COS 484: Natural Language Processing

Midterm Review

Fall 2019
Anouncements

- **Midterm exam**: this Thursday, Oct 24th 1:30-2:45 (75 minutes)
 - Everyone is seated in COS 104 (alternating seats). Please arrive 10 minutes early!
 - One single-sided cheatsheet is allowed
 - No phone/laptop, no calculator or any internet access
 - If you have an exam (e.g. COS 429) at 3pm, you have an option to start at 1pm.
Announcements

• **Assignment 2** grades were out
 • No separate grades for the code submission

• **Assignment 3** due on Friday 11:59pm
• **Assignment 4** will be out on Friday too
Today’s Plan

• Dependency parsing (10 mins)
• Midterm review (65 minutes)
“Book me the morning flight”

Dependency parsing

<table>
<thead>
<tr>
<th>stack</th>
<th>buffer</th>
<th>action</th>
<th>added arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[ROOT]</td>
<td>[Book, me, the, morning, flight]</td>
<td>SHIFT</td>
</tr>
<tr>
<td>1</td>
<td>[ROOT, Book]</td>
<td>[me, the, morning, flight]</td>
<td>SHIFT</td>
</tr>
<tr>
<td>2</td>
<td>[ROOT, Book, me]</td>
<td>[the, morning, flight]</td>
<td>RIGHT-ARC(iobj)</td>
</tr>
<tr>
<td>3</td>
<td>[ROOT, Book]</td>
<td>[the, morning, flight]</td>
<td>SHIFT</td>
</tr>
<tr>
<td>4</td>
<td>[ROOT, Book, the]</td>
<td>[morning, flight]</td>
<td>SHIFT</td>
</tr>
<tr>
<td>5</td>
<td>[ROOT, Book, the, morning]</td>
<td>[flight]</td>
<td>SHIFT</td>
</tr>
<tr>
<td>6</td>
<td>[ROOT, Book, the, morning, flight]</td>
<td>[]</td>
<td>LEFT-ARC(nmod)</td>
</tr>
<tr>
<td>7</td>
<td>[ROOT, Book, the, flight]</td>
<td>[]</td>
<td>LEFT-ARC(det)</td>
</tr>
<tr>
<td>8</td>
<td>[ROOT, Book, flight]</td>
<td>[]</td>
<td>RIGHT-ARC(dobj)</td>
</tr>
<tr>
<td>9</td>
<td>[ROOT, Book]</td>
<td>[]</td>
<td>RIGHT-ARC(root)</td>
</tr>
<tr>
<td>10</td>
<td>[ROOT]</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>
• Extract features from the configuration
• Use your favorite classifier: logistic regression, SVM...

<table>
<thead>
<tr>
<th>Source</th>
<th>Feature templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>One word</td>
<td>$s_1.w$</td>
</tr>
<tr>
<td></td>
<td>$s_2.w$</td>
</tr>
<tr>
<td></td>
<td>$b_1.w$</td>
</tr>
<tr>
<td>Two word</td>
<td>$s_1.w \circ s_2.w$</td>
</tr>
<tr>
<td></td>
<td>$s_1.t \circ s_2.wt$</td>
</tr>
<tr>
<td></td>
<td>$s_1.w \circ s_1.t \circ s_2.t$</td>
</tr>
</tbody>
</table>

w: word, t: part-of-speech tag

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing
Feature templates

\[s_2 \cdot w \circ s_2 \cdot t \]
\[s_1 \cdot w \circ s_1 \cdot t \circ b_1 \cdot w \]
\[lc(s_2) \cdot t \circ s_2 \cdot t \circ s_1 \cdot t \]
\[lc(s_2) \cdot w \circ lc(s_2) \cdot l \circ s_2 \cdot w \]

Features

\[s_2 \cdot w = \text{has} \circ s_2 \cdot t = \text{VBZ} \]
\[s_1 \cdot w = \text{good} \circ s_1 \cdot t = \text{JJ} \circ b_1 \cdot w = \text{control} \]
\[lc(s_2) \cdot t = \text{PRP} \circ s_2 \cdot t = \text{VBZ} \circ s_1 \cdot t = \text{JJ} \]
\[lc(s_2) \cdot w = \text{He} \circ lc(s_2) \cdot l = \text{nsubj} \circ s_2 \cdot w = \text{has} \]

Usually a combination of 1-3 elements from the configuration

Binary, sparse, millions of features

(Nivre 2008): Algorithms for Deterministic Incremental Dependency Parsing
More feature templates

From Single Words
pair { stack.tag stack.word }
stack { word tag }
pair { input.tag input.word }
input { word tag }
pair { input(1).tag input(1).word }
input(1) { word tag }
pair { input(2).tag input(2).word }
input(2) { word tag }

From word pairs
quad { stack.tag stack.word input.tag input.word }
triple { stack.tag stack.word input.tag input.word }
triple { stack.word input.tag input.word }
triple { stack.tag stack.word input.tag }
pair { stack.word input.word }
pair { stack.tag input.tag }
pair { input.tag input(1).tag }

