

COS 484

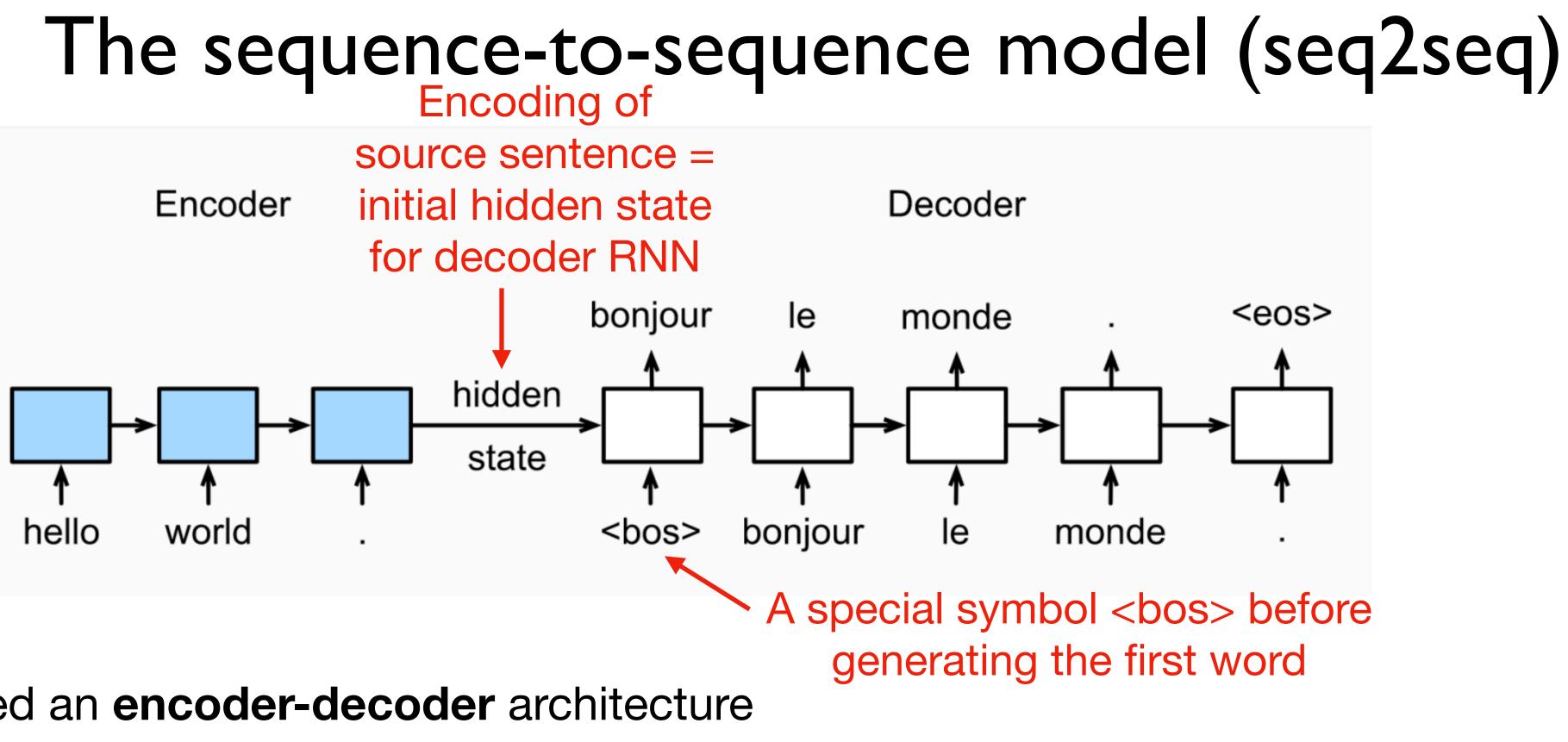
Natural Language Processing

L12: Seq2seq models + attention

Spring 2024

(Some slides adapted from Chris Manning)





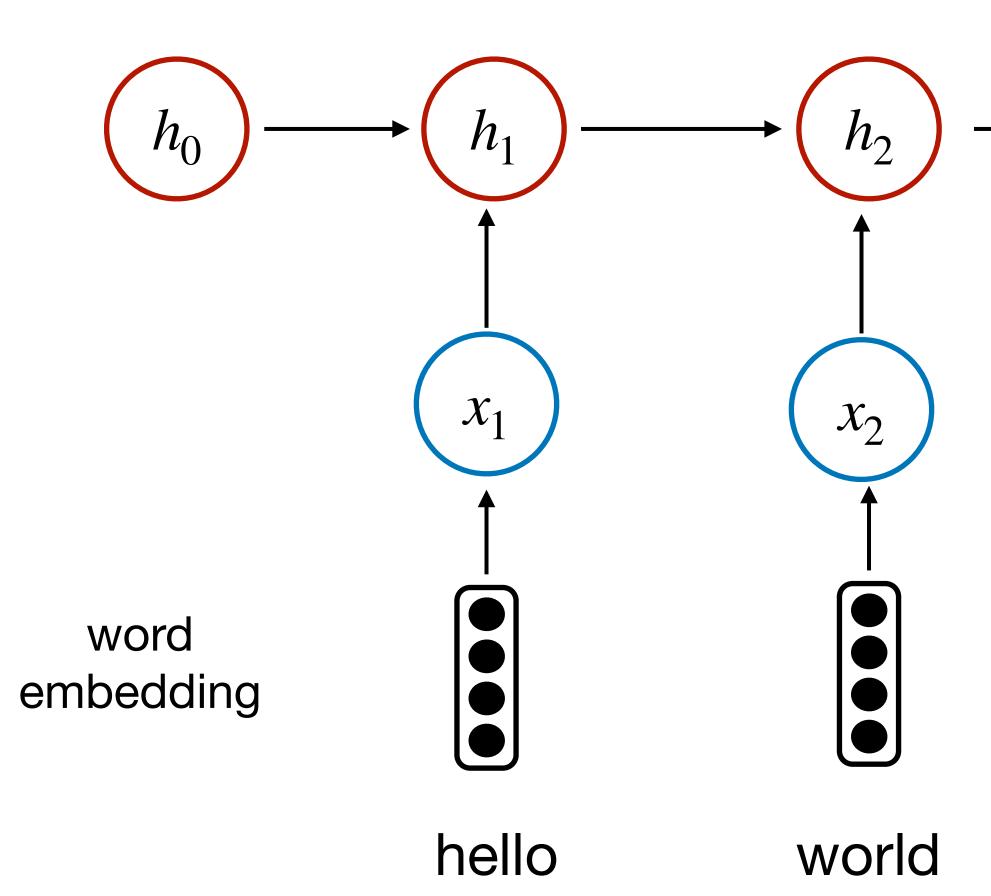
It is called an **encoder-decoder** architecture

- The encoder is an RNN to read the input sequence (source language)
- The decoder is another RNN to generate output word by word (target language)

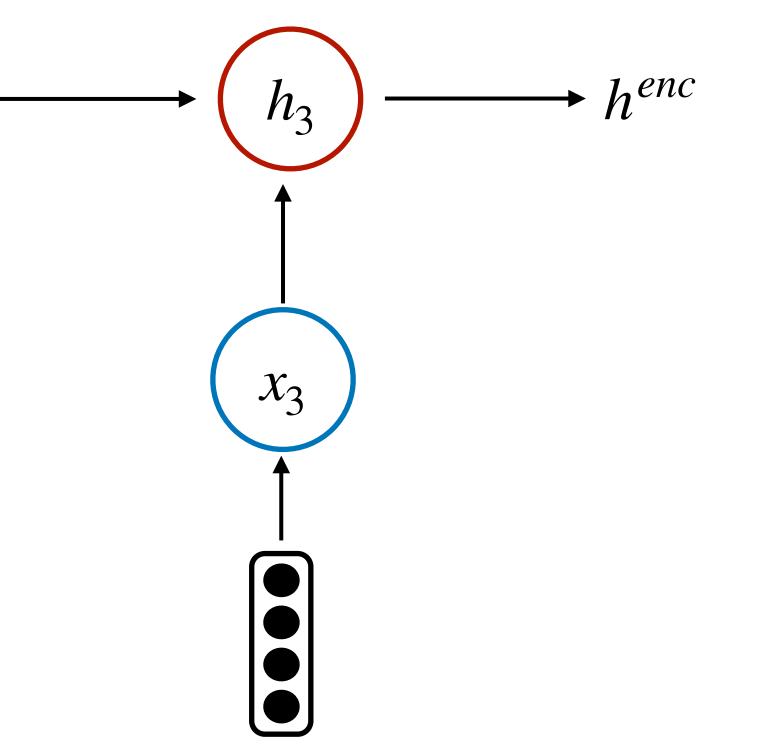
Image: <u>https://d2I.ai/chapter_recurrent-modern/seq2seq.html</u>

Seq2seq: Encoder

Sentence: hello world .

