
L12: Seq2seq models + attention

COS 484

Natural Language Processing

Spring 2024

(Some slides adapted from Chris Manning)

The sequence-to-sequence model (seq2seq)

Image: https://d2l.ai/chapter_recurrent-modern/seq2seq.html

It is called an encoder-decoder architecture

• The encoder is an RNN to read the input sequence (source language)

• The decoder is another RNN to generate output word by word (target language)

Encoding of
source sentence =
initial hidden state
for decoder RNN

A special symbol <bos> before
generating the first word

https://d2l.ai/chapter_recurrent-modern/seq2seq.html

Seq2seq: Encoder

h0

Sentence: hello world .

x1

h1

word

embedding

hello

(encoded representation)

henc

x2

h2

world

x3

h3

.

Seq2seq: Decoder

henc

y1

h̄1

bonjour

Wo

<bos>

word

embedding

y2

h̄2

le

bonjour

Wo

y3

h̄3

monde

le

Wo

y4

h̄4

.

monde

Wo

y5

h̄5

.

Wo

<eos>

• A conditional language model

Seq2seq: Decoder
• A conditional language model

• It is a language model because the decoder is predicting the next word
of the target sentence

• Conditional because the predictions are also conditioned on the source
sentence through henc

• NMT directly calculates P(w(t) ∣ w(s))
• Denote w(t) = y1, …, yT

P(w(t) ∣ w(s)) = P(y1 ∣ w(s))P(y2 ∣ y1, w(s))P(y3 ∣ y1, y2, w(s))…P(yT ∣ y1, …, yT−1, w(s))

Understanding seq2seq

Which of the following is correct?

• (A) We can use bidirectional RNNs for both encoder and decoder

• (B) The decoder has more parameters because of the output matrix

• (C) The encoder and decoder have separate word embeddings

• (D) The encoder and decoder’s parameters are optimized together

Wo

Both (C) and (D) are correct.

Understanding seq2seq

Encoder RNN:
• word embeddings for source language

• RNN parameters, e.g., for simple RNNs and 4x parameters for LSTMs

• Encoder RNN can be bidirectional!

E(s)

{W, U, b}

Decoder RNN:
• word embeddings for target language

• RNN parameters, e.g., for simple RNNs and 4x parameters for LSTMs

• Output embedding matrix = can be tied with

• Decoder RNN has to be unidirectional (left to right)!

E(t)

{W, U, b}
Wo E(t)

Training seq2seq models

• Training data: parallel corpus {()}w(s)
i , w(t)

i

English: hello world .

12M sentence pairs
French: bonjour le monde .

• Minimize cross-entropy loss:

T

∑
t=1

− log P(yt |y1, . . . , yt−1, w(s))

(denote)w(t) = y1, …, yT

• Back-propagate gradients through both encoder and decoder

Training seq2seq models

<bos>

Decoding seq2seq models

• Greedy decoding
= Compute argmax at
every step of decoder
to generate word

• Exhaustive search is very expensive: - we even

don’t know what T is

arg max
y1,...,yT

P(y1, . . . , yT |w(s))

<bos>

Decoding with beam search

• At every step, keep track of the k most probable partial translations (hypotheses)

• Score of each hypothesis = log probability of sequence so far

• Not guaranteed to be optimal

• Works better than greedy decoding in practice

j

∑
t=1

log P(yt |y1, . . . , yt−1, w(s))

Beam search
<latexit sha1_base64="3yhpknHyzI8zM/qUHWvLESFSquo=">AAACMHicdVDRahNBFJ2tVdNYbdRHX4YGIYW67NZN0zwIRR/qYwqmLWTjMjs7mw6d2Vlm7irLsJ/kSz+lvlhQpK9+RSdpBCvtgYEz597DvfekpeAGguDSW3mw+vDR49Za+8n602cbnecvjoyqNGVjqoTSJykxTPCCjYGDYCelZkSmgh2nZx/m9eMvTBuuik9Ql2wqyazgOacEnJR0DmJTycTyd2Hz2UJjY6FmeNSrE45jyTNcJ+E2jkWmwGy7j+VvwsYJksBpmtuvztQzW81Wk3S6gR/0h9FgBwd+PwiH0VtHhsO9aLePQz9YoIuWGCWdizhTtJKsACqIMZMwKGFqiQZOBWvacWVYSegZmbGJowWRzEzt4uAGv3ZKhnOl3SsAL9R/HZZIY2qZus75pub/2ly8qzapIN+bWl6UFbCC3gzKK4FB4Xl6OOOaURC1I4Rq7nbF9JRoQsFl3HYh/L0U30+Odvxw148Oo+7++2UcLfQKbaIeCtEA7aOPaITGiKJv6Dv6iX55594P77d3ddO64i09L9EteH+uAXsVqUg=</latexit>

tX

i=1

logP (yi | y1, . . . , yi�1,w
(s))

<bos>

Beam search: Backtrack

<bos>

Beam search: details

‣ Different hypotheses may produce token at different time steps

‣ When a hypothesis produces , stop expanding it and place it aside

‣ Continue beam search until:

‣ All hypotheses produce OR

‣ Hit max decoding limit T

‣ Select top hypotheses using the normalized likelihood score

‣ Otherwise shorter hypotheses have higher scores

⟨eos⟩

⟨eos⟩

k ⟨eos⟩

1
T

T

∑
t=1

log P(yt |y1, . . . , yt−1, w(s))

NMT vs SMT

Pros:

• Better performance (more fluent, better use of context, better use of phrase similarities)

• A single neural network to be optimized end-to-end (no individual subcomponents)