From word triples
triple { input.tag input(1).tag input(2).tag }
triple { stack.tag input.tag input(1).tag }
triple { stack.head(1).tag stack.tag input.tag }
triple { stack.tag stack.child(-1).tag input.tag }
triple { stack.tag stack.child(1).tag input.tag }
triple { stack.tag input.tag input.child(-1).tag }

Distance
pair { stack.distance stack.word }
pair { stack.distance stack.tag }
pair { stack.distance input.word }
pair { stack.distance input.tag }
triple { stack.distance stack.word input.word }
triple { stack.distance stack.tag input.tag }

valency
pair { stack.word stack.valence(-1) }
pair { stack.word stack.valence(1) }
pair { stack.tag stack.valence(-1) }
pair { stack.tag stack.valence(1) }
pair { input.word input.valence(-1) }
pair { input.tag input.valence(-1) }

unigrams
stack.head(1) {word tag}
stack.label
stack.child(-1) {word tag label}
stack.child(1) {word tag label}
input.child(-1) {word tag label}

third order
stack.head(1).head(1) {word tag}
stack.head(1).label
stack.child(-1).sibling(1) {word tag label}
stack.child(1).sibling(-1) {word tag label}
input.child(-1).sibling(1) {word tag label}
triple { stack.tag stack.child(-1).tag stack.child(-1).sibling(1) }
triple { stack.tag stack.child(1).tag stack.child(1).sibling(-1) }
triple { stack.tag stack.head(1).tag stack.head(1).head(1).tag }
triple { input.tag input.child(-1).tag input.child(-1).sibling(1) }

label set
pair { stack.tag stack.child(-1).label }
triple { stack.tag stack.child(-1).label stack.child(-1).sibling(1) }
quad { stack.tag stack.child(-1).label stack.child(-1).sibling(1)
pair { stack.tag stack.child(1).label }
triple { stack.tag stack.child(1).label stack.child(1).sibling(-1) }
quad { stack.tag stack.child(1).label stack.child(1).sibling(-1)
pair { input.tag input.child(-1).label }
triple { input.tag input.child(-1).label input.child(-1).sibling(1) }
quad { input.tag input.child(-1).label input.child(-1).sibling(1) }
}
Parsing with neural networks

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks
Parsing with neural networks

- Used pre-trained word embeddings
- Part-of-speech tags and dependency labels are also represented as vectors
- Eliminated feature templates!

A simple feedforward NN — what is left is backpropagation!

(Chen and Manning, 2014): A Fast and Accurate Dependency Parser using Neural Networks
Further improvements

- Bigger, deeper networks with better tuned hyperparameters
- Beam search
- Global normalization

<table>
<thead>
<tr>
<th>Method</th>
<th>UAS</th>
<th>LAS (PTB WSJ SD 3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen & Manning 2014</td>
<td>92.0</td>
<td>89.7</td>
</tr>
<tr>
<td>Weiss et al. 2015</td>
<td>93.99</td>
<td>92.05</td>
</tr>
<tr>
<td>Andor et al. 2016</td>
<td>94.61</td>
<td>92.79</td>
</tr>
</tbody>
</table>

Google’s SyntaxNet and the Parsey McParseFace (English) model

Announcing SyntaxNet: The World’s Most Accurate Parser
Goes Open Source

Thursday, May 12, 2016
Handling non-projectivity

- The arc-standard algorithm we presented only builds **projective** dependency trees

- Possible directions:
 - Give up!
 - Post-processing
 - Add new transition types (e.g., SWAP)
 - Switch to a different algorithm (e.g., graph-based parsers such as MSTParser)
Language Models

Review
For a sequence of words/tokens w_1, w_2, \ldots, w_N, a LM outputs the probability of the sequence $P(w_1, w_2, \ldots, w_N)$

- $P(w_1, w_2, \ldots, w_N) = p(w_1)\ p(w_2|w_1)\ p(w_3|w_1, w_2)\ \times\ \ldots\ \times\ p(w_N|w_1, w_2, \ldots, w_{N-1})$

- Each $P(\ldots)$ is determined by counting:

\[
P(\text{sat} | \text{the cat}) = \frac{\text{count(\text{the cat sat})}}{\text{count(\text{the cat})}}
\]

\[
P(\text{on} | \text{the cat sat}) = \frac{\text{count(\text{the cat sat on})}}{\text{count(\text{the cat sat})}}
\]

This process of computing P’s is called *maximum likelihood estimation* (MLE).

Estimate the parameters of the model such that, according to the model, the likelihood of the observed data is *maximized*.
• To reduce the number of parameters, use only the recent past to predict the next token/word.

• 1st order

\[P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{the}) \]

• 2nd order

\[P(\text{mat}|\text{the cat sat on the}) \approx P(\text{mat}|\text{on the}) \]

• Consider only the last \(k \) words for context

\[P(\text{w}_i \mid \text{w}_1\text{w}_2\ldots\text{w}_{i-1}) \approx P(\text{w}_i \mid \text{w}_{i-k}\ldots\text{w}_{i-1}) \]

• If we had infinite corpus, larger \(n \) \(\rightarrow \) more accurate model
Once you train a LM on a corpus, you need to test it on a different, unseen corpus.