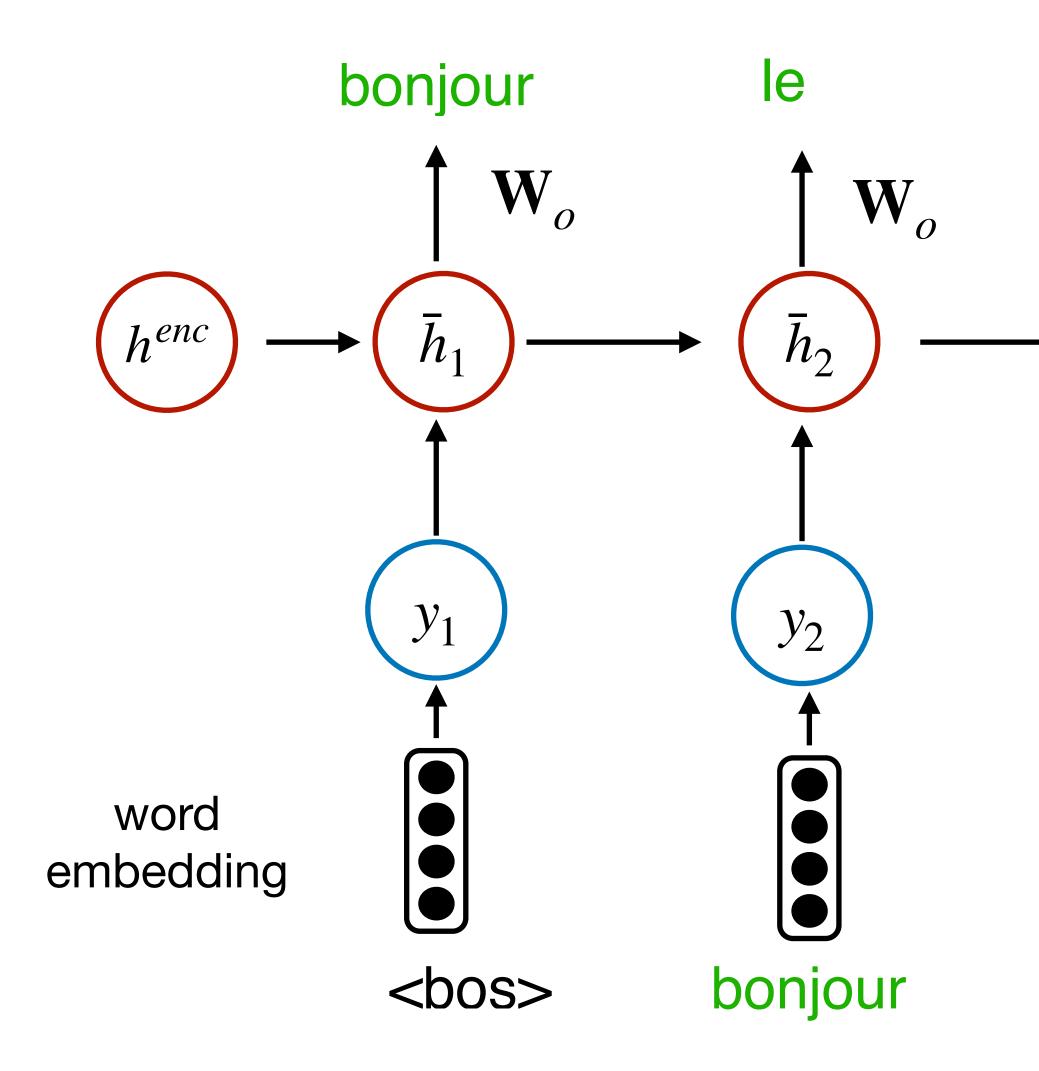


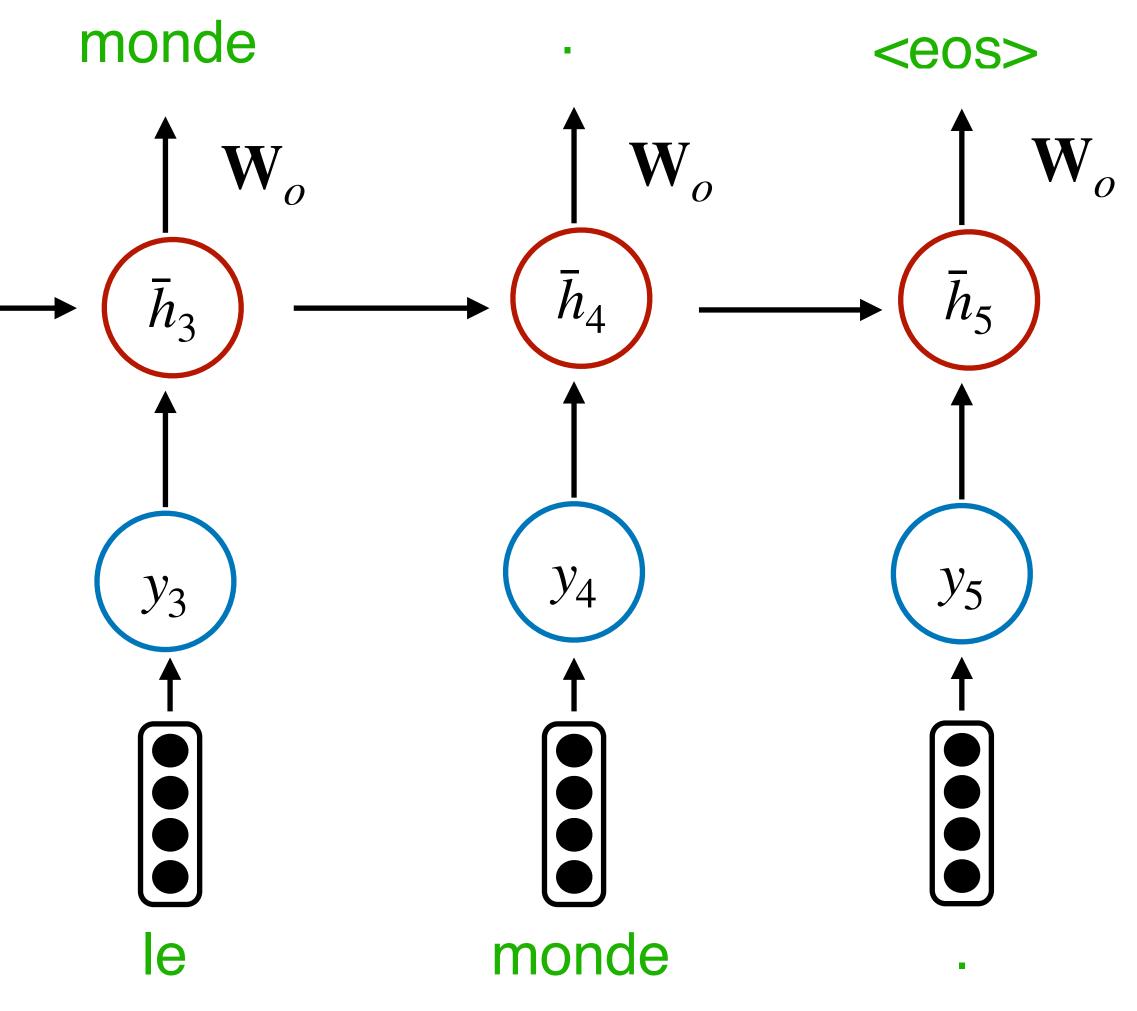
(encoded representation)



Seq2seq: Decoder

• A conditional language model





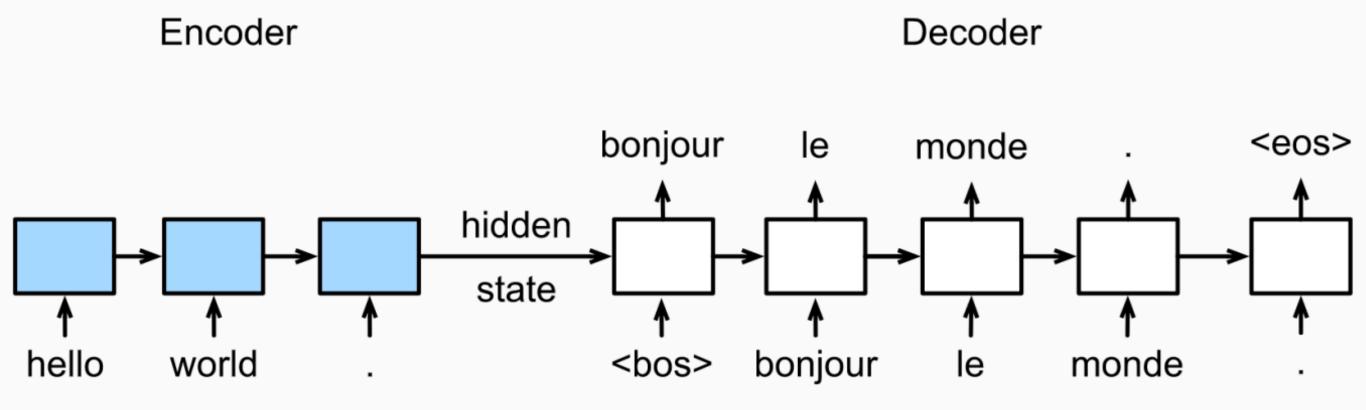
Seq2seq: Decoder

- A conditional language model
 - It is a language model because the decoder is predicting the next word of the target sentence
 - **Conditional** because the predictions are also conditioned on the source • sentence through h^{enc}
- NMT directly calculates $P(\mathbf{w}^{(t)} | \mathbf{w})$
 - Denote $\mathbf{w}^{(t)} = y_1, ..., y_T$

$$\mathbf{W}^{(s)}$$

 $P(\mathbf{w}^{(t)} \mid \mathbf{w}^{(s)}) = P(y_1 \mid \mathbf{w}^{(s)})P(y_2 \mid y_1, \mathbf{w}^{(s)})P(y_3 \mid y_1, y_2, \mathbf{w}^{(s)}) \dots P(y_T \mid y_1, \dots, y_{T-1}, \mathbf{w}^{(s)})$

Understanding seq2seq

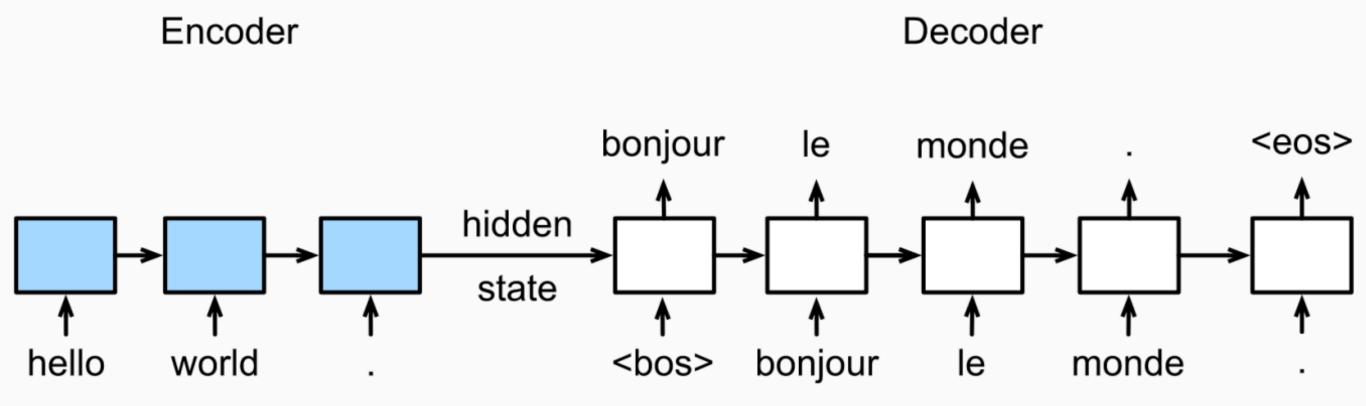


Which of the following is correct?

- (A) We can use bidirectional RNNs for both encoder and decoder ullet
- (B) The decoder has more parameters because of the output matrix \mathbf{W}_{α} ullet
- (C) The encoder and decoder have separate word embeddings ullet
- (D) The encoder and decoder's parameters are optimized together

Both (C) and (D) are correct.

Understanding seq2seq



Encoder RNN:

- word embeddings $\mathbf{E}^{(s)}$ for source language
- Encoder RNN can be bidirectional! lacksquare

Decoder RNN:

- word embeddings $\mathbf{E}^{(t)}$ for target language
- Output embedding matrix \mathbf{W}_{o} = can be tied with $\mathbf{E}^{(t)}$
- **Decoder RNN has to be unidirectional (left to right)!**

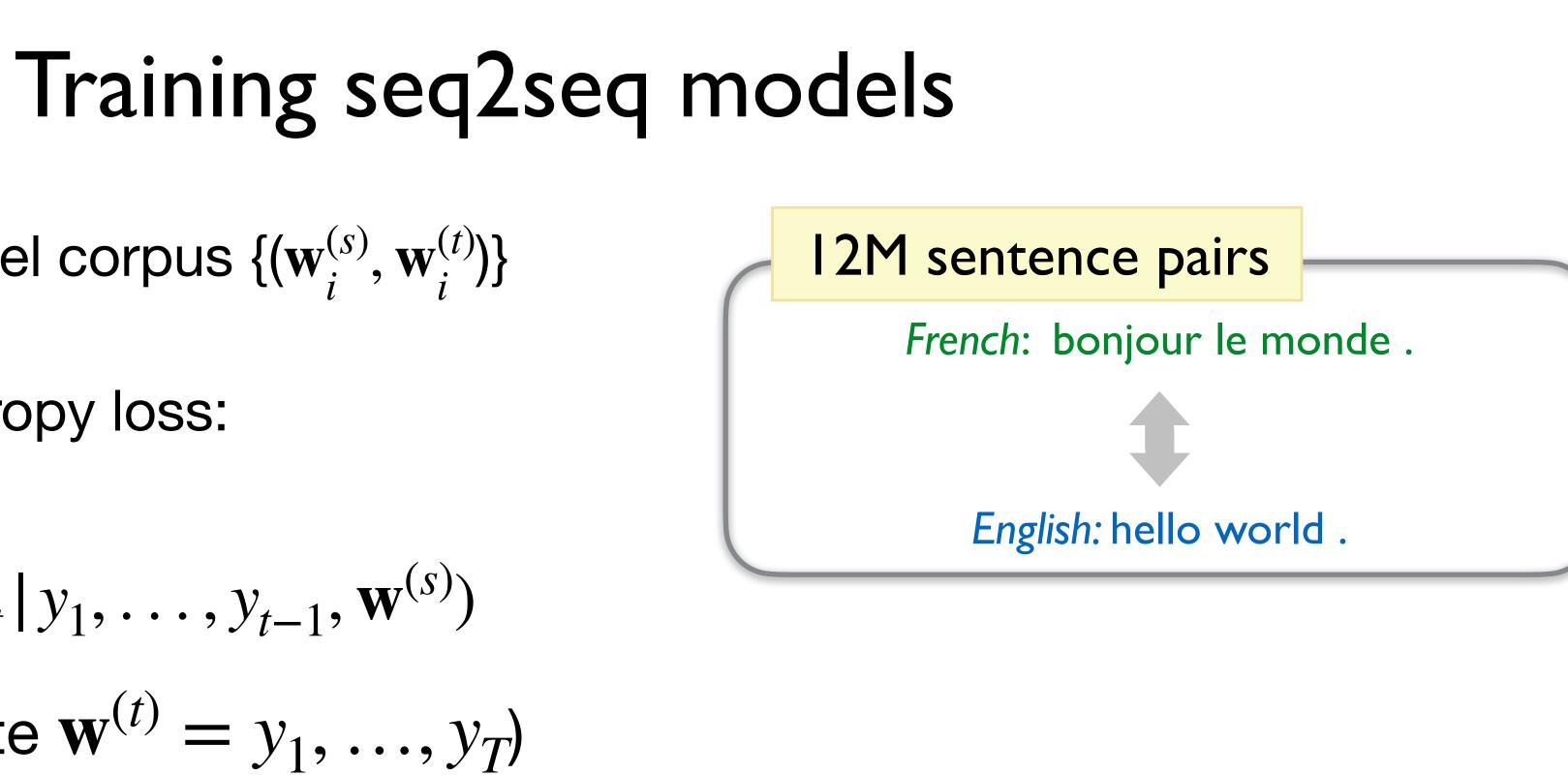
• RNN parameters, e.g., $\{W, U, b\}$ for simple RNNs and 4x parameters for LSTMs

