norm

After Feed Forward

Compute transformation over each value in the 
sequence independently



Transformer Encoder: Final Add & Norm

Source 
sequence 
(x1, …, xn)

Embedded source sequence 

After Multi-Head Attention

After Add & Norm

After Feed Forward

Add & Norm:

LayerNorm

After Final Add & Norm



Transformer Decoder: 

Target sequence 
(<bos>, x1, …, xm)

Output and Positional Embedding

Embedded target sequence Embedded target sequence 



Transformer Decoder: Masked Multi-Head Attention 

Target sequence 
(<bos>, x1, …, xm)

Masked Self-Attention:

Step 2:

⊙ 1
11

Elementwise Multiply by 
Mask 
(equivalent to setting 
masked indices to -∞)

-∞

Step 3:

=

MultiHead Attention:

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

Step 1:



Transformer Decoder: 

Target sequence 
(<bos>, x1, …, xm)

Add & Norm:

LayerNorm

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm



Transformer Decoder: Multi-Head (Cross) Attention

Target sequence 
(<bos>, x1, …, xm)

Cross-Attention:

MultiHead Attention:

Step 1: Step 2:

“Cross” attention means 
Q, K, V are computed 
from separate sequencesEmbedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm

Masked Multi-Head Attention



Decoder
state

Transformer Decoder: Multi-Head (Cross) Attention

Target sequence 
(<bos>, x1, …, xm)

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm

Cross-Attention:

MultiHead Attention:

Step 1: Step 2:

“Cross” attention means 
Q, K, V are computed 
from separate sequences

Encoder 
state

Encoder
state

Masked Multi-Head Attention



Transformer Decoder: Add & Norm

Target sequence 
(<bos>, x1, …, xm)

Add & Norm:

LayerNorm

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm

Masked Multi-Head Attention

Add & Norm



Transformer Decoder: Feed Forward

Target sequence 
(<bos>, x1, …, xm)

Feed Forward

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm

Masked Multi-Head Attention

Add & Norm

Feed Forward



Transformer Decoder: Add & Norm

Target sequence 
(<bos>, x1, …, xm)

Embedded target sequence Embedded target sequence 

Masked Multi-Head Attention

After Add & Norm

Masked Multi-Head Attention

Add & Norm:

LayerNorm

Add & Norm

Feed Forward

Add & Norm



Transformer: Final output
Compute transformation over 
concatenated states