- Note: a separate “dev set” is useful for tuning hyperparameters, such as α for Laplace smoothing.

- **Extrinsic evaluation**: Evaluate LM on a downstream task
 - Machine translation
 - Text classification
 - Sentence similarity

- **Intrinsic evaluation**: Just use a held-out test corpus
• Perplexity is how well a probability distribution or model predicts a sample sequence (lower is better).

• Perplexity is 2^{CE}. Fundamentally, cross-entropy (CE) measures how deficient/difficult the model is at predicting the corpus.

\[
CE = -\frac{1}{W} \sum_{i=1}^{n} \log_2 P(S_i) \quad \text{where } W \text{ is the num. of words in corpus}
\]

• Remember: perplexity is the inverse probability of the corpus according to the LM, normalized by the number of words.

\[
ppl = 2^{-\frac{1}{W}W \cdot \log(1/|V|)} = |V|
\]

Size of vocab
• Think of perplexity as a weighted average branching factor: Lower perplexity means it’s easier to predict the next word, in the corpus that’s being evaluated.

<table>
<thead>
<tr>
<th>Example: Rolling a 6-sided dice (die)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train & test with perfectly-fair die</td>
</tr>
<tr>
<td>Train & test with same loaded die</td>
</tr>
<tr>
<td>Train & test with differently-loaded die</td>
</tr>
</tbody>
</table>

• Low perplexity does not guarantee good extrinsic results!
• Many n-grams can appear in the test corpus but not training

• A few very frequent words; a long tail of infrequent words

• Need some way to remove zero probabilities
Add-alpha (Laplace) smoothing
Add a small amount to all probabilities

\[
P(w_i | w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha |V|}
\]

Linear interpolation
Use a combination of different granularities of n-grams

\[
\hat{P}(w_i | w_{i-1}, w_{i-2}) = \lambda_1 P(w_i | w_{i-1}, w_{i-2}) + \lambda_2 P(w_i | w_{i-1}) + \lambda_3 P(w_i)
\]

where \(\sum_i \lambda_i = 1 \)

Average count
Like simple interpolation, but with more specific lambdas

\[
P_{\text{interp}}(w_i | w_{i-n+1}) = \lambda_{w_{i-n+1}} P_{\text{ML}}(w_i | w_{i-n+1}) + (1 - \lambda_{w_{i-n+1}}) P_{\text{interp}}(w_i | w_{i-n+2})
\]

where \(\lambda_{w_{i-n+1}} \) is based on \(\frac{c(w_{i-n+1})}{|w_i : c(w_{i-n+1}) > 0|} \)

"The less sparse the data the larger lambda should be. The more accurate counts we have, the more trustworthy the n-gram is, and the higher we can make lambda."

Absolute discounting
Redistribute probability mass from observed n-grams to unobserved ones

\[
P_{\text{abs.discount}}(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \alpha(w_{i-1}) P(w)
\]

where \(\alpha(w_{i-1}) = 1 - \sum_w \frac{\text{Count}^*(w_{i-1}, w)}{\text{Count}(w_{i-1})} \)

Back-off
Use lower order n-grams if higher order ones are too sparse

\[
P_{\text{bo}}(w_i | w_{i-n+1} \cdots w_{i-1}) = \begin{cases}
\frac{C(w_{i-n+1} \cdots w_i)}{C(w_{i-n+1} \cdots w_{i-1})} & \text{if } C(w_{i-n+1} \cdots w_i) > k \\
\alpha_{w_{i-n+1} \cdots w_{i-1}} P_{\text{bo}}(w_i | w_{i-n+2} \cdots w_{i-1}) & \text{otherwise}
\end{cases}
\]

Katz
Focus(1):

• Naive Bayes
• Logistic Regression
 • Training
• Difference between discriminative and generative models
• Evaluation metrics
 • Precision
 • Recall
 • F Score
Naive Bayes

• Example of email classification:
 • Given documents and classes, how to classify another document?

• Formula snippet:

 - Bayes Rule:
 \[P(c \mid d) = \frac{P(c) \cdot P(d \mid c)}{P(d)} \]

 - Option 1: represent the entire sequence of words
 • \(P(w_1, w_2, w_3, \ldots, w_k \mid c) \) \hspace{1cm} (too many sequences!)

 - Option 2: Bag of words
 • Assume position of each word is irrelevant
 (both absolute and relative)
 • \(P(w_1, w_2, w_3, \ldots, w_k \mid c) = P(w_1 \mid c) \cdot P(w_2 | c) \ldots P(w_k \mid c) \)

• Makes strong (naive) independence assumptions

• Probability of each word is *conditionally independent* given class \(c \)
Data Sparsity

Maximum likelihood estimates:

\[\hat{P}(c_j) = \frac{\text{count}(\text{class} = c_j)}{\sum_c \text{count}(\text{class} = c)} \]

\[\hat{P}(w_i|c_j) = \frac{\text{count}(w_i, c_j)}{\sum_w \text{count}(w, c_j)} \]