RNN parameters, e.g., $\{W, U, b\}$ for simple RNNs and 4x parameters for LSTMs

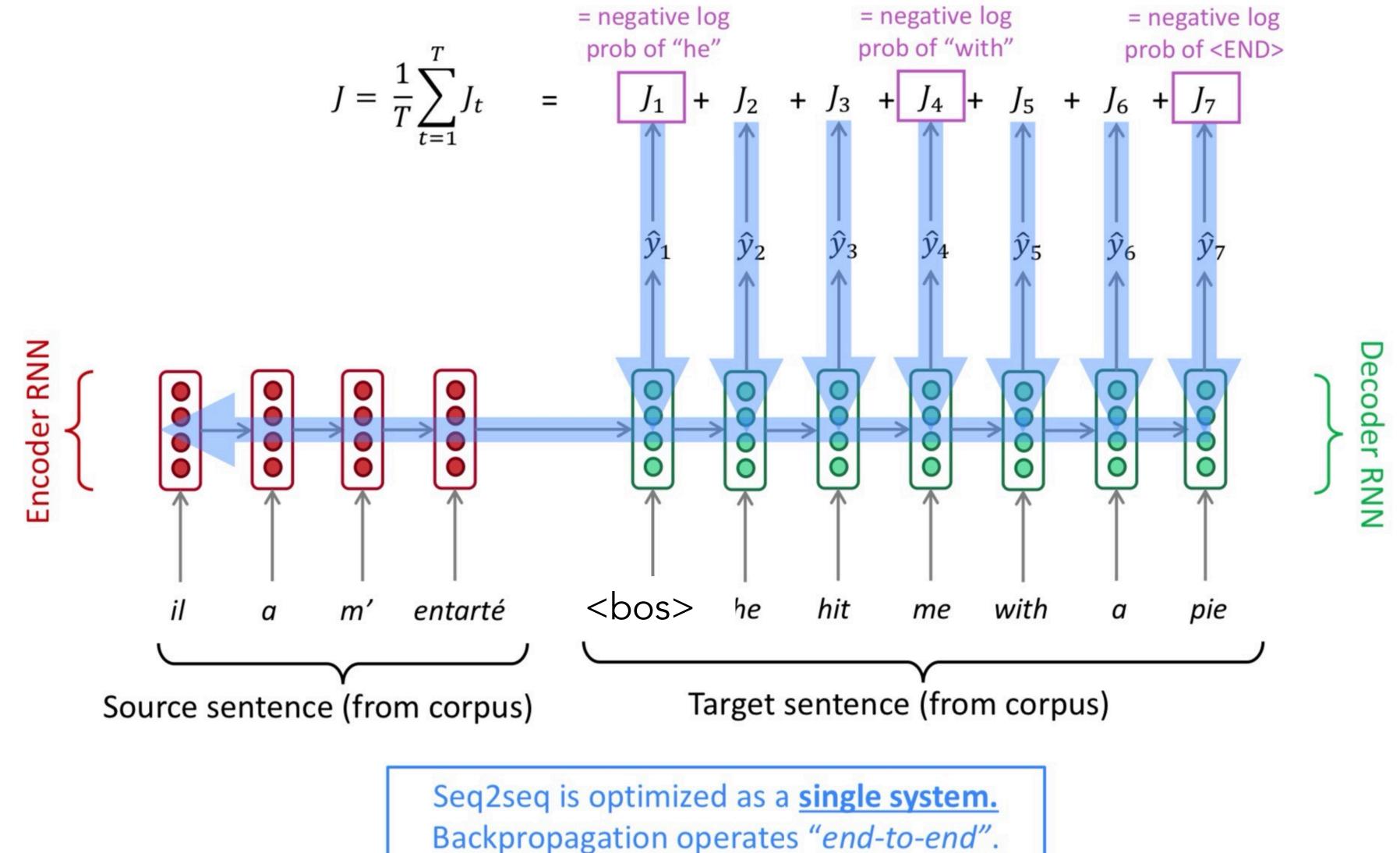
- Training data: parallel corpus $\{(\mathbf{w}_i^{(s)}, \mathbf{w}_i^{(t)})\}$
- Minimize cross-entropy loss: •

$$\sum_{t=1}^{T} -\log P(y_t | y_1, \dots, y_{t-1}, \mathbf{w})$$
(denote $\mathbf{w}^{(t)} = y_1, \dots$

Back-propagate gradients through both encoder and decoder •

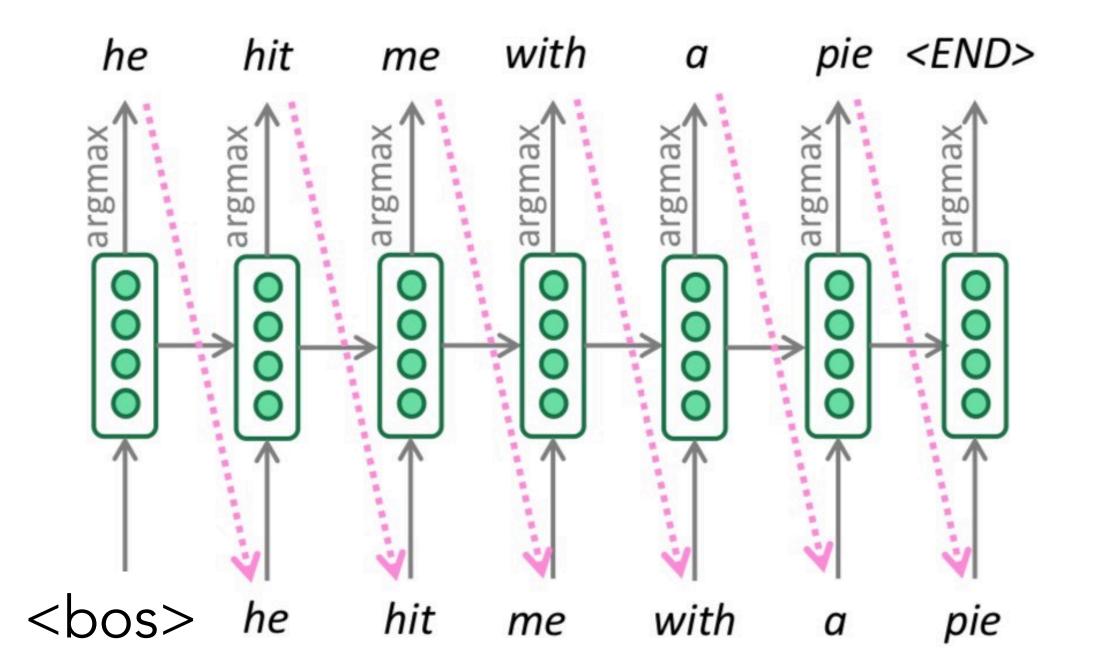


Training seq2seq models



Decoding seq2seq models

 Greedy decoding = Compute argmax at every step of decoder to generate word



Exhaustive search is very expensive: arg max $P(y_1, \ldots, y_T | \mathbf{w}^{(s)})$ don't know what T is

- we even $y_1, ..., y_T$

Decoding with beam search

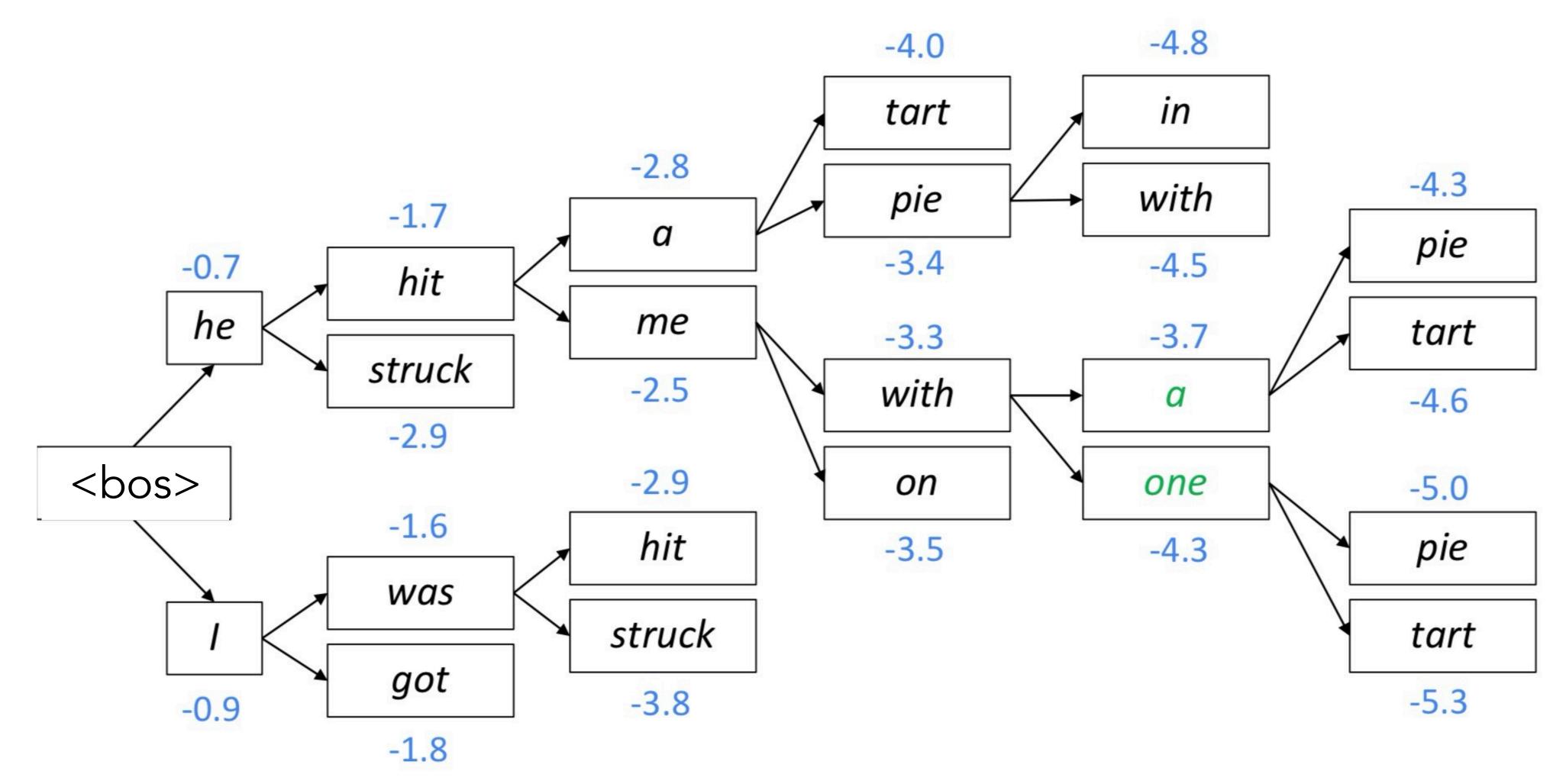
- Score of each hypothesis = log probability of sequence so far