• Less human engineering effort - same method for all language pairs

Cons:

• NMT is less interpretable

• NMT is difficult to control

NMT: the first big success story of NLP deep learning

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT - and by 2018 everyone has

• SMT systems, built by hundreds of engineers over many years, outperformed by
NMT systems trained by a small group of engineers in a few months

Sequence-to-sequence is versatile

• Sequence-to-sequence is useful for more than just MT

• Many NLP tasks can be phrased as sequence-to-sequence

• Summarization (long text short text)

• Dialogue (previous utterances next utterance)

• Parsing (input text output parse as sequence)

• Code generation (natural language Python code)

→

→

→

→

Sequence-to-sequence is versatile

‣ Summarization

See et al., 2017: Get To The Point: Summarization with Pointer-Generator Networks

Sequence-to-sequence is versatile

‣ Dialogue

Vinyals and Le 2015: A Neuarl Conversational Model

Sequence-to-sequence is versatile

‣ Parsing

Vinyals et al., 2015: Grammar as a Foreign Language

‣ Semantic parsing / code generation

Dong and Lapata, 2016: Language to Logical Form with Neural Attention

Subword tokenization
• So far, we have been always using words as the basic units

• e.g., there is a pre-defined vocabulary V, and each word has a word embeddingw ∈ V

• How to represent all words even those we haven’t seen in the training data?
• A common solution: replace unknown words with a special <UNK> token
• It is not a great solution for MT when you have a lot of unknown tokens

Byte pair encoding (BPE)
• Key idea: use subword units! Rare and unknown words are encoded as sequences of subword units

• BPE = byte pair encoding (BPE) is a simple data compression technique (Gage, 1994)

• It was first introduced in NMT by (Sennirch et al., 2016) and achieved huge success

• Modern neural networks all build on subword units - besides BPE, there are also unigram and
wordpiece tokenization algorithms

Byte pair encoding (BPE)

https://lena-voita.github.io/nlp_course/
seq2seq_and_attention.html#bpe

Sequence-to-sequence: the bottleneck

‣ A single encoding vector, , needs to capture all the information about source sentence

‣ Longer sequences can lead to vanishing gradients

henc

bottleneck

Attention

‣ Attention provides a solution to the bottleneck problem

‣ Key idea: At each time step during decoding, focus on a particular part
of source sentence

‣ This depends on the decoder’s current hidden state (i.e. an idea of
what you are trying to decode)

‣ Usually implemented as a probability distribution over the hidden states
of the encoder ()

hdec
t

henc
i

Seq2seq: Encoder

h0

Sentence: hello world .

x1

h1

word

embedding

hello

(encoded representation)

henc

x2

h2

world

x3

h3

.

henc
i

Seq2seq: Decoder

henc

y1

h̄1

bonjour

Wo

word

embedding

<bos>

y2

h̄2

le

bonjour

Wo

y3

h̄3

monde

le

Wo

y4

h̄4

.

monde

Wo

y5

h̄5

.

Wo

<eos>

• A conditional language model

hdec
t

Seq2seq with attention

<bos>

<bos>

<bos>

<bos>

<bos>

Computing attention

‣ Encoder hidden states:

‣ Decoder hidden state at time :

‣ First, get attention scores for this time step of decoder (we’ll define
soon): 

‣ Obtain the attention distribution using softmax: 

‣ Compute weighted sum of encoder hidden states: 

‣ Finally, concatenate with decoder state and pass on to output layer:

henc
1 , . . . , henc

n

t hdec
t

g

et = [g(henc
1 , hdec

t), . . . , g(henc
n , hdec

t)]

αt = softmax (et) ∈ ℝn

at =
n

∑
i=1

αt
i h

enc
i ∈ ℝh

h̃t = tanh(Wc[at; hdec
t]) ∈ ℝh Wc ∈ ℝ2h×h

henc
1

hdec
1

(n: # of words in source sentence)

<bos>

Attention

Input-feeding

Computing attention

(credits: Jay Alammar)
https://jalammar.github.io/visualizing-neural-machine-

translation-mechanics-of-seq2seq-models-with-attention/

(credits: Jay Alammar)
https://jalammar.github.io/visualizing-neural-machine-

translation-mechanics-of-seq2seq-models-with-attention/

Types of attention

‣ Assume encoder hidden states and a decoder hidden state

1. Dot-product attention (assumes equal dimensions for and): 

2. Multiplicative attention: 
 , where is a weight matrix (learned)

3. Additive attention: 
  

where are weight matrices (learned) and is a weight vector (learned)

henc
1 , henc

2 , . . . , henc
n hdec

t

henc hdec
t

g(henc
i , hdec

t) = (hdec
t)T henc

i ∈ ℝ

g(henc
i , hdec

t) = (hdec
t)T W henc

i ∈ ℝ W

g(henc
i , hdec

t) = vT tanh (W1henc
i + W2hdec

t) ∈ ℝ
W1, W2 v

Assuming we use dot product attention, which input word
will have the highest attention value at current time step?

A) the

B) cat

C) sat

the

h3h1 h2

cat sat

Encoder

hdec
1 hdec

2

<bos>

Decoder

ce

ce

-0.1 0.20.5 0.1 0.2 0.4 -0.1 0.2

Dot-product
attention:
g(henc

i , hdec
t) = hdec

t ⋅ henc
i

the: -0.05 + 0.02

cat: -0.02 + 0.08

sat: 0.01 + 0.04

The answer is (B)

(Luong et al., 2015)

Attention improves translation

(credits: Jay Alammar)

Visualizing attention