- Laplace smoothing:

\[\hat{P}(w_i|c) = \frac{\text{count}(w_i, c) + \alpha}{\left[\sum_w \text{count}(w, c) \right] + \alpha|V|} \]
Input: Set of annotated documents \(\{(d_i, c_i)\}_{i=1}^{n} \)

A. Compute vocabulary \(V \) of all words

B. Calculate
\[
\hat{P}(c_j) = \frac{\text{Count}(c_j)}{\text{Total \# docs}}
\]

C. Calculate
\[
\hat{P}(w_i | c_j) = \frac{\text{Count}(w_i, c_j) + \alpha}{\sum_{w \in V} [\text{Count}(w, c_j) + \alpha]}
\]

D. (Prediction) Given document \(d = (w_1, w_2, \ldots, w_k) \)
\[
C_{\text{MAP}} = \arg\max_{c} \hat{P}(c) \cdot \prod_{i=1}^{K} \hat{P}(w_i | c)
\]
Evaluation Metrics

<table>
<thead>
<tr>
<th>Truth</th>
<th>Predicted</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>100</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>45</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

- True positive: Predicted + and actual +
- True negative: Predicted - and actual -
- False positive: Predicted + and actual -
- False negative: Predicted - and actual +

Precision (++) = \(\frac{TP}{TP + FP} \)

Recall (++) = \(\frac{TP}{TP + FN} \)

\[
F_\beta = \frac{(1 + \beta^2) \cdot \text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}
\]
Logistic Regression

Using Logistic Regression

- Inputs:
 1. Classification instance in a [feature representation] \([x_1, x_2, \ldots, x_d]\)
 2. Classification function to compute \(\hat{y}\) using \(P(\hat{y} | x)\)
 3. Loss function (for learning)
 4. Optimization algorithm

- Train phase: Learn the parameters of the model to minimize loss function
- Test phase: Apply parameters to predict class given a new input \(x\)
Feature Representation

Sample feature vector

It's a(n) [key] time there are virtually no surprises, and the writing is [second-rate]. So why was it so [enjoyable]? For one thing, the cast is [great]. Another nice touch is the music I was overcome with the urge to get off the couch and start dancing. It sucked me in, and I'll do the same to you.

<table>
<thead>
<tr>
<th>Var</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>count(positive lexicon) \in doc</td>
<td>3</td>
</tr>
<tr>
<td>x_2</td>
<td>count(negative lexicon) \in doc</td>
<td>2</td>
</tr>
<tr>
<td>x_3</td>
<td>$\begin{cases} 1 & \text{if } \text{“no” } \in \text{doc} \ 0 & \text{otherwise}\end{cases}$</td>
<td>1</td>
</tr>
<tr>
<td>x_4</td>
<td>count(1st and 2nd pronouns) \in doc</td>
<td>3</td>
</tr>
<tr>
<td>x_5</td>
<td>$\begin{cases} 1 & \text{if } \text{“!” } \in \text{doc} \ 0 & \text{otherwise}\end{cases}$</td>
<td>0</td>
</tr>
<tr>
<td>x_6</td>
<td>log(word count of doc)</td>
<td>$\ln(64) = 4.15$</td>
</tr>
</tbody>
</table>
Classification Function

Given \(x \), compute \(z = w \cdot x + b \)

Compute probabilities: \(P(y = 1 \mid x) = \frac{1}{1 + e^{-z}} \)

\[
P(y = 1) = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}}
\]

\[
P(y = 0) = 1 - \sigma(w \cdot x + b) = 1 - \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{e^{-(w \cdot x + b)}}{1 + e^{-(w \cdot x + b)}}
\]

Decision boundary: \(\hat{y} = \begin{cases} 1 & \text{if } P(y = 1 \mid x) > 0.5 \\ 0 & \text{otherwise} \end{cases} \)
Loss Function – Assigning ‘w’ and ‘b’?

Goal: predicted label \hat{y} as close as possible to actual label y

Properties of CE Loss

$$L_{CE} = - \sum_{i=1}^{n} [y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log (1 - \hat{y}^{(i)})]$$

- Ranges from 0 (perfect predictions) to ∞
- Lower the value, better the classifier
- Cross-entropy between the true distribution $P(y | x)$ and predicted distribution $P(\hat{y} | x)$
Optimisation

Gradient for logistic regression

\[L_{CE} = -\sum_{i=1}^{n} [y^{(i)} \log(\sigma(w \cdot x^{(i)} + b) + (1 - y^{(i)})\log(1 - \sigma(w \cdot x^{(i)} + b)))] \]

Gradient, \(\frac{dL_{CE}(w, b)}{dw_j} = \sum_{i=1}^{n} [\sigma(w \cdot x^{(i)} + b) - y^{(i)}]x_j^{(i)} \)

\(\frac{dL_{CE}(w, b)}{db} = \sum_{i=1}^{n} [\sigma(w \cdot x^{(i)} + b) - y^{(i)}] \)

\[\theta = [w; b] \]

\[\hat{\theta} = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} L_{CE}(y^{(i)}, x^{(i)}; \theta) \]

\[\theta^{i+1} = \theta^i - \eta \frac{d}{d\theta} f(x; \theta) \]
function STOCHASTIC GRADIENT DESCENT($L(), f(), x, y$) returns θ

where: L is the loss function
f is a function parameterized by θ
x is the set of training inputs $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$
y is the set of training outputs (labels) $y^{(1)}, y^{(2)}, \ldots, y^{(n)}$

$\theta \leftarrow 0$

repeat til done # see caption
For each training tuple $(x^{(i)}, y^{(i)})$ (in random order)

1. Optional (for reporting): # How are we doing on this tuple?
 Compute $\hat{y}^{(i)} = f(x^{(i)}; \theta)$ # What is our estimated output \hat{y}?