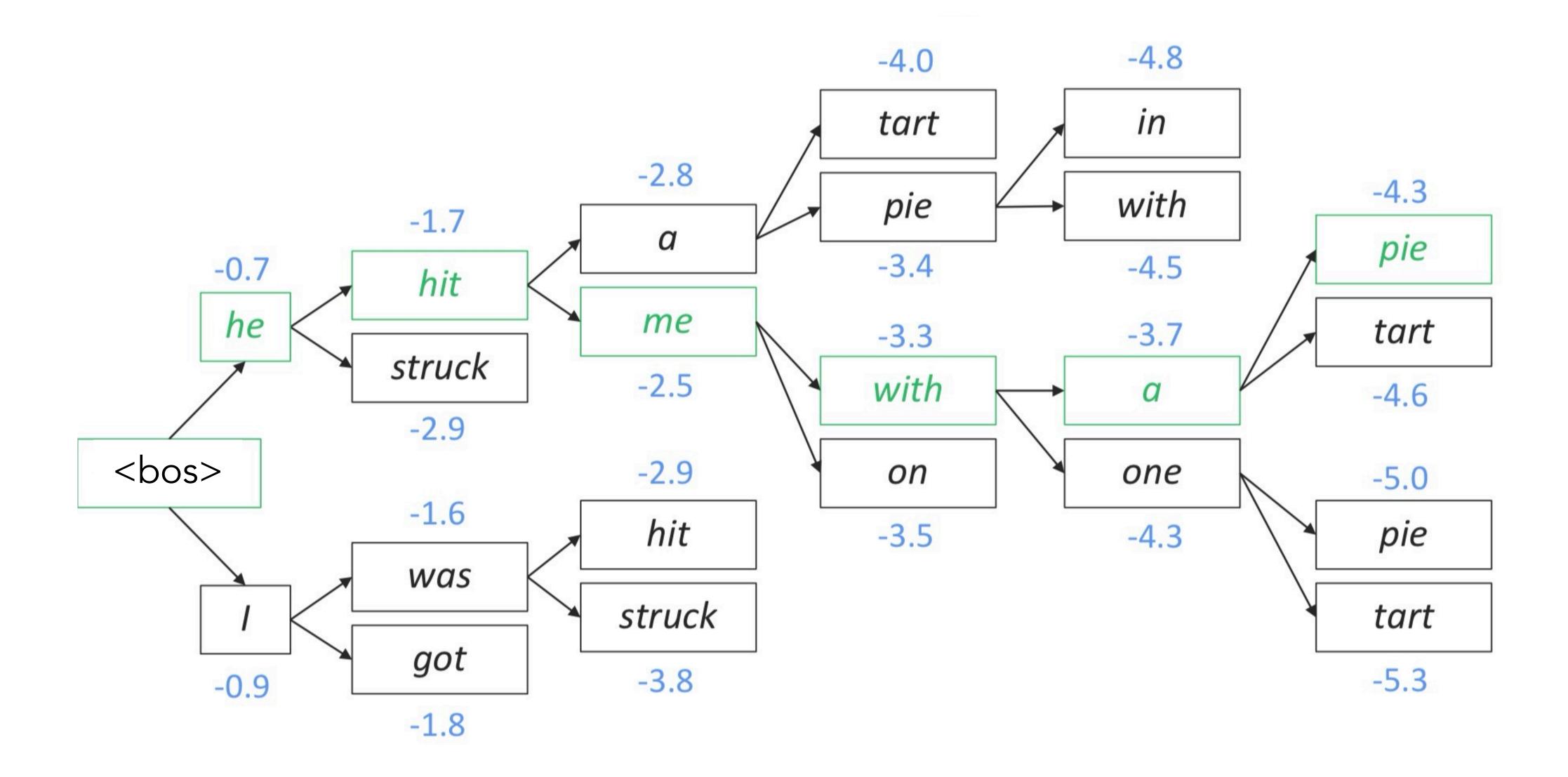
$$\sum_{t=1}^{j} \log P(y_t | y_1, \dots, y_{t-1}, \mathbf{w}^{(s)})$$

- Not guaranteed to be optimal
- Works better than greedy decoding in practice

• At every step, keep track of the k most probable partial translations (hypotheses)

Beam search





Beam search: Backtrack

Beam search: details

- Different hypotheses may produce $\langle eos \rangle$ token at different time steps
 - When a hypothesis produces $\langle eos \rangle$, stop expanding it and place it aside
- Continue beam search until:
 - All k hypotheses produce $\langle eos \rangle$ OR
 - Hit max decoding limit T
- Select top hypotheses using the normalized likelihood score

 $\frac{1}{T}\sum_{i=1}^{T}\log P($

Otherwise shorter hypotheses have higher scores

$$(y_t | y_1, \dots, y_{t-1}, \mathbf{w}^{(s)})$$

Pros:

- Better performance (more fluent, better use of context, better use of phrase similarities)
- A single neural network to be optimized end-to-end (no individual subcomponents)
- Less human engineering effort same method for all language pairs

Cons:

- NMT is less interpretable
- NMT is difficult to control

NMT vs SMT

NMT: the first big success story of NLP deep learning

- 2014: First seq2seq paper published

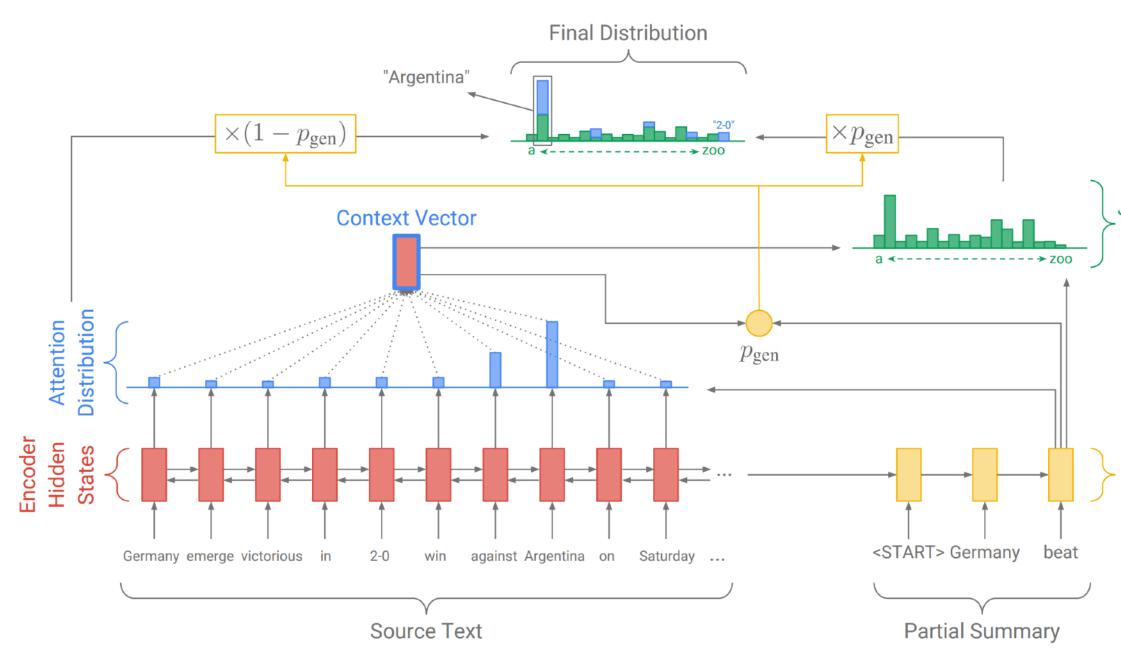
NMT systems trained by a small group of engineers in a few months

2016: Google Translate switches from SMT to NMT - and by 2018 everyone has

• SMT systems, built by hundreds of engineers over many years, outperformed by

- Sequence-to-sequence is useful for more than just MT
- Many NLP tasks can be phrased as sequence-to-sequence
 - Summarization (long text \rightarrow short text)
 - **Dialogue** (previous utterances \rightarrow next utterance)
 - **Parsing** (input text \rightarrow output parse as sequence)
 - Code generation (natural language \rightarrow Python code)

Summarization



Source Text

munster have signed new zealand international francis saili on a two-year deal . utility back saili , who made his all blacks debut against argentina in 2013 , will move to the province later this year after the completion of his 2015 contractual commitments . the 24-year-old currently plays for auckland-based super rugby side the blues and was part of the new zealand under-20 side that won the junior world championship in italy in 2011 . saili 's signature is something of a coup for munster and head coach anthony foley believes he will be a great addition to their backline . francis saili has signed a two-year deal to join munster and will link up with them later this year . ' we are really pleased that francis has committed his future to the province , ' foley told munster 's official website . ' he is a talented centre with an impressive skill-set and he possesses the physical attributes to excel in the northern hemisphere . ' i believe he will be a great addition to our backline and we look forward to welcoming him to munster . ' saili has been capped twice by new zealand and was part of the under 20 side that won the junior championship in 2011 . saili , who joins all black team-mates dan carter , ma'a nonu , conrad smith and charles piutau in agreeing to ply his trade in the northern hemisphere , is looking forward to a fresh challenge . he said : ' i believe this is a fantastic opportunity for me and i am fortunate to move to a club held in such high regard , with values and traditions i can relate to from my time here in the blues . ' this experience will stand to me as a player and i believe i can continue to improve and grow within the munster set-up . ' as difficult as it is to leave the blues i look forward to the exciting challenge ahead .

Reference summary

utility back francis saili will join up with munster later this year . the new zealand international has signed a two-year contract . saili made his debut for the all blacks against argentina in 2013 .

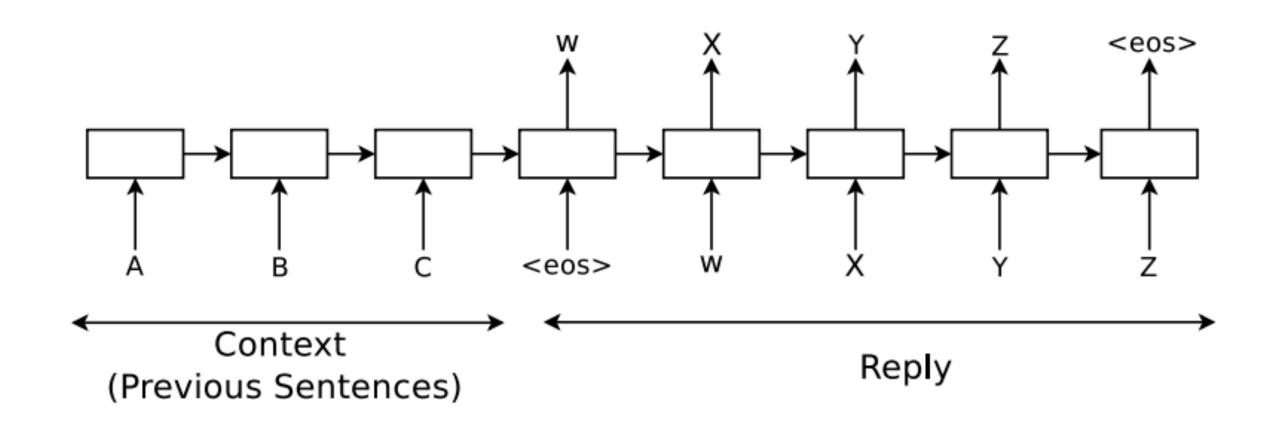
Sequence-to-sequence + attention summary

dutch international francis [UNK] has signed a two-year deal to join irish [UNK] super rugby side the blues . [UNK] 's signature is something of a coup for munster and his head coach anthony foley believes he will be a great addition to their respective prospects . [UNK] has been capped twice by new zealand .

Pointer-generator summary

new zealand international francis saili will move to the province later this year . utility back saili made his all blacks debut against argentina in 2013 . utility back saili will move to the province later this year .

See et al., 2017: Get To The Point: Summarization with Pointer-Generator Networks



Vinyals and Le 2015: A Neuarl Conversational Model

Human: hello ! Machine: hello ! Human: how are you ? Machine: i 'm good . Human: what 's your name ? Machine: i 'm julia . Human: when were you born ? Machine: july 20th . Human: what year were you born ? Machine: 1977 . Human: where are you from ?

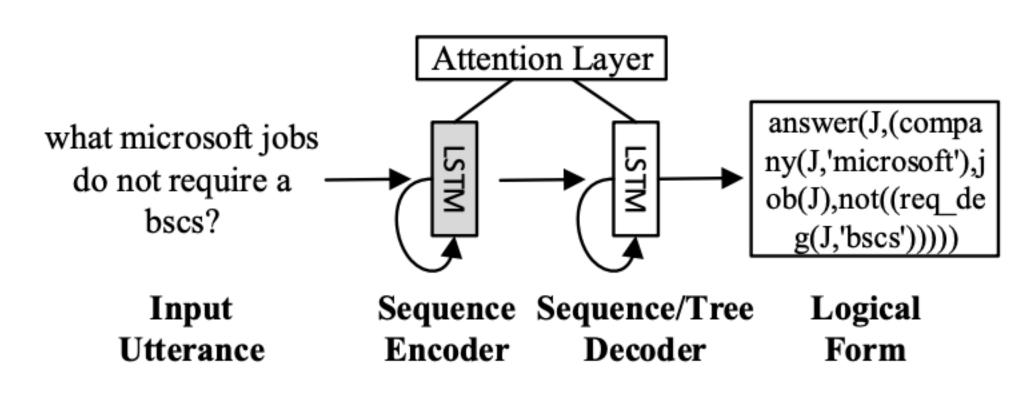
Parsing

John has a dog . \rightarrow N

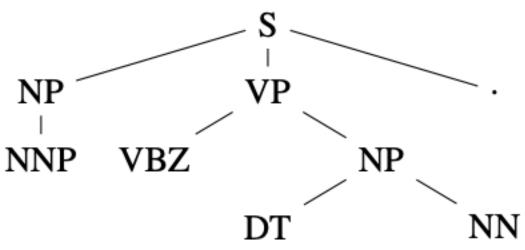
John has a dog . $\quad \rightarrow \qquad (S~(NP~NNP~)_{\rm NP}~(VP~VBZ~(NP~DT~NN~)_{\rm NP}~)_{\rm VP}~.~)_{\rm S}$

Vinyals et al., 2015: Grammar as a Foreign Language

Semantic parsing / code generation

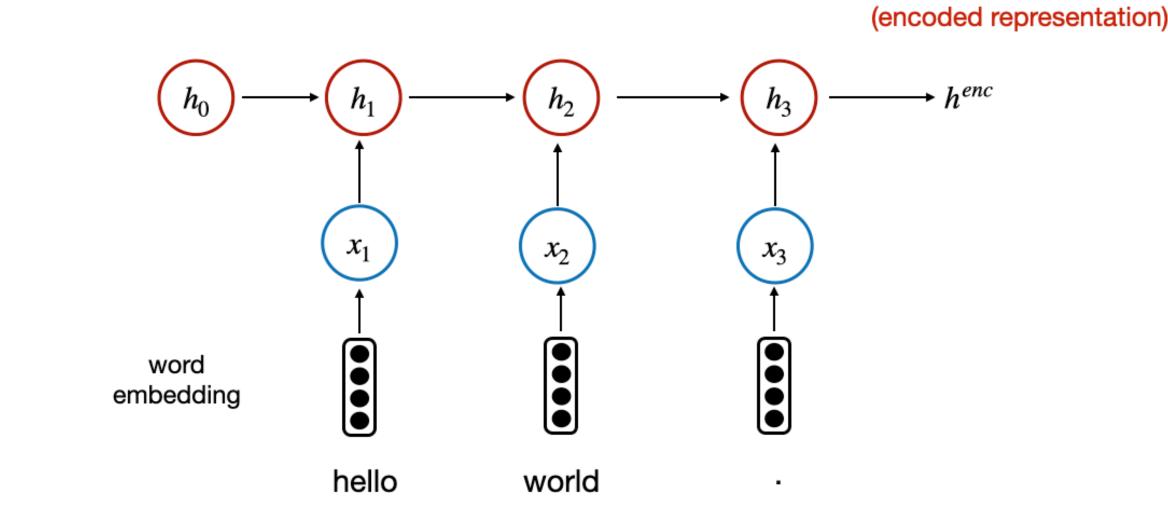


Dong and Lapata, 2016: Language to Logical Form with Neural Attention



Subword tokenization

- So far, we have been always using words as the basic units \bullet



• e.g., there is a pre-defined vocabulary V, and each word $w \in V$ has a word embedding

How to represent all words even those we haven't seen in the training data? A common solution: replace unknown words with a special <UNK> token It is not a great solution for MT when you have a lot of unknown tokens

Byte pair encoding (BPE)

Original:	furiously	Original:	tricy
BPE:	_fur iously	BPE:	_t :

Original: Completely preposterous suggestions **BPE:** _Comple t ely _prep ost erous _suggest ions

Original: corrupted **BPE:** _cor rupted

- lacksquare
- It was first introduced in NMT by (Sennirch et al., 2016) and achieved huge success
- wordpiece tokenization algorithms

Key idea: use subword units! Rare and unknown words are encoded as sequences of subword units.

ycles **Original:** nanotechnology ric y cles **BPE:** _n an ote chn ology

Original: 1848 and 1852, **BPE:** _184 8 _and _185 2,

BPE = byte pair encoding (BPE) is a simple data compression technique (Gage, 1994)

Modern neural networks all build on subword units - besides BPE, there are also unigram and

Byte pair encoding (BPE)

Algorithm 1 Byte-pair encoding (Sennrich et al., 2016; Gage, 1994)

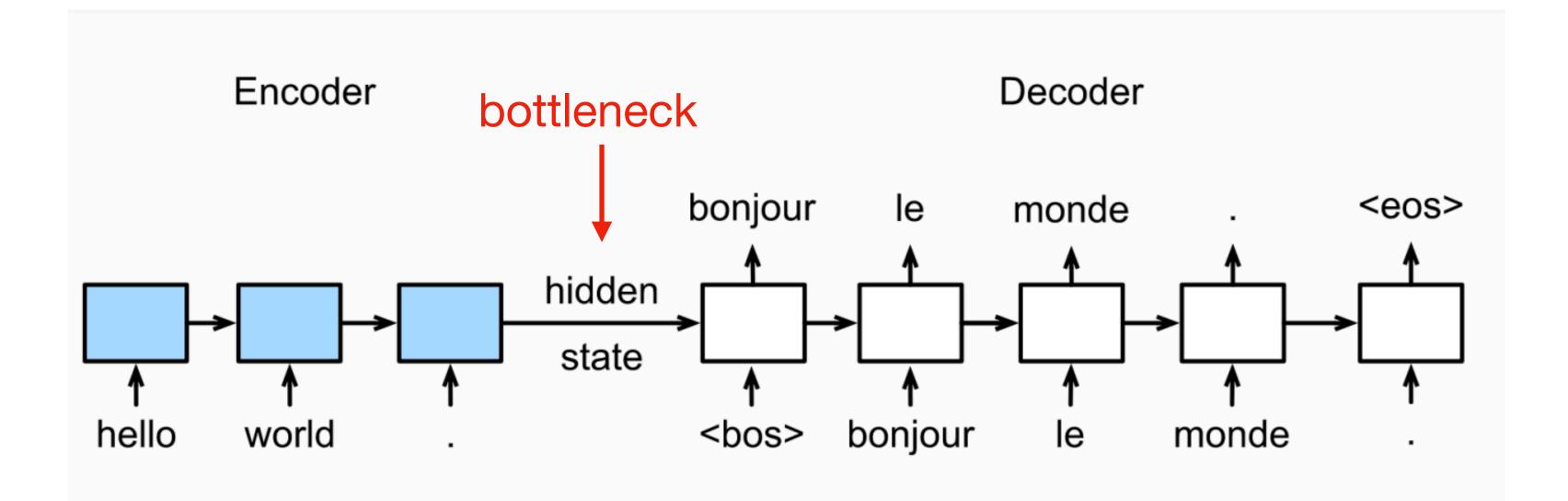
- 1: Input: set of strings D, target vocab size k
- 2: **procedure** BPE(D, k)
- 3: $V \leftarrow$ all unique characters in D4:(about 4,000 in English Wikipedia)5:while |V| < k do \triangleright Merge tokens6: $t_L, t_R \leftarrow$ Most frequent bigram in D7: $t_{\text{NEW}} \leftarrow t_L + t_R$ \triangleright Make new token
- 8: $V \leftarrow V + [t_{\text{NEW}}]$
- 9: Replace each occurrence of t_L, t_R in
- 10: $D \text{ with } t_{\text{NEW}}$
- 11: end while
- 12: return V
- 13: end procedure

Words in the data:

Initial vocabulary:	word	count	Current merge t
characters	cat	4	(empty)
Ļ	m a t	5	
Split each word	mats	2	
into characters	mate	3	
	ate	3	
	eat	2	

https://lena-voita.github.io/nlp_course/ seq2seq_and_attention.html#bpe table:

Sequence-to-sequence: the bottleneck



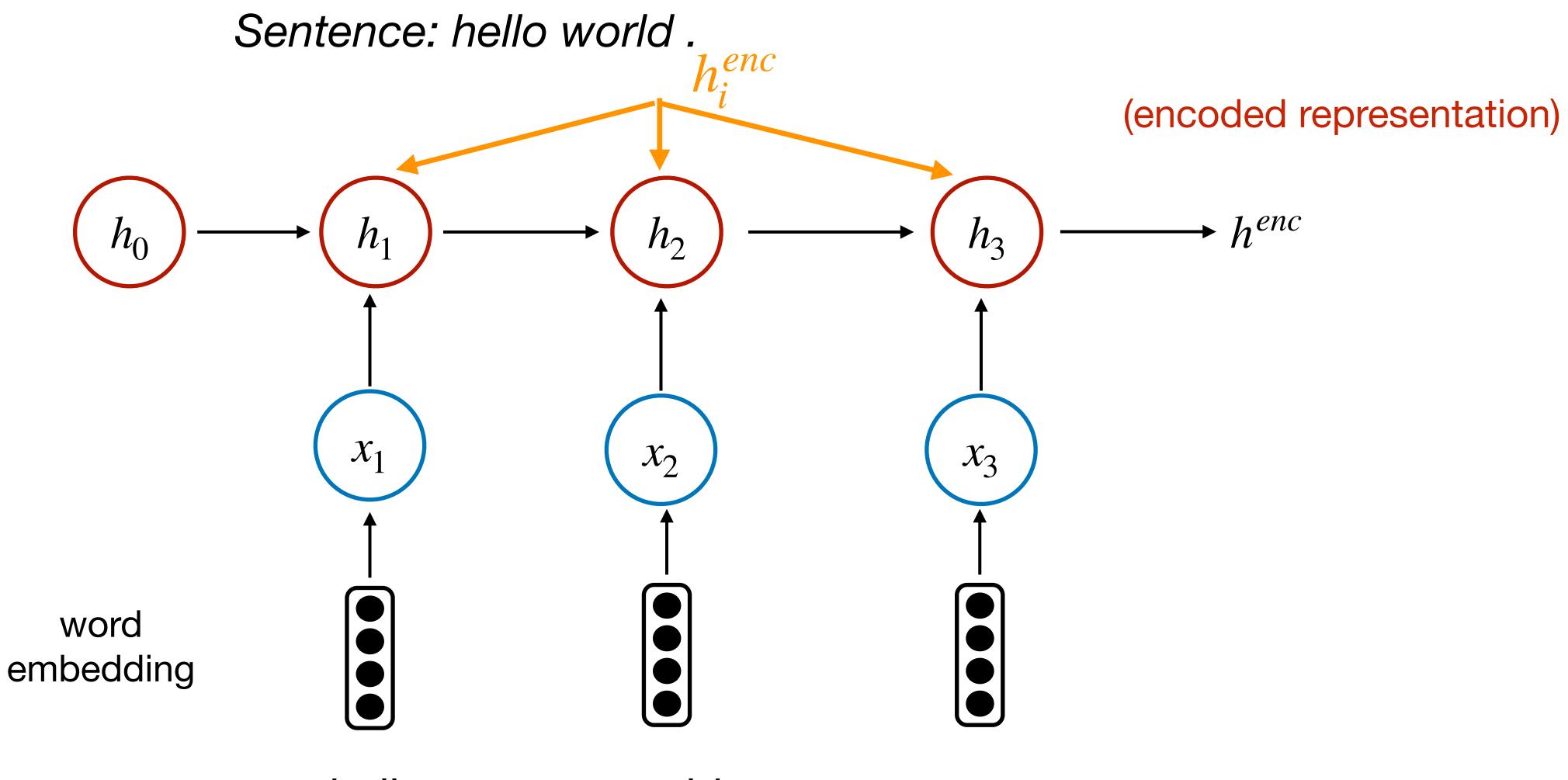
- Longer sequences can lead to vanishing gradients

A single encoding vector, h^{enc} , needs to capture all the information about source sentence

Attention

- Attention provides a solution to the bottleneck problem
- Key idea: At each time step during decoding, focus on a particular part of source sentence
 - This depends on the decoder's current hidden state h^{dec} (i.e. an idea of what you are trying to decode)
 - Usually implemented as a probability distribution over the hidden states of the **encoder** (h_i^{enc})