2. $g \leftarrow \nabla_\theta L(f(x^{(i)}; \theta), y^{(i)})$ # How far off is $\hat{y}^{(i)}$ from the true output $y^{(i)}$?
3. $\theta \leftarrow \theta - \eta g$ # How should we move θ to maximize loss?

return θ
Regularisation

• Prevents Overfitting:

Training objective: $\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)})$

Regularization helps prevent overfitting

$\hat{\theta} = \arg \max_{\theta} \sum_{i=1}^{n} \log P(y^{(i)} | x^{(i)}) - \alpha R(\theta)$
Word embeddings

COS484, Midterm Review
• Distributional hypothesis:
 • “words that occur in similar contexts tend to have similar meanings”

• Word embedding:
 • A vector that captures the meaning of a word.
 • Can be sparse (word-word occurrence) or dense.

 Goal: represent words as short (50-300 dimensional) & dense (real-valued) vectors.

employees =

\[
\begin{pmatrix}
0.286 \\
0.792 \\
-0.177 \\
-0.107 \\
10.109 \\
-0.542 \\
0.349 \\
0.271 \\
0.487
\end{pmatrix}
\]
Word embeddings

- **Word2Vec**
 - **Skip-gram**: given a *target word*, predict the *context words* in a fixed window of size m.

I understand the word embedding now.

context words \quad **target word** \quad **context words**

$(m = 2)$ \quad $m = 2$
Word embeddings

- **Word2Vec**
 - **Objective function:** Average Negative Log Likelihood (NLL)

\[
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m \atop j \neq t} \log \mathbb{P}(w_{t+j} | w_t; \theta)
\]

given a sentence of length \(T \)

\(w_1, \ldots, w_{t-2}, w_{t-1}, w_t, w_{t+1}, w_{t+2}, \ldots, w_T \)
Word embeddings

• **Word2Vec**

• **Objective function:** Average Negative Log Likelihood (NLL)

\[
J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \leq j \leq m, j \neq t} \log P(w_{t+j} | w_t; \theta)
\]

• **Similarity based softmax** (V is vocabulary):

\[
\theta = \{ \{ u_w \in \mathbb{R}^d \}_{w \in V}, \{ v_w \in \mathbb{R}^d \}_{w \in V} \}
\]

embeddings of target words

embeddings of context words

\[
P(w_{t+j} | w_t; \theta) = \frac{\exp(u_{w_t} \cdot v_{w_{t+j}})}{\sum_{w \in V} \exp(u_{w_t} \cdot v_w)}
\]
Word embeddings

- Word2Vec

- Gradient of objective function:

$$
\nabla_\theta J(\theta) = \sum_{t=1}^{T} \sum_{-m \leq k \leq m} \nabla_\theta \left(-\log(P(w_{t+j}|w_t; \theta)) \right)
$$

$$
\Rightarrow \begin{cases}
\frac{\partial y}{\partial u_{w_t}} &= -v_{w_c} + \sum_{w \in V} P(w|w_t)v_w \\
\frac{\partial y}{\partial v_w} &= -1(w = w_c)u_{w_t} + P(w|w_t)u_{w_t}
\end{cases}
$$
Word embeddings

\[y = - \log \left(\frac{\exp(u_{w_t} \cdot v_{w_c})}{\sum_{w \in V} \exp(u_{w_t} \cdot v_w)} \right) \]

- Word2Vec

- Gradient of objective function:

\[\nabla_\theta J(\theta) = \sum_{t=1}^{T} \sum_{-m \leq k \leq m} \nabla_\theta - \log(\mathbb{P}(w_{t+j} | w_t; \theta)) \]

\[\Rightarrow \begin{cases} \frac{\partial y}{\partial u_{w_t}} = -v_{w_c} + \sum_{w \in V} \mathbb{P}(w | w_t) v_w \\ \frac{\partial y}{\partial v_w} = -1(w = w_c) u_{w_t} + \mathbb{P}(w | w_t) u_{w_t} \end{cases} \]