Seq2seq: Encoder

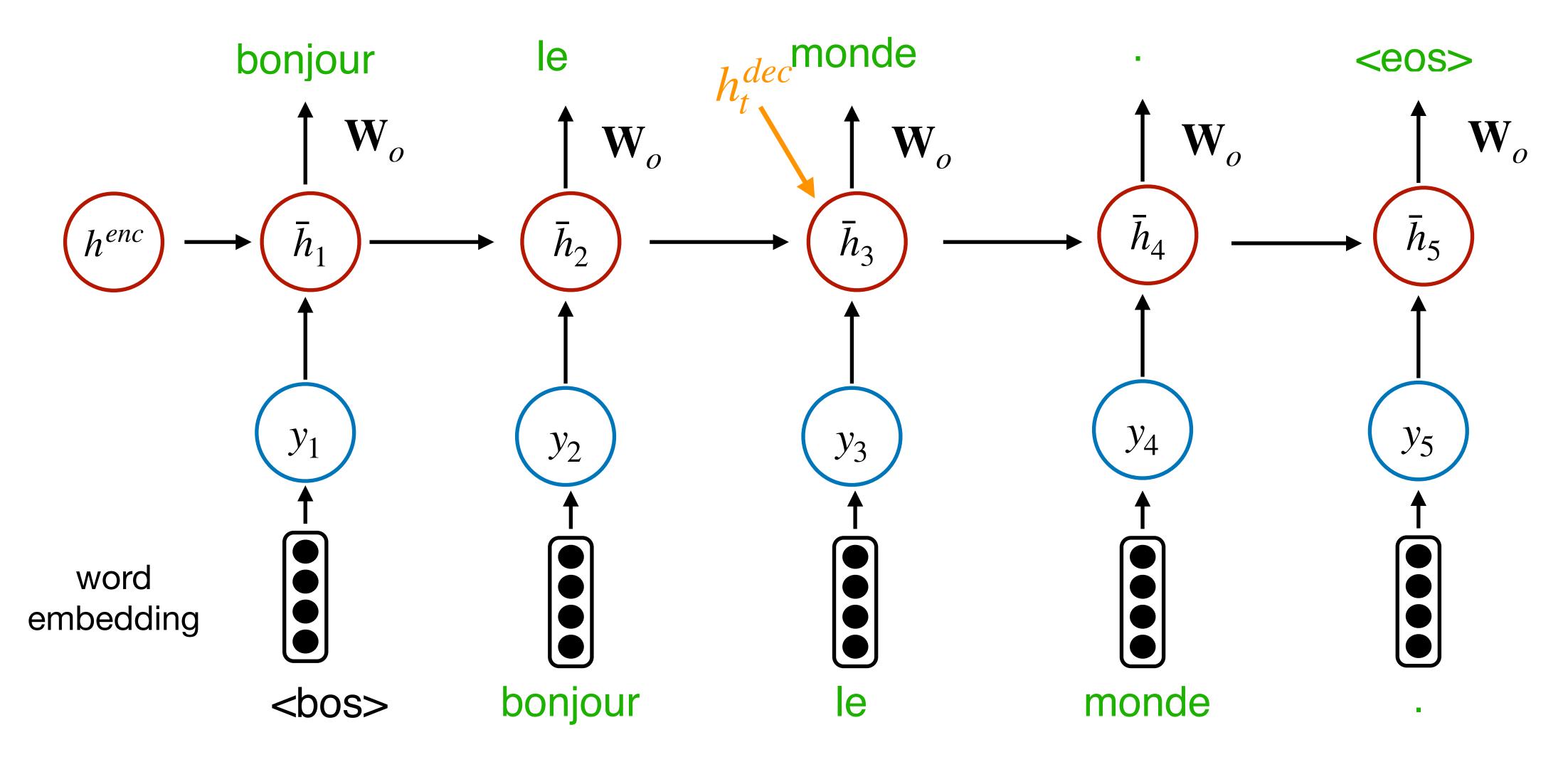


hello

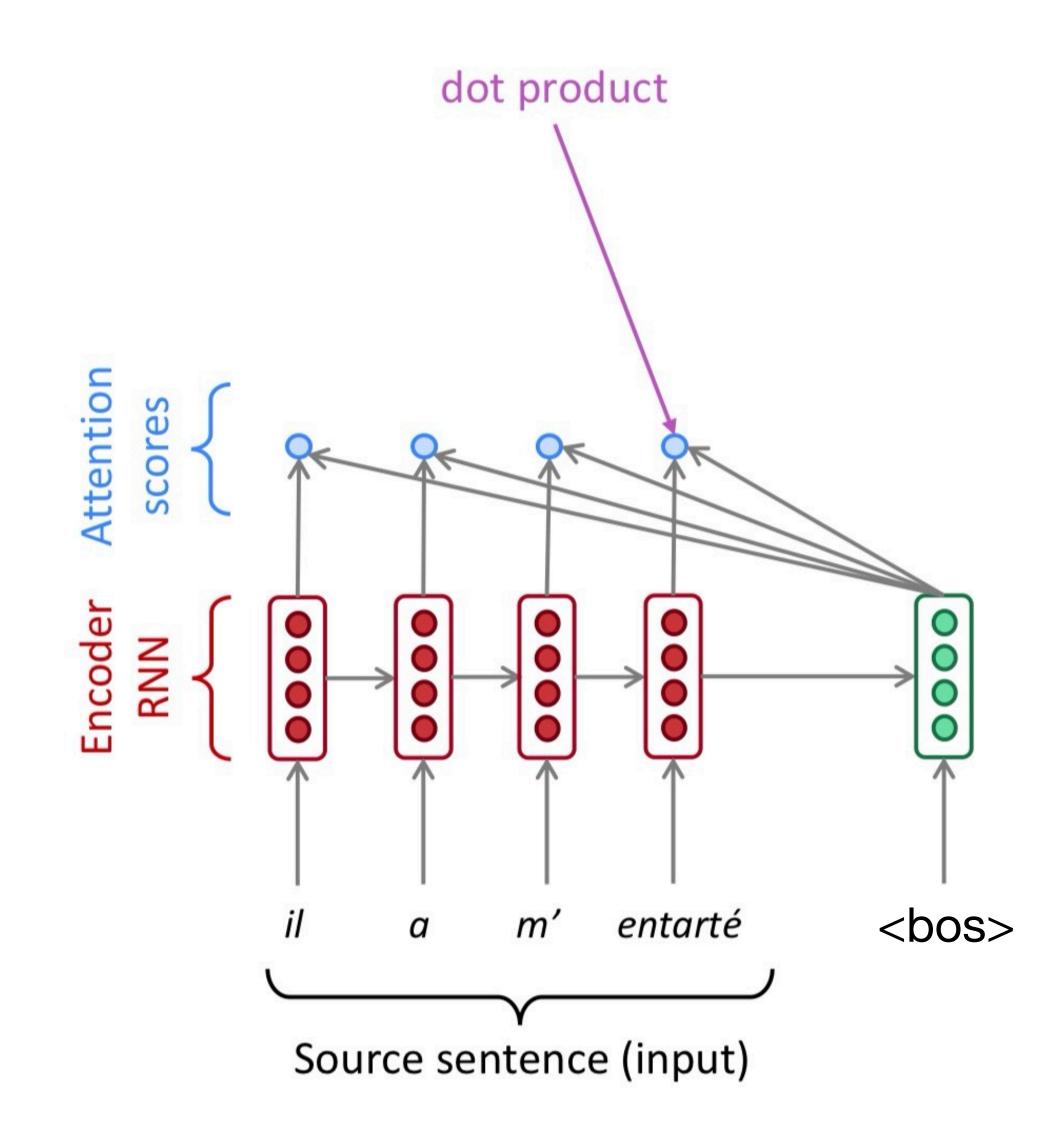
world

Seq2seq: Decoder

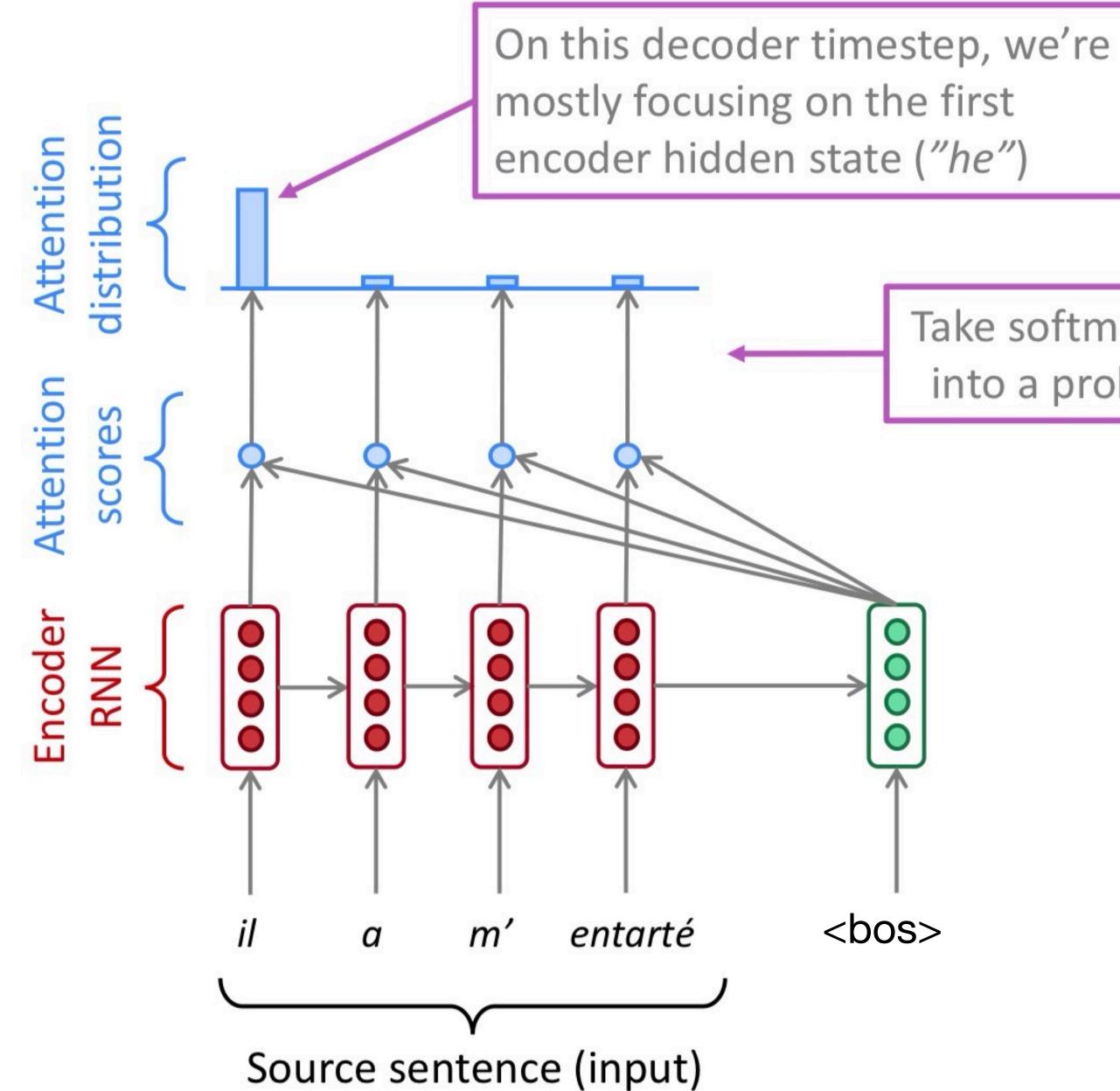
A conditional language model



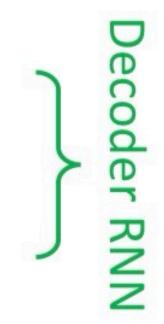
Seq2seq with attention

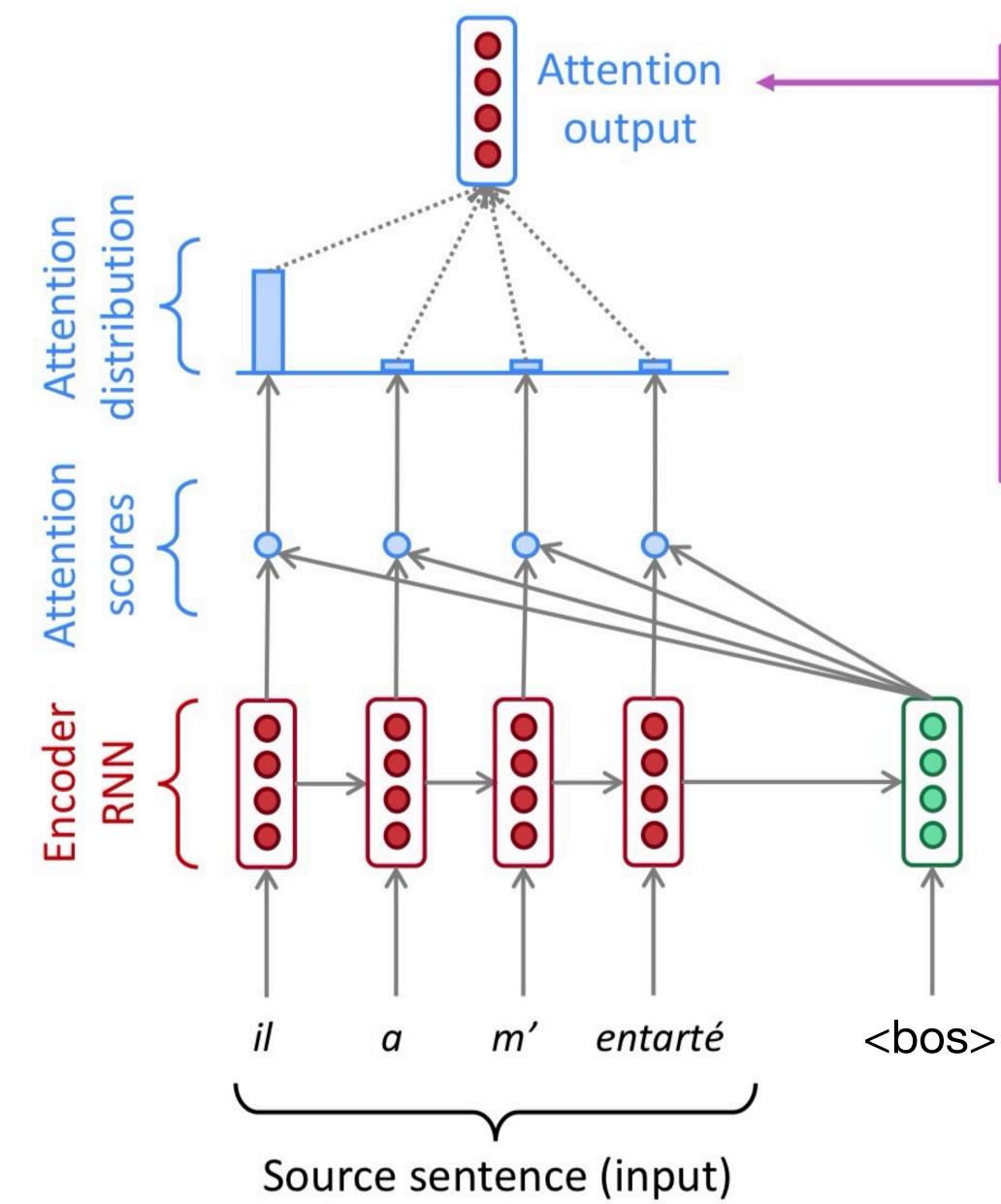


Decoder RNN