- Full softmax is computationally intractable
Word embeddings

• **Word2Vec**

• **Gradient of objective function:**

\[
\nabla_\theta J(\theta) = \sum_{t=1}^{T} \sum_{-m \leq k \leq m} \nabla_\theta - \log(\mathbb{P}_{\text{NS}}(w_{t+j}|wt; \theta))
\]

\[
\begin{aligned}
\frac{\partial y}{\partial u_{wt}} &= -\sigma(-u_{wt} \cdot v_{wc})v_{wc} + \sum_{k=1}^{K} \sigma(u_{wt} \cdot v_{wk})v_{wk} \\
\frac{\partial y}{\partial v_{w}} &= -1_{w=w_c} \sigma(-u_{wt} \cdot v_{wc})u_{wt} + \sum_{k=1}^{K} \frac{\partial v_{wk}}{\partial v_{w}} \sigma(u_{wt} \cdot v_{w})u_{wt}
\end{aligned}
\]

• **Negative Sampling:** Randomly sample \(K \) (5-20) negative examples.

\[
y = - \log \left(\frac{\sigma(u_{wt} \cdot v_{wc})}{\prod_{k=1}^{K} \sigma(-u_{wt} \cdot v_{wk})} \right)
\]
Word embeddings

\[y = -\log \left(\frac{\sigma(u_{w_t} \cdot v_{w_c})}{\prod_{k=1}^{K} \sigma(-u_{w_t} \cdot v_{w_k})} \right) \]

- **Word2Vec**

- **Gradient of objective function:**

 \[
 \nabla_\theta J(\theta) = \sum_{t=1}^{T} \sum_{-m \leq k \leq m} \nabla_\theta - \log(\mathbb{P}_{NS}(w_{t+j} | w_t; \theta))
 \]

 \[
 \begin{cases}
 \frac{\partial y}{\partial u_{w_t}} = -\sigma(-u_{w_t} \cdot v_{w_c})v_{w_c} + \sum_{k=1}^{K} \sigma(u_{w_t} \cdot v_{w_k})v_{w_k} \\
 \frac{\partial y}{\partial v_{w}} = -1_{w=w_c} \sigma(-u_{w_t} \cdot v_{w_c})u_{w_t} + \sum_{k=1}^{K} \frac{\partial v_{w_k}}{\partial v_{w}} \sigma(u_{w_t} \cdot v_{w})u_{w_t}
 \end{cases}
 \]

- **Update** for sampled target-context word pairs \((w_t, w_c)\):

 \[
 \begin{cases}
 u_{w_t} \leftarrow u_{w_t} - \eta \frac{\partial y}{\partial u_{w_t}} \\
 v_{w_c} \leftarrow v_{w_c} - \eta \frac{\partial y}{\partial v_{w_c}}, \quad v_{w_k} \leftarrow v_{w_k} - \eta \frac{\partial y}{\partial v_{w_k}}
 \end{cases}
 \]
Word embeddings

• Evaluation
 • Intrinsic
 • Evaluate on an intermediate subtask (e.g. word similarity)
 • Fast to compute
 • Not clear if it really helps the downstream task
 • Extrinsic
 • Use word embeddings in downstream tasks and measure the performance improvement
 • Time-costly but still the most important evaluation metric
Neural Networks

COS484, Midterm Review
Neural Networks

- The activity of neuron i:

\[x_i \leftarrow f \left(\sum_j W_{ij} x_j + b_i \right) \]

- activity of presynaptic neuron j
- synaptic weight from neuron j to neuron i
- bias of neuron i
- activation function
- activity of postsynaptic neuron i

- repeat for other neurons **in some order** to be specified
Neural Networks

- Useful activation functions and their derivatives

sigmoid $(0,1)$

$$f(z) = \frac{1}{1 + \exp(-z)}$$

tanh $(-1,1)$

$$f(z) = \frac{\exp(2z) - 1}{\exp(2z) + 1}$$

ReLU $[0, +\infty)$

$$f(z) = \max(0, z)$$

$$f'(z) = f(z)(1 - f(z))$$

$$f'(z) = 1 - f^2(z)$$

$$f'(z) = \begin{cases} 1 & z > 0 \\ 0 & z \leq 0 \end{cases}$$
Neural Networks

- L-Multilayer Formulation (using matrix-vector notation)

For layer $\ell = 0$ to $L-1$:

$$ x^{\ell} \leftarrow f \left(W^{\ell} x^{\ell-1} + b^{\ell} \right) $$

neural activity of previous layer

weight matrix

bias vector

Forward Pass

$$ x^{0} \xrightarrow{W^1, b^1} x^{1} \xrightarrow{W^2, b^2} \ldots \xrightarrow{W^L, b^L} x^{L} $$
Neural Networks

- **Loss function** (error between output and ground truth)
 - Logistic Regression / Classification - Cross Entropy (CE)
 - Linear Regression - Mean Squared Error (MSE)
 -

\[
\begin{align*}
\mathbf{x}_0 & \xrightarrow{W^1, b^1} \mathbf{x}_1 & \xrightarrow{W^2, b^2} & \cdots & \xrightarrow{W^L, b^L} & \mathbf{x}^L \\
\end{align*}
\]

Forward Pass

- Loss Function

\[
\mathcal{L}(\mathbf{x}^L, y^*)
\]

- Update weights and biases using gradient descent (Backprop)

\[
\theta := \{ \{ W^\ell \}, \{ b^\ell \} \} \quad \theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}(\theta)
\]
Neural Networks