Take softmax to turn the scores into a probability distribution

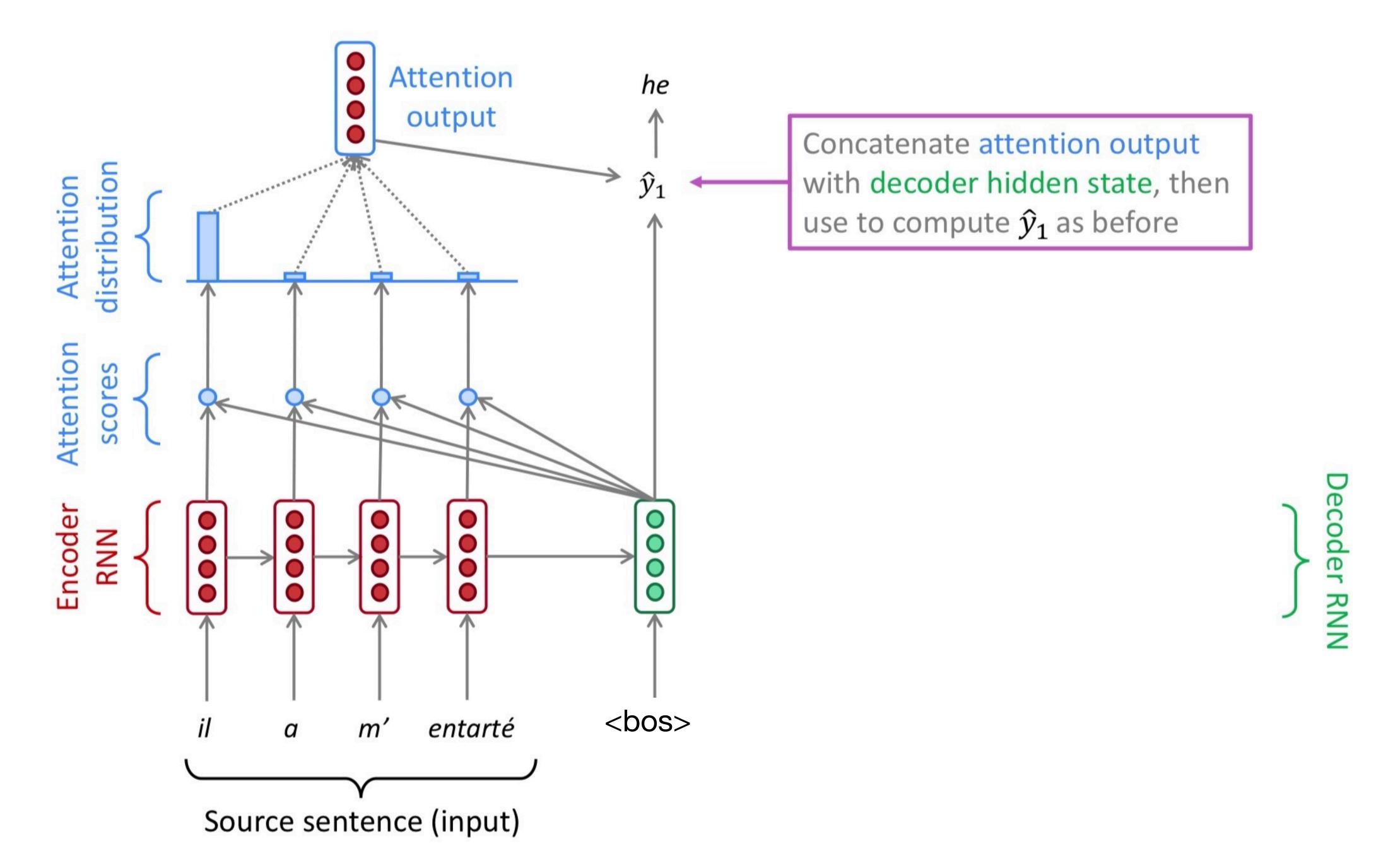


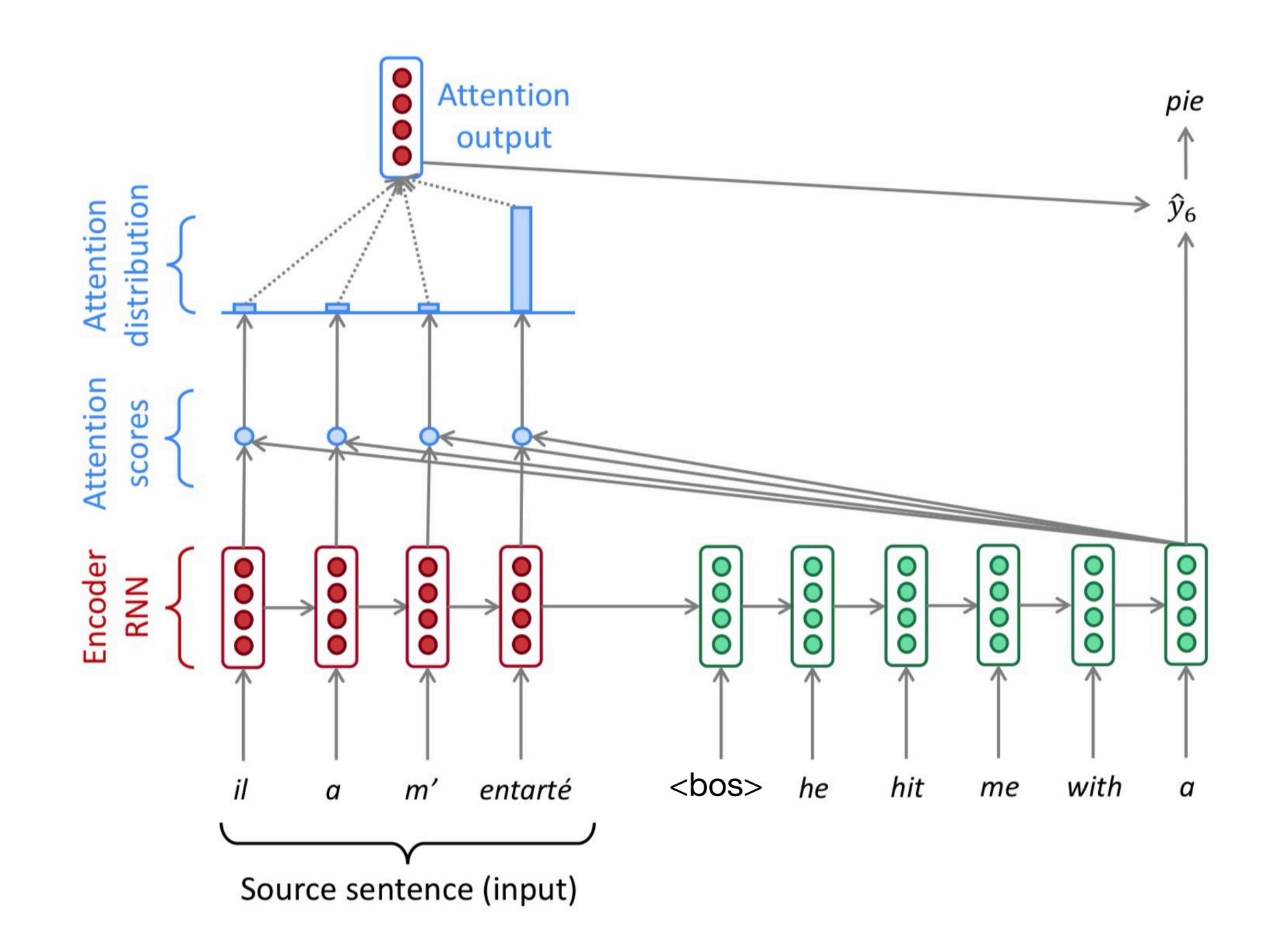


Use the attention distribution to take a weighted sum of the encoder hidden states.

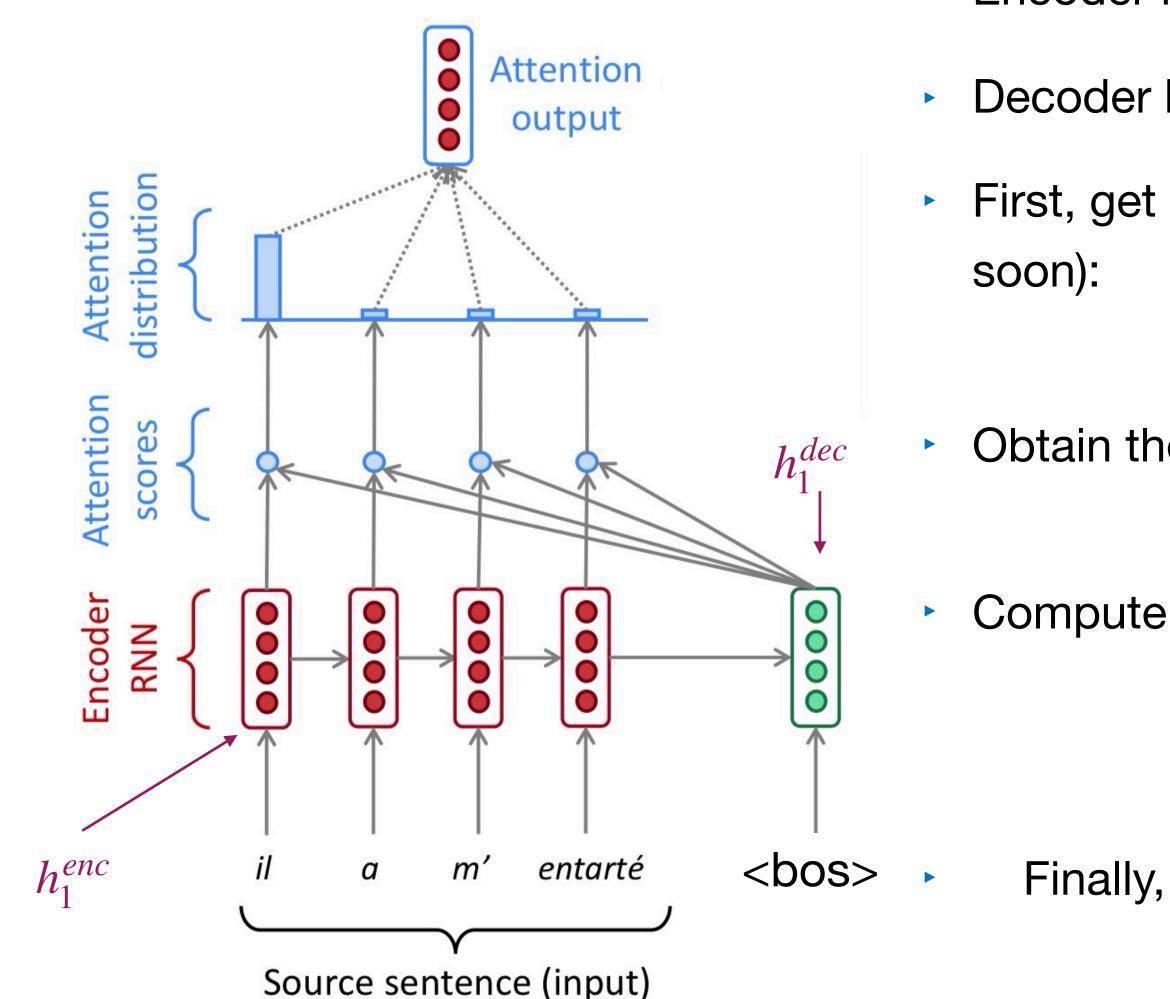
The attention output mostly contains information from the hidden states that received high attention.

Decoder RNN





Computing attention



- (n: # of words in source sentence) • Encoder hidden states: $h_1^{enc}, \ldots, h_n^{enc}$
 - Decoder hidden state at time *t*: h_t^{dec}
 - First, get attention scores for this time step of decoder (we'll define g

$$e^{t} = [g(h_1^{enc}, h_t^{dec}), \dots, g(h_n^{enc}, h_t^{dec})]$$

Obtain the attention distribution using softmax:

$$\alpha^{t} = \operatorname{softmax} (e^{t}) \in \mathbb{R}^{n}$$

Compute weighted sum of encoder hidden states:

$$a_t = \sum_{i=1}^n \alpha_i^t h_i^{enc} \in \mathbb{R}^h$$

Finally, concatenate with decoder state and pass on to output layer: $\tilde{h}_t = \operatorname{tanh}(\mathbf{W}_c[a_t; h_t^{dec}]) \in \mathbb{R}^h \ \mathbf{W}_c \in \mathbb{R}^{2h \times h}$

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau Jacobs University Bremen, Germany

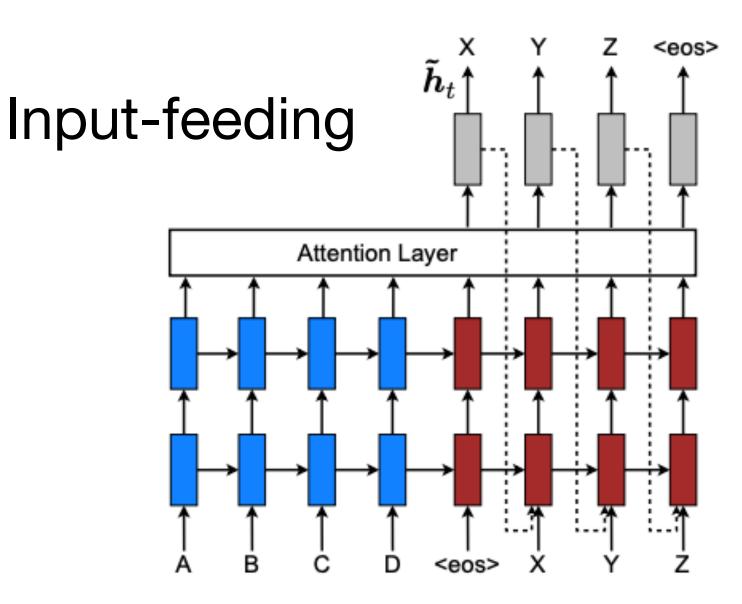
KyungHyun Cho Yoshua Bengio* Université de Montréal

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham Christopher D. Manning Computer Science Department, Stanford University, Stanford, CA 94305 {lmthang,hyhieu,manning}@stanford.edu

Attention

Attention Layer Context vector c_t Global align weights \boldsymbol{a}_t $ar{m{h}}_s$



 y_t

 $[ilde{m{h}}_t$

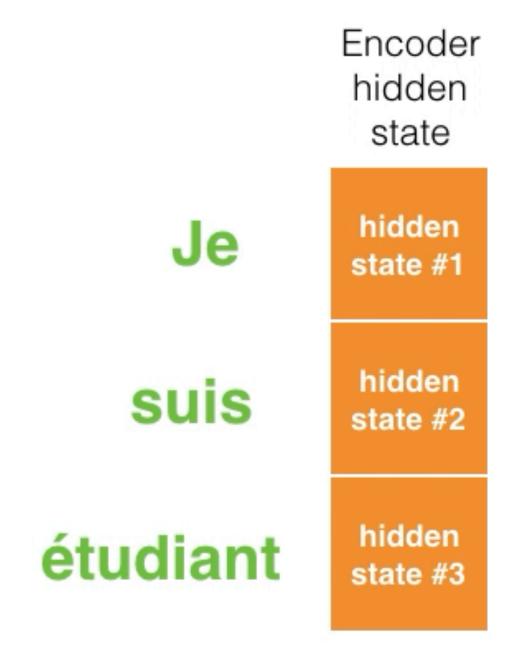
Computing attention



Attention at time step 4

translation-mechanics-of-seq2seq-models-with-attention/

(credits: Jay Alammar)



https://jalammar.github.io/visualizing-neural-machinetranslation-mechanics-of-seq2seq-models-with-attention/

(credits: Jay Alammar)

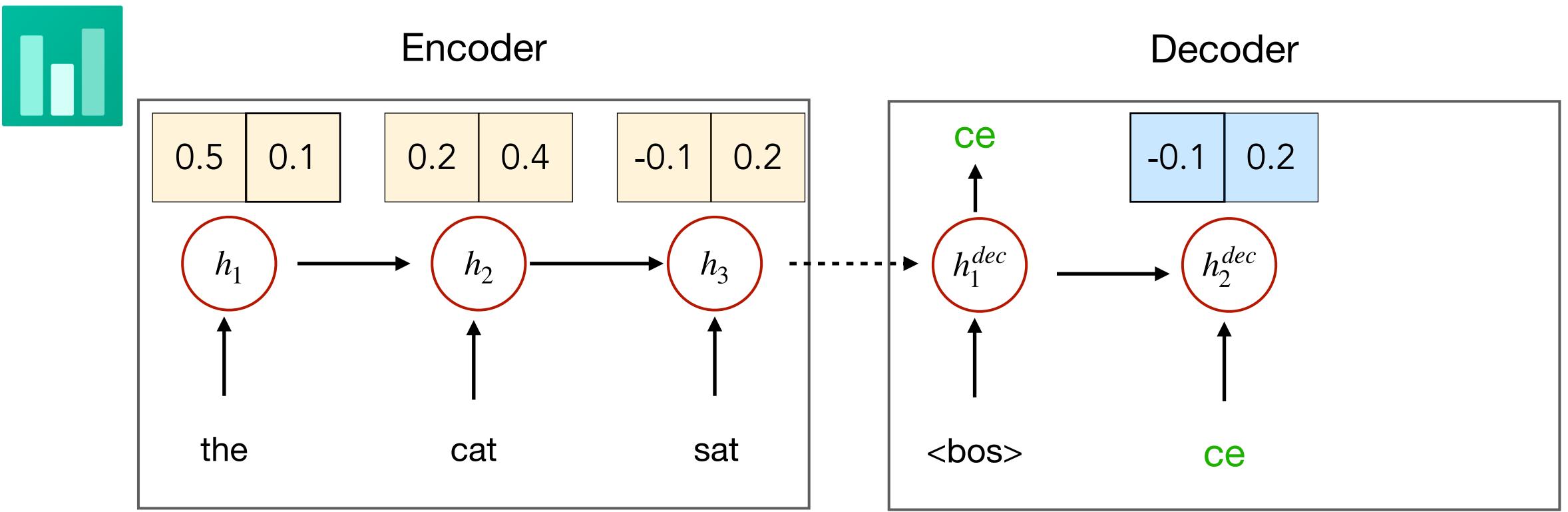
Types of attention

- **Dot-product attention** (assumes equal dimensions for h^{enc} and h^{dec}_{t}): 1. $g(h_i^{enc}, h_t^{dec}) = (h_t^{dec})^T h_i^{enc} \in \mathbb{R}$
- **Multiplicative attention:** 2.
- **Additive attention:** 3. $g(h_i^{enc}, h_t^{dec}) = v^T \tanh(W_1 h_i^{enc} + W_2 h_t^{dec}) \in \mathbb{R}$

• Assume encoder hidden states $h_1^{enc}, h_2^{enc}, \ldots, h_n^{enc}$ and a decoder hidden state h_t^{dec}

 $g(h_i^{enc}, h_t^{dec}) = (h_t^{dec})^T W h_i^{enc} \in \mathbb{R}$, where W is a weight matrix (learned)

where W_1 , W_2 are weight matrices (learned) and v is a weight vector (learned)



Dot-product attention:

 $g(h_i^{enc}, h_t^{dec}) = h_t^{dec} \cdot h_i^{enc}$

Assuming we use dot product attention, which input word will have the highest attention value at current time step?

- A) the
- B) cat
- C) sat

The answer is (B)

the: -0.05 + 0.02cat: -0.02 + 0.08sat: 0.01 + 0.04

Attention improves translation

System

Winning WMT'14 system – phrase-based + Existing NMT systems

RNNsearch (Jean et al., 2015)

RNNsearch + unk replace (Jean et al., 2015)

RNNsearch + unk replace + large vocab + en.

Our NMT systems

Base

Base + reverse

Base + reverse + dropout

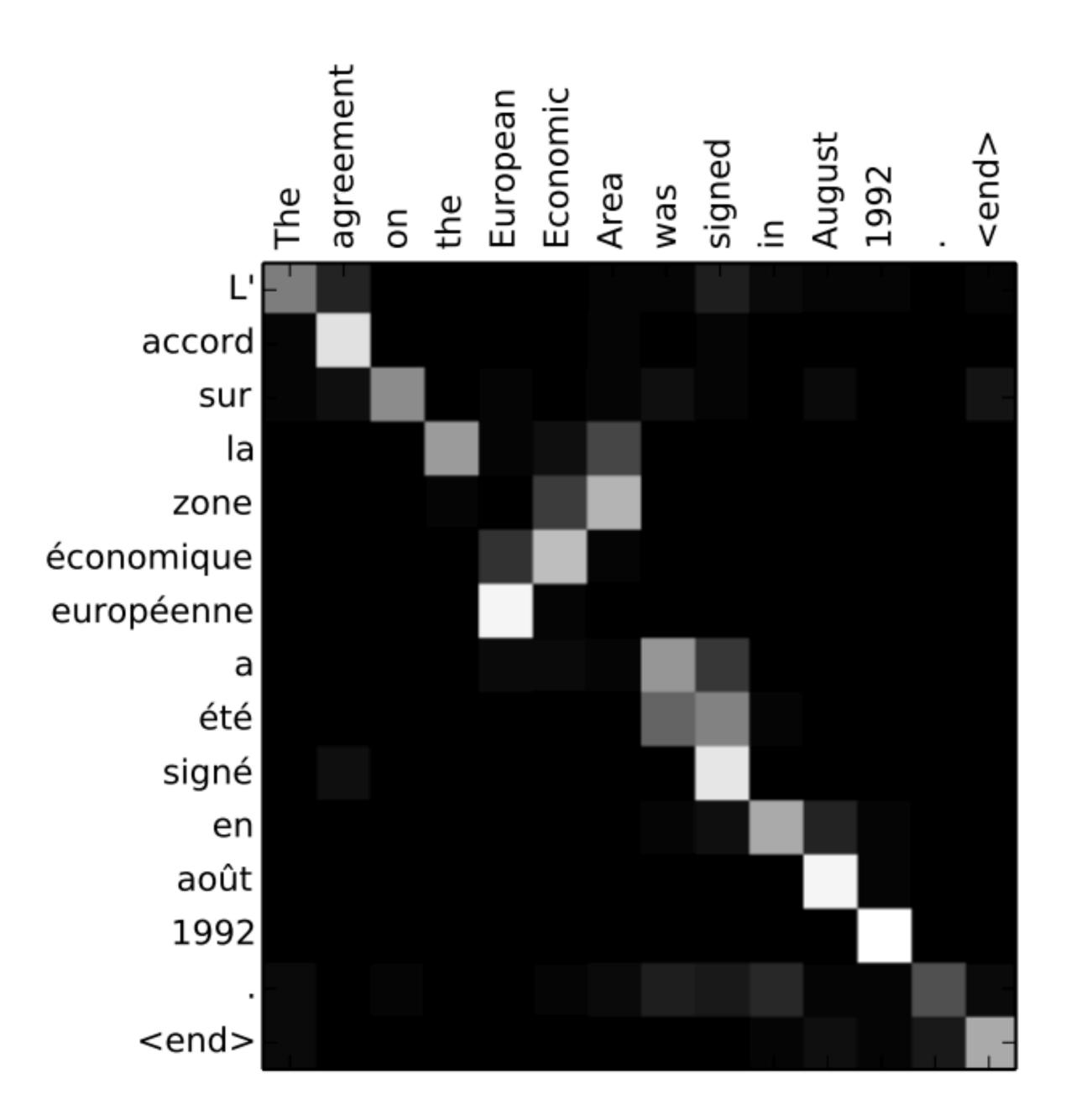
- Base + reverse + dropout + global attention (
- Base + reverse + dropout + global attention (
- Base + reverse + dropout + local-p attention
- Base + reverse + dropout + local-p attention

Ensemble 8 models + unk replace

	Ppl	BLEU
large LM (Buck et al., 2014)		20.7
		16.5
		19.0
nsemble 8 models (Jean et al., 2015)		21.6
	10.6	11.3
	9.9	12.6 (+1.3)
	8.1	14.0 (+1.4)
(location)	7.3	16.8 (+2.8)
(location) + feed input	6.4	18.1 (+1.3)
(general) + feed input	5.9	19.0 (+0.9)
(general) + feed input + unk replace	5.9	20.9 (+1.9)
		23.0 (+2.1)

(Luong et al., 2015)

Visualizing attention



(credits: Jay Alammar)