- **Backpropagation** (using chain rule of derivative)

\[
x^0 \xrightarrow{W^1, b^1} x^1 \xrightarrow{W^2, b^2} \ldots \xrightarrow{W^L, b^L} x^L \rightarrow \mathcal{L}(x^L, y^*)
\]

Forward Pass
\[
x^\ell \leftarrow f(W^\ell x^{\ell-1} + b^\ell)
\]

Define dual variables to maintain negative gradients
\[
\rho^L \leftarrow -\frac{\partial \mathcal{L}}{\partial x^L} \circ f'(f^{-1}(x^L))
\]

\[
\rho^0 \xleftarrow{W^1, b^1} \rho^1 \xleftarrow{W^2, b^2} \ldots \xleftarrow{W^L, b^L} \rho^L \xleftarrow{\mathcal{L}(x^L, y^*)}
\]

Backward Pass
\[
\rho^{\ell-1} \leftarrow f'(f^{-1}(x^{\ell-1})) \circ (W^\ell)^\top \rho^\ell
\]
Neural Networks

- **Backpropagation** (using chain rule of derivative)

 Define dual variables to maintain negative gradients
 \[
 \rho^L \leftarrow - \frac{\partial \mathcal{L}}{\partial \mathbf{x}^L} \circ f'(f^{-1}(\mathbf{x}^L))
 \]

 \[
 \rho^0 \leftrightarrow W^1, b^1 \quad \rho^1 \leftrightarrow W^2, b^2 \quad \ldots \quad \rho^L \leftrightarrow W^L, b^L \quad \mathcal{L}(\mathbf{x}^L, y^*)
 \]

 Backward Pass
 \[
 \rho^{\ell-1} \leftarrow f'(f^{-1}(\mathbf{x}^{\ell-1})) \circ (W^\ell)^\top \rho^\ell
 \]

- **Update weights and biases**

 \[
 \Delta W^\ell \propto \rho^\ell (\mathbf{x}^{\ell-1})^\top \\
 \Delta b^\ell \propto \rho^\ell
 \]
Neural Networks

- **Feedforward Language Model**
 - **N-gram models:** $P(\text{mat} \mid \text{the cat sat on the})$
 - **Input:** concatenation of previous words (with fixed context size)
 - **Hidden Layer:** fully connected, use tanh activation
 - **Output:** softmax over vocabulary
Neural Networks

• Recurrent neural networks
 • Simple RNN (Key: weight sharing)

\[h_t = f(W h_{t-1} + U x_t + b) \]

previous hidden state \quad current input

• Recurrent Neural Language Models
Neural Networks

- Recurrent neural networks

 - Simple RNN (Key: weight sharing)

- Recurrent Neural Language Models
Neural Networks

- Recurrent neural networks
- Backprop through time (expensive for long sequences)

\[h_1 = g(Wh_0 + Ux_1 + b) \]
\[h_2 = g(Wh_1 + Ux_2 + b) \]
\[h_3 = g(Wh_2 + Ux_3 + b) \]
\[L_3 = -\log \hat{y}_3(w_4) \]

You should know how to compute: \(\frac{\partial L_3}{\partial h_3} \)

\[
\frac{\partial L_3}{\partial W} = \frac{\partial L_3}{\partial h_3} \frac{\partial h_3}{\partial W} + \frac{\partial L_3}{\partial h_3} \frac{\partial h_3}{\partial h_2} \frac{\partial h_2}{\partial W} + \frac{\partial L_3}{\partial h_3} \frac{\partial h_3}{\partial h_1} \frac{\partial h_1}{\partial W}
\]

\[
\frac{\partial L}{\partial W} = -\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{t} \frac{\partial L_t}{\partial h_t} \left(\prod_{j=k+1}^{t} \frac{\partial h_j}{\partial h_{j-1}} \right) \frac{\partial h_k}{\partial W}
\]
Neural Networks

- Recurrent neural networks
 - Backprop through time (expensive for long sequences)
 - Run forward and backward through chunks of the sequence
 - Only backpropagate for some smaller number of steps
Neural Networks

- **Long Short-term Memory (LSTM)**

 cell state vector
 \[
 c_t = f_t \circ c_{t-1} + i_t \circ \tanh(W_c x_t + U_c h_{t-1} + b_c)
 \]

 forget gate
 \[
 f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f)
 \]

 input gate
 \[
 i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)
 \]

 output gate
 \[
 o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)
 \]

 hidden state vector/output vector
 \[
 h_t = o_t \circ \tanh(c_t)
 \]
Focus(2):

- HMM
- MEMM
- 3 Problems in HMM
 - Decoding
 - Observation sequence
 - Training
A Markov chain is useful when we need to compute a probability for a sequence of observable events. In many cases, however, the events we are interested in are hidden: we don’t observe them directly. For example we don’t normally observe part-of-speech tags in a text. Rather, we see words, and must infer the tags from the word sequence. We call the tags hidden because they are not observed.

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda = (A, B)$, discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

1. Markov assumption:

 \[P(s_{t+1} | s_1, \ldots, s_t) = P(s_{t+1} | s_t) \]

2. Output independence:

 \[P(o_t | s_1, \ldots, s_t) = P(o_t | s_t) \]
Problem 2 – Decoding

\[\hat{S} = \operatorname{arg\,max}_S p(s|o) = \operatorname{arg\,max}_S \frac{p(s) p(o|s)}{p(o)} \quad \text{[Bayes]} \]

\[= \operatorname{arg\,max}_S p(s) p(o|s) \]

Greedy Decoding:

\[\forall t, \hat{S}_{t+1} = \operatorname{arg\,max}_S p(s_t \mid \hat{S}_t) p(o_{t+1} \mid s_t) \]
Viterbi:

$M[i, j]$: Most probable sequence of states ending with state j at time i

$M[i, j] = \max_k M[i-1, k] P(s_j | s_k) P(o_i | s_j)$ \hspace{1cm} 1 \leq k \leq K \hspace{1cm} 1 \leq i \leq n$

Backward: Pick $\max_k M[n, k]$ and backtrack
MEMM

In general, we can use all observations and all previous states:

\[
\hat{S} = \arg \max_S P(S \mid O) = \arg \max_S \prod_i P(s_i \mid o_n, o_{i-1}, \ldots, o_1, s_{i-1}, \ldots, s_1)
\]
Problem 1: Prob. of Observation sequence

• Forward and backward probabilities:

Define:

\[\alpha_s(j) = P(x_1, \ldots, x_{j-1}, y_j = s \mid \theta, \phi) \] (forward probability)

\[\beta_s(j) = P(x_j, \ldots, x_m \mid y_j = s, \theta, \phi) \] (backward probability)

Observation likelihood,

\[Z = P(x_1, x_2, \ldots, x_m \mid \theta, \phi) = \sum_s \alpha_s(j) \beta_s(j) \text{ for any } j \in 1, \ldots, m \]
Problem 3: HMM Training

• Intuitive Idea of EM:

 - θ^t is the parameter vector at the t^{th} iteration
 - Choose θ^0 at random (or using smart heuristics)
 - (E step): Compute expected counts
 \[
 \overline{\text{Count}}(r) = \sum_{i=1}^{n} \sum_{y} P(y|x_i, \theta^{t-1}) \text{ Count}(x_i, y, r)
 \]
 for every parameter θ_r
 - e.g.
 \[
 \overline{\text{Count}}(DT \rightarrow NN) = \sum_{i} \sum_{y} P(S|O_i, \theta^{t-1}) \text{ Count}(O_i, S, \theta_{DT\rightarrow NN})
 \]
 - (M step): Re-estimate parameters using expected counts to maximize likelihood
 e.g. $\theta_{DT\rightarrow NN} = \frac{\overline{\text{Count}}(DT \rightarrow NN)}{\sum_{\beta} \overline{\text{Count}}(DT \rightarrow \beta)}$
Continued: HMM Training

• Forward – backward algorithm:

\[
\overline{\text{Count}}(\theta_k) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^{i-1}, \phi^{i-1}) \text{Count}(X_i, Y, \theta_k)
\]

\[
= \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^{i-1}, \phi^{i-1}) \text{Count}(Y, \theta_k)
\]

(E-Step)

\[
\overline{\text{Count}}(\phi_k) = \sum_{i=1}^{n} \sum_{Y} P(Y|X_i, \theta^{i-1}, \phi^{i-1}) \text{Count}(X_i, Y, \phi_k)
\]

(M-Step)

\[
\theta_k = \frac{\overline{\text{Count}}(\theta_k)}{\sum_{\theta \in M(\theta_k)} \overline{\text{Count}}(\theta')} \quad \text{where } M(\theta_k) \text{ is the set of all transitions}
\]

\[
(a \to b, \text{ all } b) \text{ that share the same previous state as the } k^{th} \text{ transition}
\]

\[
(a \to c \text{ for some } c).
\]

\[
\phi_k' = \frac{\overline{\text{Count}}(\phi_k)}{\sum_{\phi \in M'(\phi_k)} \overline{\text{Count}}(\phi')} \quad \text{where } M'(\phi_k) \text{ is the set of all}
\]

\[
\text{emissions } (a \to x, \text{ all } x) \text{ that share the same hidden state as the } k^{th}
\]

\[
\text{emission } (a \to x', \text{ for some } x').
\]
Continued

\[P(y_j = s \mid X, \theta, \phi) = \frac{\alpha_s(j)\beta_s(j)}{Z} \]

\[P(y_j = s, y_{j+1} = s' \mid X, \theta, \phi) = \frac{\alpha_s(j) \theta_{s \rightarrow s'} \phi_{s \rightarrow x_j} \beta_{s'}(j + 1)}{Z} \]

Given these, we can now estimate:

\[\overline{\text{Count}}(\theta_{s \rightarrow s'}) = \sum_{i} \sum_{j=1}^{m} P(y_j = s, y_{j+1} = s' \mid X_i, \theta, \phi) \]

\[\overline{\text{Count}}(\phi_{s \rightarrow o}) = \sum_{i} \sum_{j: X_{ij} = o} P(y_j = s \mid X_i, \theta, \phi) \]